
ar
X

iv
:c

s/
01

08
00

2v
1 

 [
cs

.D
C

] 
 2

 A
ug

 2
00

1

Bounded Concurrent Timestamp Systems Using Vector Clocks∗

S. Haldar†

Bell Laboratories

600 Mountain Avenue,

Murray Hill, NJ 07974, USA.

haldar@cs.mun.ca

P.M.B. Vitányi
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Abstract

Shared registers are basic objects used as communication mediums in asynchronous
concurrent computation. A concurrent timestamp system is a higher typed communication
object, and has been shown to be a powerful tool to solve many concurrency control
problems. It has turned out to be possible to construct such higher typed objects from
primitive lower typed ones. The next step is to find efficient constructions. We propose
a very efficient wait-free construction of bounded concurrent timestamp systems from 1-
writer multireader registers. This finalizes, corrects, and extends, a preliminary bounded
multiwriter construction proposed by the second author in 1986. That work partially
initiated the current interest in wait-free concurrent objects, and introduced a notion of
discrete vector clocks in distributed algorithms.
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1 Introduction

Consider a system of asynchronous processes that communicate among themselves by execut-

ing read and write operations on a set of shared variables (also known as shared registers)

only. The system has no global clock or any synchronization primitives. Every shared variable

is associated with a process (called owner) which writes it and the other processes may read

it. An execution of a write (read) operation on a shared variable will be referred to as a Write

(Read) on that variable. A Write on a shared variable puts a value from a pre determined

finite domain into the variable, and a Read reports a value from the domain. A process that

writes (reads) a variable is called a writer (reader) of the variable.

Wait-free shared variable: We want to construct shared variables in which the following

two properties hold. (1) Operation executions are not necessarily atomic, that is, they are

not indivisible, and (2) every operation finishes its execution within a bounded number of its

own steps, irrespective of the presence of other operation executions and their relative speeds.

That is, operation executions are wait-free. These two properties give rise to a classification of

shared variables, depending on their output characteristics. Lamport [29] distinguishes three

categories for 1-writer shared variables, using a precedence relation on operation executions

defined as follows: for operation executions A and B, A precedes B, denoted A −→ B, if

A finishes before B starts; A and B overlap if neither A precedes B nor B precedes A. In

1-writer variables, all the Writes are totally ordered by “−→”. The three categories of 1-writer

shared variables defined by Lamport are the following.

1. A safe variable is one in which a Read not overlapping any Write returns the most

recently written value. A Read that overlaps a Write may return any value from the

domain of the variable.

2. A regular variable is a safe variable in which a Read that overlaps one or more Writes

returns either the value of the most recent Write preceding the Read or of one of the

overlapping Writes.
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3. An atomic variable is a regular variable in which the Reads and Writes behave as if they

occur in some total order which is an extension of the precedence relation.

A shared variable is boolean1 or multivalued depending upon whether it can hold only two

or more than two values.

Multiwriter shared variable: A multiwriter shared variable is one that can be written and

read (concurrently) by many processes. Lamport [29] constructed a shared variable that could

be written by one process and read by one other process, but he did not consider constructions

of shared variables with more than one writer or reader. Vitányi and Awerbuch [42] were the

first to construct an atomic multiwriter shared variable from 1-writer variables. They propose

two constructions: one from 1-writer multireader shared variables using bounded control

information that turned out to be incorrect [43] (just regular and not atomic as claimed),

and the other from 1-writer 1-reader variables using unbounded control information. The

latter construction is correct. It is made bounded in [31], yielding one of the most optimal

implementations that are currently known. (In this paper we correct and extend the first

construction to obtain an efficient version of the more general notion of bounded concurrent

timestamp system as defined below.) Related work is [1, 5, 6, 16, 17, 19, 23, 24, 29, 30, 31, 34,

35, 36, 37, 38, 40]. In particular, it is now possible to construct bounded multiwriter atomic

variables from 1-writer 1-reader safe bits. See [31], and the last section of this paper, for a

brief history of the subject.

Timestamp system: In a multiwriter shared variable it is only required that every process

keeps track of which process wrote last. There arises the general question whether every

process can keep track of the order of the last Writes by all processes. This idea was formalized

by Israeli and Li [21]. They introduced and analyzed the notion of timestamp system as an

abstraction of such a higher typed communication medium. In a timestamp system every

process owns an object , an abstraction of a set of shared variables. One of the requirements

of the system is to determine the temporal order in which the objects are written. For this

purpose, each object is given a label (also refer to as timestamp) which indicates the latest

(relative) time when it has been written by its owner process. The processes assign labels to

their respective objects in such a way that the labels reflect the real-time order in which they

are written to. These systems must support two operations, namely labeling and scan. A

1Boolean variables are referred to as bits.
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labeling operation execution (Labeling, in short) assigns a new label to an object, and a scan

operation execution (Scan, in short) enables a process to determine the ordering in which all

the objects are written, that is, it returns a set of labeled-objects ordered temporally. We are

concerned with those systems where operations can be executed concurrently, in an overlapped

fashion. Moreover, operation executions must be wait-free, that is, each operation execution

will take a bounded number of its own steps (the number of accesses to the shared space),

irrespective of the presence of other operation executions and their relative speeds.

Wait-free constructions of concurrent timestamp systems (CTSs, in short) have been shown

to be a powerful tool for solving concurrency control problems such as fcfs-mutual exclusion

[8, 25], multiwriter multireader shared variables [42], probabilistic consensus [2, 7], fcfs l-

exclusion [12] by synthesizing a “wait-free clock” to sequence the actions in a concurrent

system.

Here, we are interested in constructing concurrent timestamp systems using 1-writer shared

variables. It is not difficult to construct a timestamp system if the shared space is unbounded

(there is no limit on the size of some shared variables). The problem gets much harder for

bounded (shared space) systems. A bounded timestamp system is a timestamp system with

a finite set of bounded size labels. In the rest of the paper, unless stated otherwise, by a

timestamp system we mean a wait-free bounded concurrent timestamp system.

Israeli and Li [21] constructed a bit-optimal bounded timestamp system for sequential

operation executions. The concurrent case of bounded timestamp system is harder and the

first generally accepted solution is due to Dolev and Shavit [9]. Their construction is of the

type as in [21] and uses shared variables of size O(n), where n is the number of processes

in the system. Each Labeling requires O(n) steps, and each Scan O(n2 log n) steps. In their

construction, no Scan writes any shared variables: It is a ‘pure’ reading operation execution.

(But, by the theorem of Lamport [29, page 91], all such constructions become de facto im-

pure if we break them down to the lowest level of system building.) Following Dolev and

Shavit, several researchers have come up with other constructions. Israeli and Pinhasov [22]

use shared variables of size O(n2); Labeling and Scan require O(n) steps. Gawlik, Lynch and

Shavit [14] use shared variables of size O(n2); Labeling and Scan access O(n log n) shared

variables. In [10], Dwork and Waarts introduce a powerful communication abstraction called

“traceable use abstraction” to recycle values of shared variables. They demonstrate the use-

fulness of the abstraction by constructing a CTS, borrowing the basic ideas and techniques
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from [42] for recycling private values. Their construction requires shared variables of size

O(n log n); Labeling and Scan require O(n) steps. Later, they along with Herlihy and Plotkin

[11] propose a construction using shared variables of size O(n); Labeling and Scan access

O(n) shared variables. Unlike the Israeli-Li and Dolev-Shavit constructions, Scans in other

proposed constructions are not pure; they write a lot of shared space.

Our result and related work: Among the constructions mentioned above, the one of

Dwork and Waarts [10] is relatively simple and efficient as well2. They introduce “traceable

use abstraction” to bound the size of labels. Like in [42], each label is a vector of n private

values, one for each of n processes. Using a strategy similar to, and extending, [42], the

abstraction helps each process to keep track of its private values that are in use in the system.

At any point in time, a process can use only a bounded number of private values of another

process. Exploiting that feature, the abstraction helps in bounding the set of private values

needed. The labels are read by executing a traceable-read function, and written by executing

a traceable-write procedure. When the traceable-read function is executed to read a label, the

executing process explicitly informs all other processes which of their private values it is going

to use. A process can find which of its private values are in use by other processes even if the

values propagate through these processes in tandem one after another. To determine which of

its private values are currently not in use, a process executes a garbage collection routine. This

routine helps processes to safely recycle their respective private values that are not in use.

