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The general goal of our research program for a number of years has been to devise 
abstractions, mechanisms, and formal methods that facilitate the construction of fault-tolerant 
programs, especially those designed for execution on distributed systems. Most recently, we we 
have been pursuing on a collection of related projects a variety of areas, ranging from 
communication protocols to formal verification. In particular, we have been investigating the 
following specific topics: 

• Operating system support for fault-tolerant, distributed programming. 

• Programming language abstractions that facilitate construction of fault-tolerant, 
distributed systems. 

• Verification of fault-tolerant programs. 

Much of this research is directly applicable to the topic of the workshop, especially the issues of 
formal methods, appropriate programming paradigms, and packaging of fault-tolerance 
primitives. In the sections that follow, we briefly outline the nature of our investigations in these 
three areas. Relevant papers are cited following the description. 

1. Operating System Support 
Ensuring a consistent order on message delivery among a set of participants ',hat is, 

ensuring that each process sees broadcast messages in the same order--is widely recognized as 
fundamental to constructing certain types of fault-tolerant, distributed programs. We have 
designed a new communication abstraction targeted at the problem of maintaining a consistent 
ordering of messages in the presence of communication and processor failures. The abstraction, 
called a conversation, preserves the partial ordering of messages multicast among a collection of 
processes. The novelty of our work is that we give an efficient mechanism for explicitly encoding 
a distributed application's logical clock in a low-level IPC mechanism and making it directly 
available to the application. Because of the fundamental nature of this partial ordering of 
messages, conversations offer a general solution to a wide range of communication problems: 
they support elegant and efficient implementations of conventional communication paradigms, 
they allow applications to directly access information not made available by other mechanisms, 
and they facilitate recovery from processor failure. 

We have implemented a prototype IPC mechanism, called Psync, that supports the 
conversation abstraction. Psync implements the abstraction with a context graph that maintains 
the partial ordering of messages. A copy of the context graph is replicated on multiple hosts 
using an optimistic algorithm that transmits the context in which a given message was sent (i.e., 
the set of messages that precede the message) only when that context is missing. Studies indicate 
that the performance of Psync is comparable to other low-level IPC mechanisms such as TCP. 

Features have been designed into Psync to facilitate the construction of fault-tolerant 
applications. For example, there is a restart primitive that can be used by a process to initiate 
recovery following a failure; its execution reconstructs the local copy of the context graph and 
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notifies the other processes of the recovery. This primitive can also be used to reexecute the 
participant from its initial state or from an intermediate saved state. In this option, the sequence 
of messages received by the process upon re.execution will be identical to the sequence it 
originally received, thus facilitating reconstruction of an appropriate internal state. This 
functionality is similar to recovery techniques based on message-logging, although with the 
advantage of being an integrated part of the IPC 'mechanism rather than an additional system 
component. 

These aspects of Psync form only the basic foundation needed for constructing fault-tolerant 
applications. In general, such programs are easier to structure if higher level abstractions are also 
provided. Since these abstractions are typically constructed above the Psync layer in our scheme, 
we refer to them as application.level protocols. Examples include atomic broadcast, membership 
protocols, and recovery protocols, as well as storage-based abstractions such as stable storage, 
checkpoints, and logs. 

We have recently started to investigate issues related to the design and implementation of 
applicationAevel protocols in the context of a replicated object application built on top of Psync. 
One specific question we are addressing involves the interrelationship of the various protocols 
and appropriate structuring techniques. As currently implemented, all of the protocols are 
essentially independent even though it is clear that some of them could be simplified if they could 
use other protocols as lower-level abstractions. For example, it appears that both the recovery 
and membership protocol could use some variant of an order protocol to provide the appropriate 
partial ordering of messages. 

To achieve this kind of functionality, we are currently exploring ways to decompose 
protocols into smaller, more fundamental "micro-protocols." For example, atomic broadcast has 
two orthogonal aspects: ensuring a consistent message order and atomicity of delivery. If it is 
possible to construct separate protocols that guarantee each property individually, we may be able 
to come to a clearer understanding of the specific property or properties of atomic broadcast that 
are required for a given higher-level protocol. Or, as another example, determining a common 
denominator in the way different applications use transactions could shed light on the exact 
relationship between such applications and different transaction protocols. 

The ability to decompose a protocol into its fundamental components also opens the way to 
other interesting research possibilities. One is the investigation of new protocols that compose 
the pieces in unique and interesting ways. For example, composing an atomicity micro-protocol 
together with a partial ordering micro-protocol might result in an interesting and useful variant of 
atomic broadcast that is inherently more efficient. Another is work on constructing a collection of 
micro-protocols so that an applications designer could, for instance, use different versions of a 
protocol depending on the nature of the application, the specific architecture being used, or the 
assumed fault model. For example, an atomicity micro-protocol assuming only fail-stop failures 
would be different (and simplier) than one in which arbitrary (i.e., Byzantine) failures are 
allowed. This work on composing protocols will be supported by the meta-protocol capabilities of 
the x-kernel, the operating system nucleus upon which Psync is implemented. 

2. Programming Language Abstractions 

The ease with which distributed system software can be implemented depends to a certain 
extent on the programming language being used and the particular abstractions it provides. For 
example, the use of conventional sequential languages such as C or Pascal augmented with 
message-passing primitives provides very little in the way of support for distributed programming 
in general, and practically no support for fault-tolerant programming. High-level distributed or 
concurrent programming languages such as Ada, Concurrent Euclid, Mesa, Modula-2, and SR are 
in many ways ideal for programming such systems, yet in general lack sufficient support for 
fault-tolerant programming. The problems associated with using existing languages to construct 
robust systems has been reinforced by the shortcomings we perceived while using SR to build a 
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prototype of the Saguaro distributed operating system. 

