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A B S T R A C T  

Satellite based Digital Video Broadcasting (DVB-S) allows the 
same low cost satellite dish to receive both television programs 
and lnternet traffic. The satellite system is used to construct a 
high-speed simplex distribution system, while the return path, 
needed for the Interact service will be provided using a low speed 
terrestrial network. The bandwidth asymmetry between the return 
and forward paths results in a problem, which we have termed 
"ACK congestion". A number of  techniques that may alleviate 
ACK congestion over a DVB satellite link are analysed through 
simulation. The paper also presents a new ACK Compaction 
technique to eliminate ACK congestion, and an ACK spacing 
technique to preserve the self-clocking principle of  TCP. 

1.0 I N T R O D U C T I O N  
The growing use of multimedia-capable personal computers to 
access the Internet and in particular, the use of  World Wide Web, 
has resulted in a growing demand for Internet bandwidth. The 
emphasis has moved from basic Interact access to the expectation 
that connectivity may be provided whatever the location. This 
presents fresh challenges to the networking community, 
particularly as users become familiar with the benefits of high- 
speed connectivity. 

Along with an increased use of the Internet, there has also been a 
revolution in television transmission, with the emergence of  
Digital Video Broadcasting (DVB) [1]. Recent developments will 
allow a DVB satellite hub station to provide high-speed 
transmission of  packet data to the same small satellite dish as used 
for TV reception. In many cases, the available low speed 
terrestrial infrastructure (e.g., dial-up modem, ISDN connection) 
or low speed satellite return links may be used for the return link. 
This results in a network connection in which the capacity to a 
remote server is lower than that from the server. Such an 
asymmetry in the network paths may be suited to user needs, since 
most Internet clients receive much more data than they need to 
send. However, if  the bandwidth asymmetry in the forward and 
return paths is greater than the asymmetry in the volume of the 
forward and return data, the return link may become congested 
and limit the throughput of  the forward path available for an 
individual client. 

TCP/IP is the most commonly used protocol in the Interact. IP 
provides best effort datagram delivery service, while TCP 
provides other services (e.g., reliability and congestion control) 
required by Internet applications. A TCP receiver generates an 
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Acknowledgment (ACK) for every other received packet (or every 
packet when the ACK delay [2] is zero). The transmitter provides 
reliability by retransmitting any unacknowledged packet. In 
addition, received ACKs are used to implement TCP congestion 
control and avoidance algorithms. These algorithms use the 
principle of  self-clocking, that is, packets are introduced into the 
network roughly at the rate of  receiving ACKs for previously 
transmitted packets, Therefore, TCP throughput over an 
asymmetric network may become constrained by the rate at which 
the sender receives ACKs through the low speed return path, a 
phenomenon known as ACK congestion. 

The commonly used compression and suppression techniques [3, 
4] do not significantly improve TCP performance over such a 
network [5]. New techniques are therefore required to allow an 
individual user to utilize a highly asymmetric path. A new ACK 
Compaction technique will be discussed which eliminates the 
effects of  ACK congestion and achieves highest performance by 
preserving the TCP self-clocking principle. However, an 
implementation of  the technique may result in transmission bursts, 
since the low speed return link may not preserve receiver 
generated spacing between ACKs. An ACK spacing technique is, 
therefore, presented which reinforces TCP self-clocking. 

2.0 DVB N E T W O R K I N G  
DVB provides a standard way of  transmitting Internet traffic (as 
well as video and audio traffic) over most of the transmission 
media, without relying on proprietary systems. The DVB 
standard has adopted the MPEG-2 standard [6] for compression 
of  video and audio signals. In addition, MPEG-2 provides the 
multiplexing and media synchronization functions needed for 
transmission of digital data. 

Figure 1 shows a simple configuration of a satellite-based DVB 
network. A low cost receive only satellite terminal may be used 
to construct a cost-effective high speed simplex distribution 
system when used in a star configuration with a powerful 
(expensive, but shared) hub station at the center of the network. 
Individual users and a remote Local Area Network (LAN) access 
a data server (located in the Internet or at a DVB hub site) using 
the DVB link. A client sends requests for data transfer (and later 
acknowledgments as the session progresses) through the terrestrial 
network, while the server transfers the data to the client through 
the higher speed satellite link. A client networking device (the 
client computer itself or the router) has two network interfaces; 
one connected to the receive DVB link and the other connected by 
an Internet Service Provider (ISP) to the terrestrial network [7]. 
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Figure 1: Configuration showing connection via a DVB satellite network 