These three routines are at the heart of implementing the traceable use abstraction. Dwork

and Waarts [10] have shown how these routines are used in constructing a bounded concurrent

timestamp system. The most intricate among these routines is the garbage collection, whose

time complexity is O(n2) that could be, though nonstandard, uniformly amortized over O(n2)

labeling operation executions. To achieve this, each process needs to maintain a private,

separate, pool of 22n2 private values. The costliest part of their construction is the use of

multireader ‘order’ variables. The construction uses, for each process, Θ(n) sets of 22n-many

1-writer n-reader atomic variables of size Θ(n log n) bits each. Let us roughly estimate their

space complexity at the fundamental level, i.e., at the level of 1-writer 1-reader safe bits. (To

implement a 1-writer n-reader atomic variable of size m bits, the constructions in [29, 40]

together require 3mn 1-writer 1-reader safe bits, 2n 1-writer 1-reader atomic bits and one 1-

writer n-reader atomic bit. Each 1-writer 1-reader atomic bit can be implemented from O(1)

2We find it is the easiest one to understand; also see comments in [44] by Yakovlev.
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1-writer 1-reader safe bits [16, 29, 39, 41]. A 1-writer n-reader atomic bit can be implemented

from O(n2) safe bits [16]. Thus, we require a total of 3mn+O(n2) 1-writer 1-reader safe bits

to implement a 1-writer n-reader atomic variables of size m bits.) Thus, there is a need of

at least Ω(n4 log n) bits at the fundamental level just for the order variables in each process.

Consequently, we need at least Ω(n5 log n) 1-writer 1-reader safe bits for all order variables of

all processes. In addition, there are other shared variables for the processes.

The bounded multiwriter shared variable construction of Vitányi and Awerbuch [42], while

falling short of the claimed atomicity [43], has brought into prominence many techniques that

were used later in wait-free computing. An example is the idea of a label as a vector of n

individual clocks.3 (In [42], vector entries are called ‘tickets’.) Even better, it turns out that

the corrected version presented here suffices to implement the higher communication object

type of bounded CTS. The current paper is the final version of the pioneering preliminary [42],

and its correction [18]. Dwork and Waarts [10], without stating this explicitly, used the idea of

(bounded) vector clocks and other techniques introduced in [42], and hence their solution bears

a close resemblance to the construction proposed here (and, in fact, to other constructions [35,

36] based on [42]). On the other hand, our construction uses some ideas from their traceable

use abstraction. We observe that in CTSs the propagation of private values is restricted to

only one level of indirection, and not to arbitrary levels. Consequently, the propagation of

private values can be tracked down by their respective owner processes with relative ease. And,

the one level indirect propagation of private values by other processes need not be informed to

the original owner of these private values. Thus, one doesn’t need the complete power of the

traceable use abstraction for constructing a CTS. In our construction, we use less powerful

traceable-read and traceable-write. But, we prefer to use the same function/procedure names

of [10] just keep conformity with the literature. We do not require a garbage collection routine,

thereby simplifying the proposed CTS construction and its correctness proof considerably.

When a process executes the traceable-read function, it does not explicitly inform the other

processes which of their private values it is going to use. On the other hand, the executers

of the traceable-write procedure correctly find which private values of which processes are

in use in the system. Another important point is that, in our construction, a Scan writes

a limited amount of information, only O(n) 1-writer 1-reader bits. Also, each local pool of

3 The concept of vector clock is used in many areas of distributed computing, all in related contexts, to
keep track of execution evolution in distributed systems. (Cf. The articles by Mattern[32, 33].)
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private values contains fewer than 2n2 values. We use a total of n2 O(n log n) bit size 1-reader

1-writer regular order variables, requiring a total of O(n3 log n) safe 1-reader 1-writer bits at

the fundamental level. Both the scan and labeling operation executions require O(n) steps

in terms of the shared variables used. But in our construction, a Scan reads at most (n − 1)

1-writer 1-reader regular order variables, whereas in their construction it is (2n− 2) 1-writer

n-reader atomic ones. Thus, at the fundamental level they scan order of magnitude more bits

than we do.

Our construction is not optimal in terms of the usage of shared space (Cf. Table 1 in Sec-

tion 5). It is perhaps possible to use a bounded set of global values and to recycle them instead

of using private values. Recycling of global values could lead to an optimal construction.

The remainder of this paper is organized as follows. Section 2 discusses the system model

and presents the problem statement precisely. A new construction of concurrent timestamp

systems is presented in Section 3, and its correctness proof in Section 4. Section 5 concludes

the paper.

2 Model, Problem Definition, and some Notations

A concurrent bounded timestamp system (CTS, in short) is an abstract communication system

for n completely asynchronous processes P1, . . . , Pn. It consists of n objects O[1..n], each of

finite space representation, and supports two operations, namely labeling and scan(ing). A

labeling operation execution (Labeling, in short) of process Pp assigns a new label to object

O[p]. It may use all existing labels of O[1..n], but it is not allowed to change the labels of

components other than O[p]. A scan operation execution (Scan, in short) enables a process to

determine the ordering in which all the objects are written, that is, it returns a set of labeled-

objects ordered temporally4. It returns a pair (l,≺), where l is a set of current labels, one for

each object-component, and ≺ is a total order on l. Operation executions of each process are

sequential. However, operation executions of different processes need not be sequential, i.e.,

they might overlap.

Let us denote the k th operation execution (Labeling or Scan) of a process Pp by O
[k]
p ,

k ≥ 1. If it is a Scan (Labeling), we denote it explicitly by S
[k]
p (L

[k]
p ). The label written by a

labeling operation execution L
[k]
p is denoted by l

[k]
p .

4We ignore, in this paper, the data values of the objects.
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For operation executions A and B on a shared variable, A ✲ B means that the execution

of A starts before that of B finishes. That is, if A ✲ B, then either A −→ B or A overlaps

B; in other words, B 6−→ A. We also assume that if B 6−→ A, then A ✲ B. That is, we

assume the global time model [29].

A concurrent timestamp system must ensure the following properties [9, 14].

P1. Ordering: There exists an irreflexive total order ⇒ on the set of all labeling operation

executions, such that the following two conditions hold.

• Precedence: For every pair of Labelings L
[k]
p and L

[k′]
q , if L

[k]
p −→ L

[k′]
q then L

[k]
p ⇒

L
[k′]
q .

• Consistency: For every Scan S
[j]
i returning (l,≺), for every two labels l

[k]
p and l

[k′]
q

in l, l
[k]
p ≺ l

[k′]
q iff L

[k]
p ⇒ L

[k′]
q .

P2. Regularity: For every label l
[k]
p in l returned by a Scan S

[j]
i , L

[k]
p begins before S

[j]
i

terminates, i.e., L
[k]
p

✲ S
[j]
i , and there is no Labeling L

[k′]
p such that L

[k]
p −→ L

[k′]
p −→

S
[j]
i .

P3. Monotonicity: Let S
[j]
i and S

[j′]
i′ be a pair of Scans returning sets l and l′, respectively,

which contain labels l
[k]
p and l

[k′]
p , respectively. If S

[j]
i −→ S

[j′]
i′ , then k ≤ k′.

P4. Extended Regularity: Let l
[k]
p be a label returned by a Scan S

[j]
i . For each Labeling L

[k′]
q ,

if S
[j]
i −→ L

[k′]
q , then L

[k]
p ⇒ L

[k′]
q .

The intuitive meaning of the above four properties is as follows. The ordering property

says that all the labeling operation executions can be totally ordered which is an extension of

their real-time precedence order “−→”. Moreover, if two different Scans return labels l and

l′, then both Scans will have the same order on the labels. The regularity property says that

labels returned by a Scan are not obsolete. The monotonicity property says that for every

two Scans ordered by “−→”, it is not the case that the preceding Scan returns a new label

of a process Pp and the succeeding Scan an old label of Pp. The monotonicity property does

not imply that labeling and scan operation executions of all processes are linearizable [20]. It

does imply the linearizability of the Scans of all processes and labeling operation executions of

a single process [9]. The extended regularity property says that if a Scan precedes a labeling
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operation execution L, then all labels returned by the Scan were assigned by labeling operation

executions that precede L in ⇒.

We are interested in those CTSs in which operation executions are wait-free, that is, each

operation execution will take a bounded number of its own steps (a step is a read/write of a

shared variable), irrespective of the presence of other operation executions and their relative

speeds. This paper is concerned with implementing wait-free CTSs from basic 1-writer 1-

reader shared variables.

3 The Construction

For the sake of convenience and better understanding, we first present an intuitive informal

description of a construction that uses unbounded shared space [42] (the same idea is used in

[10]). Each process maintains a separate local pool of private values that are natural numbers

with the standard order relations on them.

A label is a vector of n values (‘tickets’ in [42]); its p th component holds a private value of

process Pp. The current label of O[p] is denoted by lp[1..n] or simply lp. The current private

value of process Pp is lp[p]. Initially, lp[p] = 1 and lp[q] = 0, for all q 6= p. To determine a

new label for O[p], process Pp reads all current private values of other processes Pq, namely

lq[q], and increments its own private value lp[p] by one to obtain the new private value. The

new label vector contains these n values, and it is written atomically in O[p]. Since the same

private value is not used twice in labeling operation executions, no two labels ever produced

in the system are the same. The ordering of two label vectors is done by using the standard

lexicographic (dictionary) order ≺: for every two labels, lp 6= lq, the least significant index

in which they differ is the lowest k such that lp[k] 6= lq[k]; then, lp ≺ lq iff lp[k] < lq[k].