Accordingly, we have been investigating the design and implementation of distributed 
programming languages specifically intended for building fault-tolerant, distributed systems. The 
emphasis on system software is significant: we are interested in determining what mix of 
language features are useful for implementing applicationqevel abstractions such as transactions 
or replicated servers rather than in designing languages which themselves contain such features. 
To achieve this goal, we have been working on language-based approaches for constructing 
system software that can deal with the asynchronous nature of failures in a systematic manner. 
Our approach is based on the observation that the occurrence of failures can be considered as 
events (i.e., state transitions) caused spontaneously by the adverse environment of the system. 
With this view, the failure of a processor is treated logically within the software as a concurrent 
event that is generated and signaled in real-time by an underlying processor membership service 
that detects the failure. The interprocess synchronization and communication mechanism 
provided by the language (e.g., semaphores, condition variables, messages) is then used to wait 
for the occurrence of a failure signal and synchronize its activity with normal processing. The 
specific extensions we have proposed involve the failure and recovery of fail-stop processors and 
are designed for the SR distributed programming language. The approach can easily be 
generalized to other languages and to handle other types of events, however. 

In this work, one of our stated objectives is to design the mechanisms to mesh with SR so as 
to have minimal impact on the existing language. That is, our goal is to show how existing 
distributed languages can be adapted for fault-tolerant computing, rather than to develop a new 
language. Our subsequent plans are to lift this restriction and to use the experience gained in 
extending SR to rethink the entire collection of abstractions supported by the language. One 
obvious goal in doing so is to develop specific suggestions for future versions of SR. However, a 
second, more important goal is to devise general guidelines for designing and implementing 
abstractions that will lead to better support for fault-tolerant system programming in the next 
generation of programming languages. Our plan is to investigate a variety of different 
abstractions with an eye towards determining which are appropriate to provide within the context 
of a system programming language. 

3. Verification Techniques 

We have recently been investigating formal methods for reasoning about fault-tolerant, 
distributed programs that have timing constraints. Our approach is based on applying two 
methods previously used in other slSecification and validation tasks in a unique way: temporal 
logic and fuzzy logic. Temporal logic--first-order logic augmented with operators that allow 
reasoning about sequences of execution states---has been applied successfully to the task of 
proving liveness properties of sequential and concurrent programs. On the other hand, fuzzy 
logic--a logic that allows for a degree of uncertainty within formal reasoning--has been 
proposed for reasoning about non-determinism, particularly in artificial intelligence and database 
applications. Our approach is to combine these two methods into a single system that supports 
reasoning about timing and reliability properties separately and in tandem. In particular, an 
"extended" temporal logic is used to reason about timing behavior, while a fuzzy logic 
"valuation" applied to such temporal logic formulae is used to reason about reliability. Our 
eventual objective is to allow properties such as "The actuator will be adjusted _< M time units 
after the sensors are read with probability .99" to be expressed and verified given certain 
underlying probability distributions. 

Over the past year, we have been working on developing the extended temporal logic 
portion of the logic. This logic, called CSTL (Clock State Temporal Logic), is based on the 
addition of a time component to the standard temporal operators "henceforth" (1"1) and 
"eventually" (O) to allow reasoning about lower and upper bounds on execution times. 
Specifically, we define the following abbreviations 
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Ot/,k:' ::= 3i:j<i.~k:Oi P 

::= V i : j~.~k:O i P 

::=-~O[Oj-IIP A O[j,t]P 

::= ~OtOd-l ]P ^ [-]ti,klP 
for any temporal formula P and natural numbersj and k. The abbreviations are read informally as 
follows. 

O t/,klP : P is true in at least one of the states between the j th state and the k th state. 

I-'Iu~IP • P is true in all of the states between the j th state and the k th state. 

At/~}P : P is not true in the firstj -1 states and then is true in at least one of the 
states between the j th state and the k th state. 

Viy.tjP • P is not true in the firstj -1 states and then is true in all the states between 
the j th state and the k th state. 

Given these abbreviations, we have developed a programming model and a proof theory for 
reasoning about the timing properties of distributed programs. Two programs abstracted from 
existing applications have served as examples to test the application of our approach. 

To deal with failures and recoveries in a formal way, our current plan is to develop a logic 
based on CSTL that includes a fuzzy "valuation" or probability for all temporal formulae. The 
first step is to add a transition probability matrix to the model for CSTL. This matrix represents 
the probabilistic nature of state transitions, where, for example, the entry representing the 
transition from a state s i to a distinguished state S/air would be the probability of a processor 
failure while in in state s i. The next step is to use these matrix entries and the notion of 
satisfiability of predicates to construct a fuzzy valuation for formulae in the logic. That is, a 
valuation based on satisfiability is defined for predicates and extended inductively to cover 
immediate assertions involving the standard logical connectives, "not ,"  "o r "  and "and."  A 
valuation based on the appropriate entry in the transition probability matrix is then defined for use 
with the "next" (O) operator. Finally, the valuations of formulae involving the bounded 

"hencefor th"  (l'q), "eventually" (O), "delta" (A), and "grad" (V) can then be constructed from 
the CSTL definitions for these operators and the fuzzy valuation for their components. Note, 
however, that there are many possible fuzzy valuations; this approach seems to model the 
properties we wish to specify and validate most successfully, and so will be used as the starting 
point for further investigations. 
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