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Abstract 

To fully exploit the potential of large address spaces, e.g. 2e4-byte, the sparsity problem has to 
be solved in an efficient manner. Current address translation schemes either cause enormous space 
overhead (page table trees) or do not support address space structuring, object grouping and mixed 
page sizes (inverted page tables), Furthermore, an essential handicap of current virtual address spaces 
is their coarse granularity. It restricts the concept's relevance to low level OS technology. Without this 
constraint, mapping could be a vertically integrating paradigm, useful on all levels from hardware up to 
application programming. 

Guarded page tables help solving both problems. They permit significant extensions of the current 
programming model without performance degradation: sparse occupation and coarse-grain (4K) pages 
can be handled by purely conventional hardware; fine-grain (down to 16-byte) pages without fine-grain 
allasing become also possible using conventional cache and TLB technology combined with stochasti- 
cally colored allocation. Unrestricted aliasing and unlimited user level mapping without performance 
degradation may become possible by hardware innovation. 

1 Motivation 
Upcoming 64-bit processors can lead to a quantum leap in the virtual address space paradigm. 232-sized 
spaces have proved to be a convenient and sufficiently powerful local tool for most problems. 264-sized 
spaces do not only permit to handle larger problems, but they offer new possibilities by means of fiat global 
address spaces. This is a promising paradigm for distributed systems - especially for object oriented and/or 
persistent ones - and perhaps also for supercomputers. There are strong reasons that "unlike the move from 
16- to 32-bit addressing, a 64-bit address space will be revolutionary instead of evolutionary with respect 
to the way operating systems and applications can use virtual memory." (Koldinger, Chase, Eggers [8]). 
Experimental single address space operating systems are for example Opal [4, 3] and Mungi [6]; a similar 
design is described in [2] and [15]. The latter system especially relies on rich per page protection facilities. 

One serious problem coming up in this context is sparsity. A 2S4-byte address space will ever be sparsely 
occupied. (Otherwise, a 2~a2-space would do as well.) And after all what we have learned from history and 
from Murphy, we should expect that systems and applications in real life will tend to unlimited sparsity. 
Imagine, for example, the complete usenet or other huge distributed databases mapped into each single 
address space. Sparsity is also essential for architectures relying on anonymity as protection mechanism [17]. 

The critical point in supporting sparsely occupied huge spaces is the efficiency of the mapping mecha- 
nism. Currently used address translation schemes either explode in space requirements or do not support 
structuring. We need a scheme which is tree.based, e~icient (independent of the degree of sparsity) and as 
e~cientas existing ones. 

Conventional schemes meet only two of these requirements: page table trees (also called multi-level page 
tables) do not support sparsity, whereas inverted page tables support solely the 1-page abstraction and 
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obstruct grouping of pages. In addition, the latter scheme restricts the OS architecture by high page sharing 
costs, and it does not permit mixed page sizes, what is essential for fine granularity. 

Sparsity is strongly related to granularity: from the point of view of a 264-space, a 212 = 4K page 
and a 24 = 16 byte page do not look very different. Therefore, besides sparsity, we address granularity 
as well. Fine-grained address spaces potentially can have strong architectural impacts not only in obvious 
fields like object orientation, but also, for example, in code generation, data bases, distributed systems, 
supercomputers, file systems and multi media applications. 

But whereas the sparsity problem can be solved solely by a better address translation mechanism without 
affecting other hardware components, fine granularity strongly interferes with the TLB and cache system. 

2 Guarded Page Tables 

The central idea of guarded page tables is to supplement each page table entry by a guard, a bit string g of 
variable length. 

First, a page table entry is selected by the highest part of the virtual address upon each transformation 
step in the same way as with the conventional multi-level page table method. The selected entry however 
contains not only a pointer (and perhaps an access attribute) but also the guard g. If g is a prefix of the 
remaining virtual address, the translation process either continues with the remaining postfix or terminates 
with the postfix as page offset. 

As an example, figure 1 presents the transformation of 20 address bits by 3 page tables. Note that the 
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Figure 1: Guarded Page Table Tree 

length of the guards may vary from entry to entry. Furthermore, page tables sizes can be mixed; all powers 
of 2 are admissible. The same holds for data pages, i.e., a mixture of 2-, 4-, . . .  1024-, . . .entry page tables 
and pages can be used. 