This lexicographic order ≺ is a total order on the set of all possible labels [13], and this fact

is a static common knowledge to the processes. (In fact, ≺ is an elementary example of a

well-ordered relation.) A Scan simply reads all the current labels and orders them using the

lexicographic order. This unbounded construction satisfies all the properties required for a

concurrent timestamp system (Cf. [10]).

In the unbounded construction discussed above, every time a process Pk executes a new

labeling operation, it uses a new private value greater than the previously used ones. In a

bounded construction, each process has only a bounded number of private values, and hence,
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it needs to use the same private value at different times, that is, it needs to recycle its own

private values. The following observation (which is a synthesis of the text in [42, page 236]) by

Dwork and Waarts helps doing the recycling in some possible way. We quote them verbatim:

. . . for a system to be a concurrent timestamp system, every time a new private

value chosen by process Pk need not be the one that was never used by Pk be-

forehand; roughly speaking, instead of increasing its private value, it is enough for

Pk to take as its new private value any value v of its private values that does not

appear in any labels, with one proviso: Pk must inform the other processes that v

is to be considered larger than all its other private values currently in use.

Consequently, we cannot use the standard ordering relations on the natural numbers any

more, for the numbers may be recycled repeatedly. One has now to consider these numbers

as mere symbols with no standard ordering relations defined on them. We define for every

two different private values v and v′ of process Pk currently in use in the system, v ≺k v′ iff

v is issued before v′ by Pk. Thus, in the bounded construction, the ordering relation among

the private values changes in time, and hence it cannot be a priori common knowledge. Note

that at any point in time, the relation ≺k on the values in use is a total order as the values are

produced in sequences, and in fact, it is well-ordered. For every two labels, lp 6= lq, obtained

by a Scan, if k is the least significant index such that lp[k] 6= lq[k], then we define lp ≺ lq iff

lp[k] ≺k lq[k]. Then, ≺ is also a well-ordered relation [13]. Now, we are concerned with two

things in a bounded construction. First, to make the relations ≺k useful, processes Pk cannot

recycle a private value if some other processes are using it. Second, for every two private

values v and v′ of Pk currently in use, if v ≺k v′ then all other processes should (get to) know

this ordering before using these values. Note that the meaning of < on the natural numbers is

a static common knowledge, but the meaning of ≺k changes continually. Thus, every time Pk

changes the ordering of two different private values, it should inform all the other processes

well in advance. Then, for all labels read by a Scan, the labels are ordered lexicographically,

based on the orderings ≺k of all processes Pk. Then, the correctness of the bounded system

trivially follows from that of the unbounded system mentioned above (given in [42, 10]).

In the following paragraphs, we present a novel construction, based on [42, 18], to achieve

the afore mentioned two objectives. The construction is given in Figure 1.

We now introduce some terminology. The description of the construction has five parts:
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shared variables declaration, TRACEABLE-WRITE procedure, TRACEABLE-READ func-

tion, LABELING procedure and SCAN function. The procedures and the functions are writ-

ten in a Pascal-type language. To avoid too many ‘begin’s and ‘end’s, some blocks are shown

just by indentation. All the statements in the four routines are numbered only for reference

purposes.

A base shared variable x is read (respectively, written) by executing an instruction ‘read

local-variable from x’ (respectively, ‘write local-variable in x’), where the local-variable is local

to the function or the procedure. The read-instruction assigns the value of x to the local-

variable, and the write-instruction writes the value of the local-variable in x. The writer

(owner) of a shared variable can retain the value of the variable in its local storage and refer

to it later on if needed, that is, it need not read the shared variable to determine the current

value of the variable. Nevertheless, for the sake of convenience and to avoid using many local

variables, we let the writer also read its own shared variable. It also uses some private (local,

non-shared) variables for each process. We assume that the private variables are persistent.

Let us consider operation executions of a particular process Pp. Process Pp executes the

LABELING procedure to obtain and assign a new label to O[p], and executes the SCAN

function to report the temporal ordering of the labels of O[1..n]. In a labeling operation exe-

cution, it selects a presently unused private value from its local pool of values (Statements 1–2

in the LABELING procedure), collects the current private values of all other processes (State-

ments 5–6), and then writes these n values atomically in O[p] as its new label (Statement 7).

The selection of a new private value is done in such a way that there is no trace of this value in

the system at present. In a scan operation execution, process Pp first reads the current labels

of all the processes (Statement 1 in the SCAN function), and then determines their temporal

ordering using the latest ordering information available from some ordering shared variables

(Statement 2).

The collection of the current private values of other processes is done by executing the

TRACEABLE-READ function, and the writing of the new label is done by executing the

TRACEABLE-WRITE procedure.5 These two routines collectively implement atomic reading

and writing of labels from and into objects O[p]. (In rest of the paper, an execution of the

TRACEABLE-READ function (TRACEABLE-WRITE procedure) will be called a traceable

Read (traceable Write).) Note that these two routines are not parts of the interface to the

5These two routines resemble pretty closely the READ and WRITE routines in [17, 19, 40, 42].
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CTS, and the processes cannot directly invoke them. They directly invoke the LABELING

and SCAN routines in which they, in turn, invoke traceable Read (Write) to read (write)

labels.

A process Pp uses shared variables w [p, 1..n], r [p, 1..n], c[p], label[p, 0..1] and copylabel[p, 1..n]

to atomically read and write new labels from and into object O[p]. The label and copylabel

variables are used to hold labels of O[p]. w and r are handshake variables used to detect

overlapping of traceable Reads and Writes. The variable c is used to atomically declare writ-

ings of new labels in O[p]. Process Pp uses the shared variables order[p, 1..n] to inform all

the processes of the latest ordering relation ≺p. The shared variables lend[p, 1..n] are used to

inform all the processes which of their private values might be in use in the system. The com-

ponent lend[p, j] contains all the private values of process Pj that Pp may have lent to other

processes. Process Pp also uses static private variables: clp, myLendp, ≺p, and old-labelp. clp

andmyLendp always store the values of c[p] and lend[p, 1..n], respectively, locally. ≺p contains

the latest ordering information of all the private values in use in the system. old-labelp stores

the label of the on-going or the recently completed Labeling operation execution.

The traceable Writes of process Pp use two n-reader safe main label variables, label[p, 0]

and label[p, 1], and a 1-reader safe copy label variable for each process, copylabel[p, 1..n].

The main label variables are used alternately for writing successive new labels. Immediately

after writing a new label in a main label variable, the process records that variable index

in the 1-writer multireader boolean atomic variable c[p]. (This writing atomically ‘declares’

the current label of component O[p].) Then the process checks for each i whether a new

traceable Read of process Pi started since the last traceable Write (of Pp). This is done by

using a pair of boolean 1-writer 1-reader (handshaking) atomic variables r [i, p] and w [p, i].6

Process Pi sets these values different, by assigning the complement of w [p, i] to r [i, p], at

the beginning of each traceable Read (Statements 1–2 in TRACEABLE-READ), and process

Pp makes sure that they are the same, at the end of each traceable Write (Statements 4.1

and 4.2.3 in TRACEABLE-WRITE). By this way the processes Pp and Pi can find if there

are overlappings of their traceable Writes and Reads. Hence if the two values are different

when the process Pp checks them, a new traceable Read of Pi must have started by then. In

that case, Pp writes the new label value in copylabel[p, i] also, and then sets the above values

the same, by assigning the r [i, p] value to w [p, i]. (This way it is guaranteed that a reading

6This strategy of detecting overlapping operation execution is pioneered by Peterson [34].
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and a writing on copylabel variables do not overlap each other, and contains a valid value

for the traceable Read [42, 17, 40].) For each such process Pi, Pp takes a note which of the

private values of processes Pj could be used by Pi (Statement 4.2.2). Finally, Pp informs all

the processes Pj which of their private values could be in use (all that Pp knows of) through

1-writer 1-reader regular variables lend[p, j] (Statement 6).

Each traceable Read of process Pp, from a process Pi, after reading w [i, p] and writing

its complement in r [p, i] as mentioned above (Statements 1–2 in TRACEABLE-READ), finds

out from c[i] the main label variable that has been written by Pi most recently, and reads

from that variable. Then it reads w [i, p] again and compares with r [p, i]. If the two values

continue to be different, then the reading of the main label variable does not overlap any

writings of the label variable and hence it returns the value just read from the main label

variable. Otherwise, there is a possibility that the reading of the label variable overlaps with

some writing of the same variable, and hence, it reads copylabel[i, p] and returns that value.

Note that in the latter case, a traceable Write by Pi must have finished (with respect to Pp,

that is, Pi must have done loop iteration p at Statement 4 in TRACEABLE-WRITE) after

the traceable Read started, and that Write would have written in copylabel[i, p].

