
Position paper 

The Object Paradigm is to be reconsidered 
for Distributed Systems 

Antonio Corradi, Letizia Leonardi 

Dipartimento di Elettronica, Informatica e Sistemistica - Universita' di Bologna 
2, Viale Risorgimento - 40136 Bologna - ITALY 

Ph: +39-51-6443001 
e-mail: B OARI@ bodeis.cineca.it 

Introduction and Motivations 

The object paradigm has been proposed as a break-through because of many of its features: 
information hiding, dynamic object communication, grouping of information into classes, 
inheritance among classes, possibility of changing behavior at run-time by manipulating classes. 

The information hiding property states a clean distinction between external visibility and internal 
perspective of an object. The external world has reduced visibility of the inside of an object: normally 
only an interface constitued by operation names is visible. Within any object, instead, there is the 
full visibility, in particular of the object state. This makes possible thateach object decides its internal 
policies independently of any environment decision. 
Object communications produce the global computation in object-based systems. An object can 
communicate with another if and only if knows it via a reference [Lis79]. In object systems, a 
communication implies that client objects request operations defined in the interface of server 
objects. These requests are exchanged by using message-passing mechanisms. Dynamicity of 
communications means that an object can change its visibility, i.e. the objects it can refer. 
Classification and factorization by inheritance gives object environments the possibility of 
applying reusability and extensibility. On the one hand, object applications can be designed and 
programmed by reusing already developed software. On the other hand, applications based on 
objectscan evolve to follow changes of specification. In the case of dynamic changes, the possibility 
of updating classes at run-time constitutes an useful tool. 

The above described properties have oriented object-based systems toward rapid prototyping of 
applications [GolR83]. Only recently, more protected perspectives emerged and suggested new 
trends in the sense of protection [Mey88]. 

We think that a full exploitation of the potential of the object paradigm can only derive from the 
exploration of the issues neglected by its first implementations. In particular considering distributed 
targets, the areas of intervention span from the provision of concurrency to fault tolerance and 
persistency strategies. 
Instead of concentrating on peculiar implementations of object systems to face specific problems, 
we feel that it is time of reconsidering the general properties of the object paradigm. The aim is to 
identify the extensions of the object paradigm in addressing the issues distributed systems propose: 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F504136.504185&domain=pdf&date_stamp=1990-09-03


- concurrency; 
- communication; 
- replication; 
- dissemination; 
- persistency. 

Concurrency aspects 

The structuring of an application into objects can simplify the phase of identifying parallelism 
[CorL90]. In fact, each object can constitute not only the structuring unit, but also the processing 
unit. 
According to this point of view, active object systems associates a thread of execution with each 
object. This introduces the first dimension of parallelism into the object paradigm: we call it inter- 
object parallelism. The object thread is generally represented by one heavyweight process: after 
all, objects do not have an ephemeral life time. 

The second dimension of parallelism is due to the possibility of associating with an object not 
only one execution thread but several ones. We call this second kind of parallelism intra-object 
parallelism. It introduces the need for synchronization (i.e. scheduling) of activities internal to a 
single object [CorL90]. Internal threads are generally mapped into lightweight processes because 
their creation/destruction is much faster than the object containing them. 
The two components of parallelism have been first neglected in the first implementation of the 
object paradigm, but we think that they are a key toward the solution of the identification of 
parallelism. 

Moreover, in a distributed architecture, the object can become not only the unit of parallelism, but 
also the unit of allocation. Once the objects of an application have been logically identified, the 
decision of their allocation to available processors is driven first by the total number of objects 
per processor and then by the internal concurrency to be obtained. These two levels in the 
allocation phase furnishes a guide when mapping objects to massively parallel architectures 
[CiaCL89]. 

Distribution also suggests the opportunity of several name spaces, instead of a unique one [Tsi871. 
A distributed object paradigm can so be organized into contexts, that represent abstraction of 
physical processors, each one with its name space. Contexts contain objects and, conversely, 
objects belong to one context only. 

Communication relationships 

Although we consider distributed environments, object comrnunication at the paradigm level must 
be independent of object location. A client must be not aware of where its server is allocated (and 
vice versa). This constitutes the basis for a complete transparency. 

The first implementationsoftheobject paradigm generally provides a synchronous mechanism 
for the communication between client and server objects [GolR83]: the client waits until the server 
yields a result. This mode of communication is too constrained to suit any problem of a distributed 
environment. 