Guarded page tables contain conventional tables a~ a special case: if a guard has length zero, a translation 
step works exactly like in the conventional mechanism. But in all cases conventionally requiring a table with 
only one valid entry, a guard can be used instead. It can even replace a sequence of such "single-entry" page 
tables. This saves both memory capacity and transformation steps, i.e., guards act as a shortcut. 

The guarded page table algorithms can be implemented purely by software. However, the "non regular" 
operations of guard checking and stripping can be substantially accelerated by dedicated hardware. Parallel 
execution can further speed up the algorithm: checking 4 adjacent page table entries in parallel doubles the 
walking speed of nearly minimal trees [9, 12]. 
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3 Sparsity 

Guarded page tables have the advantages of conventional page table trees (support of hierarchical operations, 
sharing of subtrees) and outperform inverted page tables in most cases (see [1{3]). They require only a 
maximum of 2 page table entries per mapped page, regardless of how the pages are allocated and how wide 
the virtual addresses are. Without restricting the operating system architecture, guarded page tables solve 
the sparsity problem of 64-bit systems: the page table overhead is less than 1% of user data for any chosen 
mapping of 4 K pages. In contrast, conventional page table trees require overheads between 6 ~  (compact) 
and 400% (very sparse) for 100 pages. 

If only the sparsity problem is addressed, a unique page size and conventionally coarse-grained pages are 
sufficient. In this case, a guarded page table MMU can be integrated into a conventional processor without 
changing the TLB and cache architecture, 

4 Fine Granularity 

Figure 2 shows the worst case memory overhead depending on the object size for multi-level (MPT) 1 , inverted 
(IPT) and guarded (GPT) page tables. Note that in practice the overhead might be lower. Nevertheless, 
guarded page tables seem to support fine granularity better than the other mechanisms. A more detailed 
cost analysis of the worst case and some other models is contained in [11]. 
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Figure 2: Worst Case Memory Overhead 

Fine granularity does not only rely on the page table mechanism but also on the TLB and cache archi- 
tecture. For example, it is difficult to handle small pages with todays favorite caches (virtually indexed + 
physically tagged). Therefore you may suspect performance degradation and/or higher hardware costs due 
to fine granularity. 

Combined with stochastically colored allocation [10], more or less conventional caches (virtually indexed 
+ physically tagged) and TLBs can fortunately be constructed which perform as well as conventional ones, 
in both the fine-granular and the coarse-granular case. Surprisingly, the combination permits larger caches 
than conventional technology, i.e., it will perhaps not only preserve system performance but increase it. 

5 Visions 

Fine-grained aliasing makes higher demands on the cache system. It either increases cache latency or requires 
additional hardware, e.g. base address caches [5] or a virtually tagged cache supporting synonyms [13, 14]. 
Therefore, this section is highly speculative: imagine that unrestricted aliasing is sufficiently cheap. What 
can we do with this mechanism? 

1 The MPT overhead strongly depends on sparsity. Therefore two scenarios are shown: in '4G gaps' ,  the objects are located 
at  consecutive 4G-aligned addresses, in '64K gaps'  a t  consecutive 64K-aligned ones. 
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Experiments with user-level mapping are described in [1, 7]. But since, with guarded page tables, the 
obtainable granularity is in the magnitude of a program variable, we should even explore techniques to 
replace references by mapping, perhaps even parameter passing by mapping. For example, a compiler could 
assemble statically determinable sets of parameters and construct alias regions for them. Objects could be 
synthesized by mapping. Database queries could result in mapping the found objects instead of copying 
them. This could be extremely useful in distributed databases since it easily permits lazy evaluation of 
queries. 

Extending the guarded page table mechanism permits user programs to manipulate mapping directly: 
efficient user controlled aliasing (for object synthesis, constructing alternate views or parameter passing) 
and call on reference become possible. The latter facility enables user programs to associate specific access 
semantics with address space regions (or pages), for example, 'delay upon read access' (variable value has 
not yet been computed), 'signal upon write access', 'remote object invocation', 'access by proxies' [16] or 
simply 'access protocol'. 

The costs of unrestricted fine-grained aliasing are not yet clear, but the possibilities are amazing. Further 
work is required for exploration, including the construction of a really usable virtual machine, an appropriate 
kernel and experiments with code generators and applications. 
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