In selecting a new (currently unused) private value, process Pp does not use any of the

values stored in lend[1..n, p] (Statements 1–2 in LABELING). After selecting the new private

value, say v, Pp informs all processes Pi that v is the most recent private value through 1-

writer 1-reader regular variables order[p, i] (Statements 3–4) which are used by the Scans of

Pi.

4 Correctness Proof

Proposition 1 [29] For operation executions B and C on a shared variable, and all operation

executions A and D, if A −→ B ✲ C −→ D, then A −→ D.

Proof: The implication follows by the transitivity of (i) A finishes before B starts, (ii) B starts

before C finishes and (iii) C finishes before D starts. ✷

Definition. For operation executions A and B executed on the same atomic variable x, we

say A =⇒x B if A precedes B in the total ordering imposed on the operation executions by

the atomic variable. The subscript x is omitted when it is clear from the context. ✷
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Proposition 2 For operation executions B and C on an atomic variable x, and all operation

executions A and D, if A −→ B =⇒x C −→ D, then A −→ D.

Proof: The relation B =⇒x C implies B precedes or overlaps C (since the total order imposed

on the operation executions by the atomic variable is an extension of the precedence relation),

that is, B ✲ C. Then the implication follows by Proposition 1. ✷

The following notations are used in the presentation of the correctness proofs.

N1. The k th operation execution of a process Pp is denoted, as stated in Section 2, by

O
[k]
p (O), k ≥ 1; if it is a Scan (alternatively, a Labeling), we denote it explicitly by

S
[k]
p (O) (alternatively, L

[k]
p (O)). The ‘(O)’ part in the notation is omitted when it is

clear from the context. All the operation executions of Pp are totally ordered. That is,

for k > 2, O
[k−1]
p −→ O

[k]
p .

N2. For a shared variable x, the Read (respectively, Write) of x by O
[k]
p is denoted by R

[k]
p (x)

(respectively, W
[k]
p (x)). If x is referred more than once, then the superscript [k, j] is

used for the j th access.

N3. Each operation execution O
[k]
p (L

[k]
p or S

[k]
p ) of process Pp executes the TRACEABLE-

READ function for every other process Pi; the whole function execution is denoted by

a traceable Read TR
[k]
p,i.

N4. Each labeling operation execution L
[k]
p of process Pp executes the TRACEABLE-WRITE

procedure; the whole procedure execution is denoted by a traceable Write TW
[k]
p .

N5. For the sake of convenience, the variables r [p, i] and w [p, i] are abbreviated to rp,i and

wp,i, respectively.

Definition. For a shared variable x, we define a reading mapping πx for Reads of x as follows:

if a Read R returns the value written by a Write W , then πx(R) is W ; otherwise πx(R) is

undefined. (Note, for safe x, πx is a partial mapping.) We omit the subscript x when it is

clear from the context. ✷

Lemma 1 (a) No two consecutive labeling operation executions of a process have the same

private value.

(b) No two consecutive traceable Writes of a process have the same private value.
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Proof: Part (a) follows from the select statement (Statement 2) in the LABELING procedure.

Part (b) follows from Part (a) as each Labeling executes one and the only one traceable

Write. ✷

Lemma 2 Each time the value written in wp,i is the complement of the previous value of wp,i.

Proof: Immediate from Statements 4.1, 4.2 and 4.2.3 in the TRACEABLE-WRITE procedure.

✷

Lemma 3 Any traceable Write TW
[k]
p (actually, L

[k]
p ) that writes wp,i sets wp,i = ri,p, and

if R
[l,1]
i (wp,i) =⇒ W

[k]
p (wp,i) =⇒ R

[l,2]
i (wp,i) for some traceable Read TR

[l]
i,p (actually, O

[l]
i ) of

process Pi, then the equality continues to hold until the execution of TR
[l]
i,p is complete, in fact

until the next traceable Read TR
[l+1]
i,p writes ri,p.

Proof: Initially, wp,i = ri,p, since both of them are initialized to 0. Among the traceable

Writes of the process Pp, some will write wp,i, and some will not. Let TW
[kj]
p , j ≥ 1, kj ≥ 1,

be the j th traceable Write that writes wp,i.

Consider TW
[k1]
p . By Lemma 2, it writes 1 in wp,i. This implies, by Statements 4.1 and

4.2.3 in TRACEABLE-WRITE, that it read 1 from ri,p. Since the initial value of ri,p is 0,

some traceable Read of Pi must have written 1 in ri,p. Let TR
[l1]
i,p be the first such traceable

Read. Then W
[l1]
i (ri,p) =⇒ R

[k1]
p (ri,p). Note that TR

[l1]
i,p reads 0 from wp,i and hence writes 1

in ri,p (Statements 1–2 in TRACEABLE-READ). Also each subsequent traceable Read TR
[l′
1
]

i,p ,

if any, such that R
[l′
1
,1]

i (wp,i) =⇒ W
[k1]
p (wp,i), would read 0 from wp,i, and hence will write 1

in ri,p. Hence, irrespective of whether W
[l′
1
]

i (ri,p) =⇒ R
[k1]
p (ri,p) or R

[k1]
p (ri,p) =⇒ W

[l′
1
]

i (ri,p),

on W
[k1]
p (wp,i), wp,i = ri,p, and if R

[l,1]
i (wp,i) =⇒ W

[k1]
p (wp,i) =⇒ R

[l,2]
i (wp,i) for some traceable

Read TR
[l]
i,p, then the equality continues to hold until TR

[l]
i,p is complete, in fact until the

next traceable Read TR
[l+1]
i,p writes ri,p, since wp,i will not be changed by any traceable Write

TW
[k′

1
]

p , for k′1 > k1, that may occur before TR
[l]
i,p is complete.

Assuming as induction hypothesis that the assertion holds for TW
[kj]
p , for some j, we

show that the assertion holds for TW
[kj+1]
p . By the statement of the lemma, TW

[kj ]
p sets

wp,i = ri,p by writing value, say b ∈ {0, 1} in wp,i. Then, by Lemma 2, TW
[kj+1]
p writes ¬b

in wp,i.
7 This implies by Statements 4.1 and 4.2.3 in TRACEABLE-WRITE, it read ¬b from

7
¬b is defined as 1− b.
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ri,p. As the value of ri,p is b when TW
[kj]
p reads it, there must be a traceable Read that writes

¬b in ri,p after TW
[kj]
p sets wp,i = ri,p. Let TR

[l]
i,p be the first such traceable Read. Then,

W
[l]
i (ri,p) =⇒ R

[kj+1]
p (ri,p), and TR

[l]
i,p writes ¬b in ri,p. Each subsequent traceable Read TR

[l′]
i,p ,

if any, such that R
[l′,1]
i (wp,i) =⇒ W

[kj+1]
p (wp,i), would read b from wp,i, and hence will write ¬b

in ri,p. Hence, irrespective of whetherW
[l′]
i (ri,p) =⇒ R

[kj+1]
p (ri,p) or R

[kj+1]
p (ri,p) =⇒ W

[l′]
i (ri,p),

on W
[kj+1]
p (wp,i), wp,i = ri,p. If R

[l]
i (wp,i) =⇒ W

[kj+1]
p (wp,i) =⇒ R

[l,2]
i (wp,i) for some traceable

Read TR
[l]
i,p, then the equality continues to hold until TR

[l]
i,p is complete, in fact until the

next traceable Read TR
[l+1]
i,p writes ri,p, since wp,i will not be changed by any traceable Write

TW
[k′]
p , for k′ > kj+1, that may occur before TR

[l]
i,p is complete. ✷

Lemma 3 implies the following property.

Lemma 4 Let TR
[l]
i,p be a traceable Read. There can be at most one traceable Write, say

TW
[k]
p , such that R

[l,1]
i (wp,i) =⇒ W

[k]
p (wp,i) =⇒ R

[l,2]
i (wp,i). The traceable Read TR

[l]
i,p on

R
[l,2]
i (wp,i) will find ri,p = wp,i if there is such a traceable Write, and ri,p 6= wp,i otherwise. ✷

In the following we use a typical kind of notation for labeling operation executions.

N6. The labeling operation executions of process Pp are sometimes denoted by L
[kj ]
p , where

k is some alphabet and j is a natural number, j ≥ 1, kj ≥ 1. Thus, for j > 1, L
[kj−1]
p and

L
[kj ]
p are two consecutive labeling operation executions of Pp such that L

[kj−1]
p −→ L

[kj ]
p .

They need not be two consecutive operation executions, that is, kj ≥ kj−1 + 1.

In the following two lemmas, we show that traceable Reads return valid label values. We

also define their reading mapping function π. Lemmas 5 and 6 deal with the case traceable

Reads return values from label and copylabel variables, respectively.