More asynchronous ways of communication can be considered (and have been); with and without 
the possibility of successively receiving a result. The asynchronous mechanism that allows the client 
to receive the result at a future time (called sometimes future communication) is the most flexible: 
any communication scheme can be implemented in terms of it. 
Moreover, other different communication modes derive from the use of broadcast mechanisms 

directly provided at the architecture level. -:~ 
Different communication modes help in providing a model reasonably close to the need of the 
application level. The risk that one must avoid is to propose mechanisms too pecualiar for a general 
usage. For example, negotiation protocols [DavL83], where several communications can occur 
back and forth from the client to the server before the server initiates the operation, are of too 
restricted usage and of such detail to be introduced at the paradigm level. 

The client-server communication model describes only one interaction between two agents, but 
does not specify any mechanism to deal with a set of concurrent interactions. 
The problem of grouping to gether multiple interactions is normally solved by transaction 

serializability [SchS84]. 
The importance of such mechanism for objects diminishes: if one wants to achieve the serialization 
of transaction semantics no additional mechanism needs to be introduced. It is only necessary to 
define a new object, the serializer, in charge of guaranteeing that interactions happen without 
inconsistency. It is the serializer that requests them to the involved objects. 
The other aspect of transaction, recoverability, can be obtained by replication. Object systems tend 
to furnish transaction tools, implemented in this way [Delta4]. 
As a variation, the function of serialization can be sometimes carried out by the involved objects 
themselves, in a dedicated part [CorL90]. 

Replication model 

The general object paradigm does not consider replication. Nevertheless, replication of objects 
seems a common strategy to obey the requirements of reliability and availability, depending on 
the set of faults one wants to tolerate [Bir85] [Delta4]. 
In fact, several proposals of distributed systems based on objects have already proposed solutions 
in the fault tolerance area by using replication. 
Therefore, object replication, i.e. the recognition of copies as part of the same object, is a basic 
property that deserves to be embodied in the paradigm itself. 

Object copies are either passive or active ones. Active copies execute all the same operations. 
Passive copies can be either on-line or on non volatile memory. 
On-line back-up copies can be employed to reliably face faults in any resource, while several active 
copies of objects can be concurrently maintained to obtain availability. 

When contexts are considered, one object is normally part of only one context. Replicated objects, 
instead, span contexts and have copies in more than one contexts. Replicated object copies must 
be recognized by the system as part of the same object. 
Object replication takes advantage of information hiding: the policy of consistency between copies 
and the replication strategy, i.e. passive vs. active copies, are decided on an individual basis. 
If one consider replication only for fault-tolerance, consistency among copies can be maintained 
following different schemes. These schemes depend on replication strategy, either active or passive: 
therefore, they can be either distributed agreement protocols or checkpoiting mechanisms [Delta4]. 



Nevertheless, object replication is not only tied to fault-tolerant purposes, but it has a more general 
meaning. In fact, in a distributed system, there is the need of recognizing a given service ~is a unique 
service. For example, a printing service is a general service that can be replicated in several contexts 

(i.e. nodes). 
Since within each object there is a distinction between data and oper.ations (normally contained in 
the object class), consistency can apply not only'to'~data, but.also to both parts. : 
The degree of consistency spans from tight consistency, that requires identical data and operations 
for all copies, to loose heterogeneity, when copies can evolve independently. Any intermediate 

shadow is allowed. 
By using the printer example, tight consistency must be adopted in case the printers of each context 
are equal (and are to be maintained equal). Loose consistency, instead, accomodates the case of 
printers of different brands with different functions. 
In an object environment, the provision of consistency protocols can take advantage of inheritance. 
Any object in need of a given protocol can derive it from a subclass of the one furnishing it. 

Some aspects of dynamicity, in the object paradigm, are due to the presence at run-time of classes 
as first-class entities. This is on the one hand a constraint that imposes coresidence of objects and 
their classes in the same context, and, on the other hand, a sharing approach to be pursued in 
second generation distributed object systems. 
Following the coresidence constraint, a class must be present in any context where its intances are. 
This implies that classes can be replicatedobjects with the problem of maintaining consistency" Since 
a variation of a class is less likely than a change of its instances, a reasonable consistency algorithm 
for classes can be the tight one. 

Process group semantics can be implemented by using object replication. A taxonomy of group 
semantics can induce fruitful considerations when applied to the object model ILia90]. 

Dissemination in time and in space 

Object dissemination can be considered on the base of different dimensions: in space and in time. 

Dissemination in space consists in copying objects within several contexts. Unlike replication, each 
copy is a new and autonomous object, not tied to the generator copy. Object copy obtains better 
communication performance the same as replication does. In fact, some communications that before 

the copy were remote can be transformed into local. 