Lemma 5 Let TR
[l]
i,p be a traceable Read that finds ri,p 6= wp,i on R

[l,2]
i (wp,i). Suppose

π(R
[l]
i (c[p])) is W

[kj ]
p (c[p]) (of the traceable Write TW

[kj ]
p of L

[kj ]
p ), and label[p, x] is the main

label variable from which TR
[l]
i,p returns the label value.

(a) If j′ is the least index such that R
[l,2]
i (wp,i) =⇒ W

[kj′ ]
p (wp,i), then j′ equals j or j+1.

(b) π(TR
[l]
i,p) is TW

[kj]
p .

(c) The traceable Read TR
[l]
i,p reading label[p, x] does not conflict with any traceable Write

writing that label variable.
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Proof:

(a) Let j′′ be the greatest index such that j′′ < j′ and TW
[kj′′ ]
p writes wp,i. Then by (i) the

choice of j′, (ii) the assumption that TR
[l]
i,p finds ri,p 6= wp,i on R

[l,2]
i (wp,i) and (iii) Lemma 4, it

follows thatW
[kj′′ ]
p (wp,i) =⇒ R

[l,1]
i (wp,i). That is,W

[kj′′ ]
p (wp,i) =⇒ R

[l,1]
i (wp,i) −→ R

[l,2]
i (wp,i) =⇒

W
[kj′ ]
p (wp,i). The traceable Write TW

[kj′′ ]
p sets wp,i equal to ri,p, TR

[l]
i,p sets ri,p not equal to

wp,i, and hence TW
[kj′ ]
p is the first traceable Write, after TW

[kj′′ ]
p , that finds ri,p 6= wp,i.

From W
[l]
i (ri,p) −→ R

[l]
i (c[p]) =⇒ W

[kj+1]
p (c[p]) −→ R

[kj+1]
p (ri,p), we have W

[l]
i (ri,p) −→

R
[kj+1]
p (ri,p). That is, the traceable Write TW

[kj+1]
p will find ri,p 6= wp,i, the inequality set by

TR
[l]
i,p, unless an earlier traceable Write has found the inequality and set wp,i equal to ri,p. We

claim that such an earlier traceable Write, if one exists, can only be TW
[kj]
p . Suppose, on the

contrary, that it is TW
[kj′′′ ]
p , for j′′′ < j. Then, by the choice of j′′ and Lemma 4, we have

W
[kj′′ ]
p (wp,i) =⇒ R

[l,1]
i (wp,i) −→ R

[l]
i (c[p]) −→ R

[l,2]
i (wp,i) =⇒ W

[kj′′′ ]
p (wp,i) −→ W

[kj]
p (c[p]).

This implies R
[l]
i (c[p]) −→ W

[kj ]
p (c[p]), contradicting the assumption that π(R

[l]
i (c[p])) is

W
[kj ]
p (c[p]). The assertion follows.

(b and c) Let label[p, x′] be the variable in which TW
[kj]
p writes.

For j′ described in part (a), we have R
[l]
i (label[p, x]) −→ R

[l,2]
i (wp,i) =⇒ W

[kj′ ]
p (wp,i) −→

TW
[kj+2]
p . That is, TR

[l]
i,p finishes reading label[p, x] before the traceable Write TW

[kj+2]
p starts

its execution. From (i) the assumption that π(R
[l]
i (c[p])) is W

[kj]
p (c[p]), (ii) the property that

TW
[kj+1]
p does not write in the same main label variable that TW

[kj]
p writes,

(iii) W
[kj]
p (label[p, x′]) −→ W

[kj ]
p (c[p]) =⇒ R

[l]
i (c[p]) −→ R

[l]
i (label[p, x]), and (iv) State-

ments 1–3 in TRACEABLE-WRITE, it follows that x = x′, and TW
[kj]
p finishes writing

label[p, x] before TR
[l]
i,p starts reading it. The assertions follow. ✷

Lemma 6 Let TR
[l]
i,p be a traceable Read that finds ri,p = wp,i on R

[l,2]
i (wp,i). Suppose TW

[kj]
p

is the traceable Write such that R
[l,1]
i (wp,i) =⇒ W

[kj ]
p (wp,i) =⇒ R

[l,2]
i (wp,i).

(a) The traceable Read TR
[l]
i,p reading copylabel[p, i] does not conflict with any traceable

Write writing it.

(b) π(TR
[l]
i,p) = TW

[kj]
p .

Proof: (a and b) By Lemma 4, TW
[kj]
p is the only traceable Write such that R

[l,1]
i (wp,i) =⇒

W
[kj ]
p (wp,i) =⇒ R

[l,2]
i (wp,i). It is clear from the TRACEABLE-WRITE procedure that TW

[kj]
p
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writes the value in copylabel[p, i] (Statement 4.2.1) before setting the wp,i and ri,p values equal

(Statement 4.2.3). This equality will not be changed until Pi starts the next traceable Read.

Thus, the traceable Write TW
[kj+1]
p and subsequent traceable Writes of Pp, if they find ri,p =

wp,i, will not write the copy label variable. From W
[kj ]
p (copylabel[p, i]) −→ W

[kj]
p (wp,i) =⇒

R
[l,2]
i (wp,i) −→ R

[l]
i (copylabel[p, i]), we have W

[kj]
p (copylabel[p, i]) −→ R

[l]
i (copylabel[p, i]). The

assertions follow. ✷

Now we would like to show that private values of processes Pp are traceable. If a process Pi

in its current label uses a private value v of another process Pp, Pi informs this “using of” v by

setting lend[i, p][1][i] to v at the end of the corresponding traceable Write (Statements 5–6).

Thus, all the private values in the existing labels are traceable by their respective owners.

The following lemma shows that the private values used by Scans are also traceable.

Lemma 7 Let a Scan S
[l]
i of a process Pi use a private value v of a process Pp that has written

the value v in a traceable Write TW
[kj]
p . Then, Pp does not recycle v until S

[l]
i is complete.

Proof: We need to consider the following two cases.

Case 1: S
[l]
i got v directly from Pp.

We need to consider two subcases.

Subcase a. If the traceable Read TR
[l]
i,p returns the value v from copylabel[p, i], then, by

Lemma 6 and 4, the traceable Write TW
[kj ]
p has executed the if-statement body (State-

ment 4.2) for process Pi. There it has set myLendp[p][1][i] to v (Statement 4.2.2). The

successive traceable Writes of Pp that occur before S
[l]
i is complete will not execute the if-

statement, and hence, will not change the myLendp[p][1][i] value. (Statement 5 does not

change the value too.) As the labeling operation executions of Pp do not reuse the values

referred to in lend[1..n, p], v will not be reissued at least until S
[l]
i is complete (Statements 1–2

in LABELING).

Subcase b. If the traceable Read TR
[l]
i,p returns the value v from a main label variable, then by

Lemma 5(a), traceable Write TW
[kj]
p or TW

[kj+1]
p executes the if-statement for process Pi. In

the case of TW
[kj]
p , myLendp[p][1][i] is set to v, and in the case of TW

[kj+1]
p , myLendp[p][0][i] is

set to v (Statements 4.2.2 and 7). The successive traceable Writes of Pp that occur before S
[l]
i is

complete will not execute the if-statement, and hence, will not change the myLendp[p][0..1][i]

values. (Statement 5 does not change the values too.) By Lemma 1, TW
[kj+1]
p uses a private
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value different from v. So, by the argument given in the Subcase a, v will not be reissued as

a new private value until S
[l]
i is complete.

Case 2: S
[l]
i got v from another process Pq.

Claim. Process Pq has obtained v directly from Pp.

Proof: Note S
[l]
i got v by reading a label from Pq. That is, Pq writes v in the p th component

of the label. To form a new label, Pq uses the j th component of the labels it reads from

processes Pj (Statements 5–6 in LABELING). Hence, Pq obtains v directly from Pp. ✷

Let L
[mo]
q be the corresponding labeling operation execution. Note that each labeling op-

eration execution also executes traceable Reads (Statement 5). Then π(TR
[mo]
q,p ) is TW

[kj]
p and

π(TR
[l]
i,q) is TW

[mo]
q . As argued in Case 1, either TW

[kj]
p or TW

[kj+1]
p stores v inmyLendp[p][0..1][q].

This value will not be changed until L
[mo]
q is complete, in fact until Pq starts its next opera-

tion execution O
[mo+1]
q . Let TW

[kj′ ]
p , j′ ≥ j + 1, be the first traceable Write that changes the

myLendp[p][0..1][q] values different from v. Then, it must have found L
[mo]
q is complete and

the next operation execution of Pq, namely O
[mo+1]
q , has started. From W

[mo]
q (lend[q, p]) −→

O
[mo+1]
q (O) ✲ L

[kj′ ]
p (O) −→ L

[kj′+1]
p , we have W

[mo]
q (lend[q, p]) −→ L

[kj′+1]
p . That is, L

[kj′+1]
p

and successive labeling operation executions of Pp would not reissue v if v is found in lend[q, p]

(Statements 1–2). Note that TW
[mo]
q will write v in lend[q, p][1][q] at the end of its execu-

tion (Statements 5–6 in TRACEABLE-WRITE). Also note that the traceable Write TW
[kj′ ]
p

(actually L
[kj′ ]
p ) does not issue v. Now, from π(TR

[l]
i,q) is TW

[mo]
q it follows, by Lemmas 5

and 6, that either TW
[mo]
q or TW

[mo+1]
q would execute the if-statement for Pi, and write v

in myLendq[p][0..1][i] indicating that the private value v of Pp is being used by Pi, and this

will not be changed until S
[l]
i is complete; in fact, until the next operation execution O

[l+1]
i

of Pi starts. Hence L
[kj′+1]
p and successive labeling operation executions of Pp that may occur

before S
[l]
i is complete are able to trace v in lend[q, p], and hence, will not reissue v. ✷

Corollary 1 It is clear from the proof of Lemma 7 that if a Scan S
[l]
i uses a private value v

of Pp which is written in labeling operation execution L
[kj]
p , then TW

[kj]
p (O[p]) ✲ TR

[l]
i,p(O[p])

for direct reading and TW
[kj]
p (O[p]) ✲ TR

[mo]
q,p (O[p]) −→ TW

[mo]
q (O[q]) ✲ TR

[l]
i,q(O[q]) for

indirect reading of v via process Pq. For the latter relation, by the axioms of Anger[3],

TW
[kj]
p (O[p]) ✲ TR

[l]
i,q(O[q]) ✷

The following lemma shows that Scans can determine the correct temporal order of the

private values of all processes.
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Lemma 8 Let S
[l]
i be a Scan that uses private values v and v′ of a process Pp. Then, S

[l]
i can

determine the correct temporal order between the values v and v′.

Proof: Assume Scan S
[l]
i uses the two different private values v and v′ of process Pp that

has written them in traceable Writes TW
[kj]
p and TW

[kj′ ]
p , respectively, where j < j′, and

hence, v ≺p v′ (as defined in Section 3). By Lemma 7, Pp does not recycle v and v′ until S
[l]
i

is complete. To guarantee the correctness of the timestamp system, we need to make sure

that S
[l]
i can correctly determine the order v ≺p v′ in case these values are used in ordering

some of the scanned labels. From the LABELING and SCAN routines and Corollary 1, we

have W
[kj′ ]
p (order[p, i]) −→ TW

[kj′ ]
p (O[p]) ✲ TR

[l]
i,q(O[q]) −→ R

[l]
i (order[p, i]), where q is as

defined in Corollary 1. That is, W
[kj′ ]
p (order[p, i]) −→ R

[l]
i (order[p, i]). Now, we need to make

sure that L
[kj′ ]
p can correctly determine that the private value v is being used by the process

Pi, before writing order[p, i]. Off course, it would assume v′ could be used by Pi too. As it

knows v ≺p v
′, to inform this ordering to Pi, it writes v at a lower indexed entry in order[p, i]

than v′. The successive labeling operation executions do not change this ordering. Thus, Pi

can determine the order of v and v′ correctly after reading order[p, i], by the regularity of

order variables.

Now we answer the question how L
[kj′ ]
p finds that v might be used by Pi. Note that Pp

does not know precisely which of its private values Pi is going to use. So, it guesses a subset

of its private values, which contains the values actually being used by Pi. There are two cases

to be considered.

Case 1. Pi obtains v directly from Pp. Either TW
[kj]
p or TW

[kj+1]
p will reserve v for Pi by

storing v in lend[p, p][0..1][i], and hence the use of v by Pi is traceable.

Case 2. Pi obtains v indirectly through another process Pq, for some q. From the claim in the

proof of Lemma 7, we know that Pq has obtained v directly from Pp. Let the corresponding

labeling operation execution be L
[m0]
q . Either TW

[kj]
p or TW

[kj+1]
p will set lend[p, p][0..1][q]

to v, and Pp assumes v could be used by any process Pi through O[q] (one level of indirect

propagation of a private value). At the end of L
[mo]
q , in TW

[mo]
q , Pq informs Pp that v is in

O[q] by setting lend[q, p][1][q] to v (Statements 5–6), and this value could be used by any

process Pi. Alternatively, if Pq detects that the v is being used by Pi, it informs “this using”

through lend[q, p][0..1][i] (Statements 4.2.2 and 6).

Hence, if L
[kj′ ]
p finds v in lend[p, p][0..1][i] or lend[p, p][0..1][q] or lend[q, p][1][q] or lend[q, p][0..1][i],
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for some q, it will assume that v is being used by Pi (Statements 1 and 4.1 in LABELING

procedure).

The assertion follows. ✷

Claim 1 Each order variable is of size at most 5n.

Proof : As discussed in the proof of Lemma 8, Pp needs to reserve its private values referred

to in lend[q, p][0..1][i], lend[q, p][1][q] and lend[p, p][0..1][q] for all q, that is, at most 5n values

for process Pi. The claim follows. ✷

Corollary 2 The set of private values is bounded. In fact, by Statements 1–2 in the LABEL-

ING procedure, the size of the set is less than 2n2. ✷

By the discussion at the end of 3 rd paragraph, Section 3, the correctness of the pro-

posed construction is immediate. However, for the sake of completeness, we give the proof in

Theorem 1. Before that a technical lemma follows.

Lemma 9 Let TR
[l]
i,p and TR

[l′]
i′,p be two traceable Reads such that TR

[l]
i,p −→ TR

[l′]
i′,p and

π(TR
[l]
i,p) be TW

[kj]
p . Then,

(a) W
[kj ]
p (c[p]) =⇒ R

[l′]
i′ (c[p]),

(b) π(TR
[l′]
i′,p) is TW

[kj′ ]
p , where j′ ≥ j, kj′ ≥ kj .

Proof : We have the following two cases.

Case 1: TR
[l]
i,p finds ri,p 6= wp,i on R

[l,2]
i (wp,i).

Lemma 5(b) implies that π(R
[l]
i (c[p])) isW

[kj]
p (c[p]). Then, we have TW

[kj−1]
p −→ W

[kj]
p (c[p]) =⇒

R
[l]
i (c[p]) −→ R

[l′,1]
i′ (wp,i′) −→ R

[l′]
i′ (c[p]).

Case 2: TR
[l]
i,p finds ri,p = wp,i on R

[l,2]
i (wp,i).

By Lemma 6, we have TW
[kj−1]
p −→ W

[kj]
p (c[p]) −→ W

[kj]
p (wp,i) =⇒ R

[l,2]
i (wp,i) −→

R
[l′,1]
i′ (wp,i′) −→ R

[l′]
i′,p(c[p]).

For both the cases we have W
[kj]
p (c[p]) =⇒ R

[l′]
i′ (c[p]); part (a) follows. If TR

[l′]
i′,p finds

ri′,p 6= wp,i′ on R
[l′,2]
i′ (wp,i′), then part (b) follows by Lemma 5. Assume TR

[l′]
i′,p finds ri′,p = wp,i′

on R
[l′,2]
i′ (wp,i′). From the above two cases, we have TW

[kj−1]
p −→ R

[l′,1]
i′ (wp,i′). Then part (b)

follows by Lemmas 4 and 6. ✷
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Theorem 1 The construction of Figure 1 is a correct implementation of wait-free bounded

concurrent timestamp systems.

Proof: The wait-freedom property is immediate from the structure of the four routines in

Figure 1. The boundedness follows from Corollary 2. We now show that the construction

satisfies all the four properties P1–P4 described in Section 2.

Ordering: Consider two labeling operation executions L
[k]
p and L

[k′]
q with labels l

[k]
p and l

[k′]
q ,

respectively. Let m be the least significant index such that l
[k]
p [m] 6= l

[k′]
q [m]. Assume these

private values l
[k]
p [m] and l

[k′]
q [m] are written by Pm at labeling operation executions L

[so]
m and

L
[so′ ]
m , respectively. We define L

[k]
p ⇒ L

[k′]
q iff L

[so]
m −→ L

[so′ ]
m .

• Precedence: Without loss of generality we assume L
[k]
p −→ L

[k′]
q . By Lemmas 5 and 6,

we have π(TR
[k]
p,m) is TW

[so]
m and π(TR

[k′]
q,m) is TW

[so′]
m . Then, from TR

[k]
p,m −→ TR

[k′]
q,m

and Lemma 9(b), we have so′ ≥ so. As l
[k]
p [m] 6= l

[k′]
q [m], we have so′ 6= so, and hence,

so′ > so. That is, L
[so]
m −→ L

[so′ ]
m . The precedence property follows.