Dissemination in time, instead, means to migrate an object from one context to another. Object 
migration mimics process migration [Smi88], but present less problems than the process counterpart. 
This is due to the information confinement property of objects. Object migration can be used to 
effectively implement load shfiring policies in a distributed system [Ju188]. 

Persistency issues 

The possibility of using an approximation of stable memory guarantees a copy of information from 
which it can be restored after a crash. The current active copy saves its state on stable memory time 
by time. 
Object systems must provide functions to interact with stable storage with its objects. One can freeze 
a copy of an object and recover information successively. 



Objects can produce copies in non-volatile memory on individual basis. The client-server 
relationships between objects identifies hierarchies of objects: when a part of such a hierarchy is 
saved, other parts of hierarchy can be saved. 
The recoverability aspect of atomicity can be implemented via the persistency feature. 

A distributed object scenario 

Summarizing, the object paradigm needs a limited amount of extensions to face the problems 
distributed systems must cope with. 
The areas of extension of the paradigm are mainly: 
- parallelism integrated with object properties; 
- communication mechanisms that overcome the synchronous message passing limitations; 
- objects distributed on different contexts; 
- objects replicated in different contexts with possibly several consistency protocols; 
- object dissemination by copying/migrating objects in/to different contexts; 
- persistency of objects. 

Transparency of allocation is a requirement not at the paradigm level but in the design of a 
programming environment. The paradigm works explicitly in the sense that any characteristic of 
objects such as allocation and replication must be explicitly specified. An implementation can make 
the user to follow a more implicit approach, by providing objects that incapsulate policies. 
Part of the proposed extensions have been investigated by extending a Smalltalk system towards 
distribution [CorLZ90] and within the process of design of a support for objects on a massively 
parallel architecture [CiaCL90]. 

References 

[Bir85] K.P. Birman: "Implementing Fault-tolerant Distributed Objects", IEEE Tr. on Software 
Engineering, v.SE-11, n.6, June 1985. 

[CorL90] A. Corradi, L. Leonardi: "Parallelism in Object-oriented Languages", IEEE International 
Conference on Computer Languages, New Orleans (LA), March 1990. 

[CorLZ90] A. Corradi, L. Leonardi, M. Zannini: "Distributed Environments based on Objects: 
Upgrading Smalltalk towards Distribution", IEEE Phoenix International Conference on 
Computer and Communications, Phoenix (AZ), March 1990. 

[CiaCL89] A. Ciampolini, A. Corradi, L. Leonardi: "Objects on Massively Parallel Architectures", 
International Workshop on Supercomputing Tools for Science and Engineering, Pisa, Dec. 
1989. 

[CiaCL90] A. Ciampolini, A. Corradi, L. Leonardi: "Parallel Object Models in the Design of an 
Environment for Massively Parallel Architectures", ESPRIT Workshop of the Parallel 
Computing Action, Southampton, July 1990. 

[DavS83] R. Davis, R.G. Smith: "Negotiation as a Methaphor for Distributed Problem Solving", 
Artificial Intelligence, v.20, 1983. 



[Delta4] ed. D. PoweU: "DELTA4: Overall System Specification", Technical ESPRIT Report, The 
Delta-4 Project Consortium, Nov. 1988. 

[GolR83] A. Goldberg, J. Robson: "SMALLTALK-80: the Language and its Implementation", 
Addison-Wesley, 1983. ~ 

[Ju188] E. Jul et alii: "fine-grained Mobility in the Emerald System", ACM Trans. on Computer 
Systems, v. 6, n. 1, Feb. 1988. 

[Lia90] L. Liang, et alii: "Process Groups and Group Communications: Classifications and 
Requirements", IEEE Computer, v.23, n.2, Feb. 1990. 

[Mey88] B. Meyer: "Object-oriented Software Construction", Prentice Hall, 1988. 

[SchS84] P.M. Schwarz, A.Z. Spector: "Synchronizing Shared Abstract Types", ACM Transactions 
on Computer Systems, v. 2, n. 3, Aug. 1984. 

[Smi88] J.M. Smith: "A Survey of Process Migration Mechanisms", ACM Operating Systems 
Review, v. 22, n. 3, July 1988. 

[Tsi87] D. Tsichritzis, et al.: "KNOs: KNowledge Acquisition, Dissemination, and Manipulation 
Objects", ACM Toplas, v.5, n. 1, January 1987. 