• Consistency: For any two labels l
[k]
p and l

[k′]
q (returned by a Scan) such that m is the least

significant index for which l
[k]
p [m] 6= l

[k′]
q [m]. We define l

[k]
p ≺ l

[k′]
q iff l

[k]
p [m] ≺m l

[k′]
q [m]

iff L
[so]
m −→ L

[so′ ]
m . The consistency property follows by Lemma 8 and the definition of

⇒ given above.

Regularity: Consider a Scan S
[j]
i that returns a label l

[mo]
p that is written by a labeling

operation execution L
[mo]
p , that is, π(TR

[j]
i,p) is TW

[mo]
p . By Lemmas 5 and 6, we can say

TW
[mo]
p

✲ TR
[j]
i,p, and hence, L

[mo]
p

✲ S
[j]
i . The second part of the regularity property

follows from: (i) if TR
[j]
i,p finds ri,p 6= wp,i on R

[j,2]
i (wp,i), then, by Lemma 5, π(TR

[j]
i,p) is

TW
[mo]
p , where π(R

[j]
i (c[p])) isW

[mo]
p (c[p]), and so, TW

[mo+1]
p 6−→ TR

[j]
i,p, and hence L

[mo+1]
p 6−→

S
[j]
i ; (ii) if TR

[j]
i,p finds ri,p = wp,i on R

[j,2]
i (wp,i), then, by Lemma 6, π(TR

[j]
i,p) is TW

[mo]
p ,

where R
[j,1]
i (wp,i) =⇒ W

[mo]
p (wp,i) =⇒ R

[j,2]
i (wp,i), and so, TW

[mo+1]
p 6−→ TR

[j]
i,p, and hence

L
[mo+1]
p 6−→ S

[j]
i .

Monotonicity: Consider two Scans S
[j]
i −→ S

[j′]
i′ . Let S

[j]
i return label l

[mo]
p from a process Pp.

By Lemmas 5 and 6, we have π(TR
[j]
i,p) is TW

[mo]
p . From S

[j]
i −→ S

[j′]
i′ , we have TR

[j]
i,p −→

TR
[j′]
i′,p. The monotonicity property follows by Lemma 9.

Extended regularity: Consider a Scan S
[j]
i that returns a label l

[mo]
p that is written by a labeling

operation execution L
[mo]
p , that is, π(TR

[j]
i,p) is TW

[mo]
p . For each labeling operation execution
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L
[m′]
q , if S

[j]
i −→ L

[m′]
q , then TR

[j]
i,p −→ TR

[m′]
q,p . Then, by Lemma 9(a), we have W

[mo]
p (c[p]) =⇒

R
[m′]
q (c[p]) and hence, π(TR

[m′]
q,p ) is TW

[mo]
p or a successor, by Lemma 9(b). Also by Lemma 5

and 6 and the LABELING procedure, we have TR
[mo]
p,s −→ TW

[mo]
p

✲ TR
[j]
i,p −→ TR

[m′]
q,s for

all s 6= p, that is, TR
[mo]
p,s −→ TR

[m′]
q,s . Hence, L

[m′]
q reads more recent (at least equal) private

values of all processes than L
[mo]
p . Also, we have l

[mo]
p [q] ≺q l

[m′]
q [q]. Hence L

[mo]
p ⇒ L

[m′]
q . The

extended regularity property follows. ✷

5 Concluding Remarks

This paper combines the preliminary [42, 18]. The former paper is the first to characterize

multiwriter shared variables, and provides a bounded construction of multiwriter multireader

multivalued atomic variable from 1-writer variables. However, it was later found that the

proposed construction doesn’t satisfy some properties of atomic shared variables [43]. The

technical report [18] corrected and extended [42] to a construction of a concurrent timestamp

system using an idea from [10]. The final result is very close to the incorrect construction

of [42]. It uses O(n log n) bit size shared variables (order and lend variables), where n is

the number of processes. Scan and labeling operation executions require O(n) steps. The

construction uses less shared space than that of [10] at the fundamental level, and is orders

of magnitude more efficient in terms of scanning bits at the fundamental level.

5.1 Comparison with Related Work

In [10], they have defined three routines, namely, traceable-read, traceable-write and garbage

collection. When the traceable-read function is executed to read a label, the executing process

explicitly informs the other processes which of their private values it is going to use. The

traceable-write procedure is executed to write a new label. To determine which of its private

values are currently in use, a process executes the garbage collection routine. This routine

helps processes to safely recycle their respective private values. This is the most intricate

routine.

In our construction, we have used a separate implementation technique for a weaker form

of the traceable-read and the traceable-write routines. We do not need a garbage collection

routine. When a process executes the traceable-read function, it does not explicitly inform

the other processes which of their private values it is going to use. On the other hand,
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the executers of the traceable-write procedure correctly finds which private values of which

processes are in use.

Every process needs a separate pool of private values, whose size is fewer than 2n2. In their

construction, the pool size is 22n2. All the ordering shared variables used in our construction

are of 1-writer 1-reader regular ones, whereas they are 1-writer n-reader atomic ones in their

construction. In our construction, a Scan reads at most n−1 1-writer 1-reader regular ordering

shared variables, whereas in their construction it is 2n− 2 1-writer n-reader atomic ones. In

our construction all but one bit are nonatomic 1-writer 1-reader variables. Table 1 presents

some comparison results briefly.

Table 1: Comparison Results.

Construction Shared variable size Shared space(bits) Labeling Scan

[9] O(n) O(n3) O(n) O(n2 log n)

[14] O(n2) O(n4) O(n log n) O(n log n)

[22] O(n2) O(n4) O(n) O(n)

[10] O(n log n) O(n5 log n) O(n) O(n)

[11] O(n) O(n3) O(n) O(n)

This paper O(n log n) O(n3 log n) O(n) O(n)

Of all proposed constructions of bounded concurrent timestamp systems we are aware of,

the construction in this paper is the ‘simplest’. The correctness proof, though involved, is

easier to follow. It is used as a basis in the reference text [4] to describe bounded concurrent

timestamp system.

Although we have used a notion of vector clocks for our construction, as in [42], we may

not really need the full power of vector clock concept developed later by Mattern [32]. In

CTSs, we are not interested in determining causal ‘independence’ of various labeling operation

executions. The ordering property of CTSs infers that the causal orders among labeling

operation executions matter most. We need to have a total order on all labeling operation

executions, and the total order must extend their original causal relation. This is akin to the

logical time of Lamport [27]. We suspect that there might be a way to eliminate the vector

clock altogether, by an efficient way of recycling of global values, instead of using n sets of

private values.

The construction presented here should not be considered as an alternative implementation
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of the traceable use abstraction, for it restricts the value propagation at indirection level one.

It is not clear to the authors how this strategy could be extended for a general implementation

of the abstraction.

5.2 A Brief Early History

The development of bounded wait-free shared variables and timestamp systems has been quite

problematic and error-prone. It may be useful at this point to present a brief early history

of the area: who did what, when, and where, and which solutions are known to be incorrect.

In a series of papers [25, 26, 27, 29] starting in 1974, Lamport explored various notions of

concurrent reading and writing of shared variables culminating in the seminal 1986 paper

[29]. It formulates the notion of wait-free implementation of an atomic shared variable—

written by a single writer and read by (another) single reader—from safe 1-writer 1-reader

2-valued shared variables, being mathematical versions of physical flip-flops. Predating the

latter paper, in 1983 Peterson [34] published an ingenious wait-free construction of an atomic

1-writer, n-reader m-valued atomic shared variable from n+2 safe 1-writer n-reader m-valued

registers, 2n 1-writer 1-reader 2-valued atomic shared variables, and 2 1-writer n-reader 2-

valued atomic shared variables. He presented also a proper notion of wait-freedom property.

Lamport [28] gave an example that appeared to contradict a possible interpretation of the

informal statement of a theorem in [34], which, as Peterson apparently retorted to Lamport,

was not intended. In his paper, Peterson didn’t tell how to construct the n-reader boolean

atomic variables from flip-flops, while Lamport mentioned the open problem of doing so, and,

incidentally, uses a version of Peterson’s construction to bridge the algorithmically demanding

step from atomic shared bits to atomic shared multivalues. Based on this work, N. Lynch,

motivated by concurrency control of multi-user data-bases, posed around 1985 the question of

how to construct wait-free multiwriter atomic variables from 1-writer multireader atomic vari-

ables. Her student Bloom [5] found in 1985 an elegant 2-writer construction, which, however,

has resisted generalizations to multiwriter. Vitányi and Awerbuch [42] were the first to define

and explore the complicated notion of wait-free constructions of general multiwriter atomic

variables. They presented a proof method, an unbounded solution from 1-writer 1-reader

atomic variables, and a bounded solution from 1-writer n-reader atomic variables. The un-

bounded solution was made bounded in [31]. It is optimal for the implementation of n-writer

n-reader atomic variables from 1-writer 1-reader ones. “Projections” of the construction also
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give specialized constructions for the implementation of 1-writer n-reader atomic variables

from 1-writer 1-reader ones, and for the implementation of n-writer n-reader atomic variables

from 1-writer n-reader ones. As noted in [30], the first “projection” is optimal, while the

last “projection” may not be optimal since it uses O(n) control bits per writer while only a

lower bound of Ω(log n) was established. Taking up this challenge, the construction in [23]

apparently achieves this lower bound. The earlier bounded solution in [42] (corresponding

in fact to the problem correctly solved by the last “projection” above) turned out not to be

atomic, but only achieved regularity [43]. Nonetheless, [42] introduced important notions and

technique in the area, like (bounded) vector clocks. These were inspired by the celebrated

“Bakery” algorithm of Lamport [25], which can be viewed as a global bounded “clock” deter-

mining the order among queued processes much like the ticket dispenser in a bakery serves

to determine the order of servicing waiting customers. The multiwriter situation has stronger

requirements than apparently can be satisfied by a global ticket dispenser. The solution in

[42] was the construction of a bounded “vector clock”: a private ticket dispenser for each

process, the storing and updating of a vector of latest tickets held by all processes, together

with a semantics to determine the order between vectors. Moreover, a complex mechanism—

primitive traceable read/write—is presented to keep track of which tickets of what processes

could still be present in the system, with the objective of bounding the private ticket pool

of each process by recycling obsolete tickets. Following the appearance of [42], Peterson who

had been working on the multiwriter problem for a decade, together with Burns, revamped

the construction retaining the vector clocks, but replaced the primitive traceable read/write

elements by repeated scanning as in [34]. The result [35] was found to be nonetheless er-

roneous, in the technical report [36]. This makes the multiwriter problem perhaps the only

one for which two consecutive wrong solutions were published in the highly selective FOCS

conferences. Neither the re-correction in [36], nor the claimed re-correction by the authors

of [35] has appeared in print. The present paper constitutes a correction of the original [42]

by the extension of [18]: by implementing the stronger concurrent timestamp system it also

solves the atomic multiwriter problem. Apart from the already mentioned [31], the only other

multiwriter multireader atomic shared variable construction that appeared in journal version

seems to be of Abraham [1]. Also in 1987 there appeared at least five purported solutions for

the implementation of 1-writer n-reader atomic shared variable from 1-writer 1-reader ones:

[24, 38, 6, 37] and the conference version of [21], of which [6] was shown to be incorrect in [15]
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and only [37] appeared in journal version. The only other 1-writer n-reader atomic shared

variable construction appeared in journal version is of Haldar and Vidyasankar [16]. A. Is-

raeli and M. Li were attracted to the area by the work in [42], and, in an important paper

[21], they raised and solved the question of the more general and universally useful notion

of bounded timestamp system to track the order of events in a concurrent system. Their se-

quential timestamp system was published in journal version, but the preliminary concurrent

timestamp system in the conference proceedings, of which a more detailed version has been

circulated in manuscript form, has not been published in final form.

The difficulty of wait-free atomic multireader-, multiwriter-, and timestamp system con-

structions, and the many errors in purported and published solutions, have made it hard to

publish results in print. Of the major pioneering papers, the first correct multiwriter con-

struction of 1987 [31] was rejected at five consecutive conferences until it was published in

ICALP, 1989. The final journal version was handled by three consecutive editors, scrutinized

by three consecutive sets of referees, and lasted from 1989 until publication in 1996. The

pioneering timestamp paper, [21], was submitted in 1987/88 to this journal, after a couple

of years rejected since a stronger result [9] had appeared in conference version, submitted to

another journal and finally appeared in 1993, but only the part containing the simpler sequen-

tial timestamp construction. The first generally accepted concurrent timestamp construction

[9] appeared in conference version in 1989, but its journal version appeared only in 1997. As

stated before, the concurrent timestamp construction in the present paper is based on the

1986 paper [42] supplemented by the 1993 technical report [18]. For further remarks see [31]

in this journal and the Introduction to present paper.
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[30] Li, M., and Vitányi, P.M.B., 1992. Optimality of wait-free atomic multiwriter variables,

Inform. Process. Lett. 43, 2, 107–112.
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Declarations

Constants:

n = number of processes;

Type:

label-type: array [1..n] of natural number; {represents vector clock}
boolean: 0..1;

Shared variables and their initial values:

w : array [1..n, 1..n] of boolean atomic; {all initially 0}
{Pp writes w [p, 1..n] and Pi reads w [1..n, i]}

r : array [1..n, 1..n] of boolean atomic; {all initially 0}
{Pp writes r [p, 1..n] and Pi reads r [1..n, i]}

c : array [1..n] of boolean atomic; {initially 0}
{Pp writes c[p], and the others read}

label : array [1..n, 0..1] of label-type safe; {all initially 0, except label[p, 0][p] = 1 for all p}
{Pp writes label[p, 0..1] and the others read}

copylabel : array [1..n, 1..n] of label-type safe;
{Pp writes copylabel[p, 1..n] and Pi reads copylabel[1..n, i]}

lend: array [1..n, 1..n] of regular array [0..1] of label-type; {all initially 0}
{Pp writes lend[p, 1..n] and Pi reads lend[1..n, i]}

order: array [1..n, 1..n] of regular array [1..5n] of natural number;
{initially order[1..n, 1..n][1] = 0 and order[1..n, 1..n][2] = 1}
{Pp writes order[p, 1..n] and Pi reads order[1..n, i]}

Private variables for process Pp, p = 1, 2, . . . , n:

clp: boolean; {initially 0}
myLendp: array [1..n] of array [0..1] of label-type; {all initially 0}
old-labelp: label-type; {all initially 0, except old-labelp[p] = 1}
≺p: total order relation; {initially {〈0, 1〉}}

Figure 1: Shared variables.
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Procedure TRACEABLE-WRITE(p: 1..n; new-label: label-type); {Pp writes new-label in O[p]}
var

i, j: 1..n; {loop index}
lr: boolean;

begin
1. clp := ¬clp;
2. write new-label in label[p, clp];
3. write clp in c[p];
4. for i := 1 to n do

begin {could be done in parallel}
4.1 read lr from r [i, p];
4.2 if lr 6= w [p, i] then
4.2.1 write new-label in copylabel[p, i];
4.2.2 for j := 1 to n do myLendp[j][0..1][i] := 〈old-labelp[j], new-label[j]〉;
4.2.3 write lr in w [p, i]; {w [p, i] = r [i, p]}

endif;
endfor;

5. for j := 1 to n do myLendp[j][1][p] := new-label[j];
6. for j := 1 to n do write myLendp[j] in lend[p, j]; {could be done in parallel}
7. old-labelp := new-label;
end; {of procedure}

Function TRACEABLE-READ(p: 1..n, i: 1..n): label-type; {Pp reads a label from Pi}
var

lw: boolean;
lc: boolean;
savelabel: label-type;

begin
1. read lw from w [i, p];
2. write ¬lw in r [p, i]; {r [p, i] 6= w [i, p]}
3. read lc from c[i];
4. read savelabel from label[i, lc];
5. read lw from w [i, p];
6. if (r [p, i] 6= lw) then return(savelabel)
7. else {r [p, i] = w [i, p]}

read and return(copylabel[i, p])
endif;

end; {of function}

Figure 1: Construction for process Pp. (Cont’d.)
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Procedure LABELING(p: 1..n);
var

j, k: 1..n;
temp: array [1..n] of array [0..1] of label-type;
lab: array [1..n] of label-type;
new-label: label-type;
private-value: natural number;

begin
1. for j := 1 to n do {could be done in parallel}

read temp[j] from lend[j, p]; {we do not need temp[j][0][j]}
2. select a new private-value not in temp[1..n] and the current private value; {use the axiom of choice here}
3. put the new private-value in ≺p as the largest element;
4. for j := 1 to n do {could be done in parallel}
4.1 order the elements of (temp[1..n][0..1][j],

temp[k][1][k] and
temp[p][0..1][k] for all k,
and the new private-value) consistent with ≺p

4.2 and write them in order[p, j];
5. for j := 1 to n, j 6= p, do lab[j] :=TRACEABLE-READ(p, j); {could be done in parallel}
6. new-label := 〈lab[1][1], lab[2][2], . . . , lab[p][p] := private-value, . . . , lab[n][n]〉;
7. TRACEABLE-WRITE(p, new-label);
end;

Function SCAN(p: 1..n):(l,≺);
var

i, j, k: 1..n;
lab: array [1..n] of label-type;

begin
1. for j := 1 to n do lab[j] :=TRACEABLE-READ(p, j); {could be done in parallel}
2. for i := 1 to n do
2.1 for j := 1 to n do
2.1.1 let k be the least significant index in which lab[i] differs from lab[j];
2.1.2 if order[k, p] (which is a subset of ≺k) is not read yet, then read it;
2.1.3 determine the order between lab[i] and lab[j] using ≺k;
end;

Figure 1: Construction for process Pp. (Cont’d.)
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