The hub router forwards data through the satellite network while 
the return data may be sent through the terrestrial link (as in this 
discussion) or in the future using a low power satellite return link. 
Tunneling may be desirable for a network with path asymmetry 
[8] (i.e., when the return packets of a connection are routed 
through a different network path than used to send the forward 
packets). IP tunneling (or encapsulating an IP packet with 
another IP header) is a commonly implemented technique in the 
Internet (e.g., MBONE [9] and DirectPC [10]). In the DVB case, 
a packet from the user (with the IP source of the user's satellite 
interface) is encapsulated with an IP header (with the IP source 
address of the terrestrial interface and an IP destination address of 
the remote extractor, which is usually the terrestrial interface of 
the hub router). The remote end of the tunnel extracts the 
encapsulated packet and forwards it through the Internet as if it 
were routed through the satellite link. The expander may also 
validate the received IP addresses to prevent spoofing. A detailed 
discussion of tunneling can be found in [8]. 

3.0 TCP EXTENSIONS FOR 
ASYMMETRY 

The TCP protocol adopts a conservative approach to transmit data 
without causing network congestion. The TCP congestion control 
and avoidance algorithms use the principle of self clocking, that 
is, packets are introduced into the congested link on the forward 
path roughly at the rate of receiving ACKs (for previously 
transmitted packets) through the return path. 

TCP implements this using a set of  procedures called slow start 
and multiplicative decrease. These procedures allow a TCP 
transmitter to transmit a limited number of bytes determined by 
the smallest value of the receiver advertised window or the 
congestion window (cwnd). The algorithm also uses a variable to 
keep the threshold value of the send window (ssthresh) which is 
set to one half of the current cwnd (multiplicative decrease) when 
a packet is lost. The cwnd is set to one segment (Maximum 
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Segment Size) when the slow start phase begins (when either the 
connection first starts or the retransmission timer expires), and 
increased by one segment (MSS) whenever an ACK is received 
(exponential increase), until it reaches the ssthresh. (However, 
this exponential growth of  cwnd may cause congestion in the 
network as explained in section 7.) At the end of the exponential 
increase (slow start) phase, the algorithm switches to the 
congestion avoidance (linear increase) phase. On reception of  an 
ACK, the sender is allowed to increase the cwnd by a fraction of 
the MSS (equivalent to one MSS per round trip delay) during the 
linear increase phase. 

Therefore, the TCP throughput of a DVB link may become 
constrained by the rate at which the sender receives ACKs 
through the low speed return path. When the bandwidth 
asymmetry (in the forward and return paths) is greater than the 
data asymmetry (in the forward data and return ACKs), the rate of 
ACKs returned through the return link will be limited resulting in 
ACK congestion. When the ACK delay is zero, the data 
asymmetry is the ratio between the size of a TCP ACK (40 bytes, 
or 60 bytes with IP tunnel, plus the size of the data link protocol 
header) and the size of a TCP data packet (MSS was assumed as 
1024 bytes for this discussion). MSS is normally a pre-negotiated 
value during the connection setup or an appropriate value derived 
using the MTU discovery [11]. Data asymmetry can be improved 
either by modifying the TCP protocol or by modifying the return 
ACK stream. 

3.1 TCP Modifications 
TCP modifications may be performed in the TCP/IP protocol 
stacks of the server and end user client machines [3]. Data 
asymmetry can be improved by reducing the number of ACKs 
generated by the receiver. Since TCP ACKs are cumulative [11], 
the TCP protocol is allowed to reduce the number of ACKs 
generated by the receiver by delaying the transmission of each 
(cumulative) ACK until a number of packets arrive at the receiver. 
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This is called ACK_delay [2, 11]. The receiver may generate only 
one ACK per N number of received packets, when using 
ACK_delay. This improves the data asymmetry by a factor of N. 
The TCP standard, however, recommends that at least every other 
packet is ACKed, so the maximum value for N is 2 [2]. 

TCP may still be modified to improve data asymmetry by delaying 
ACKs for more than 2 packets. However, this reduces the growth 
of cwnd during the slow start phase, resulting in a low throughput 
over a long delay network [12] (especially for small file transfers, 
which last only during the slow start period). The problem of 
slow growth of cwnd over a satellite network may be overcome 
using a larger initial value for cwnd [12, 13]. Alternatively, cwnd 
may be increased using the byte count of the ACKed sequence 
numbers (rather than number of ACKs) which increases cwnd by 
a few segments equivalent to N [12, 14]. Finally, the transmitter 
may use a large TCP MSS to increase the step size of the 
increment of cwnd (cwnd is increased by one segment or by the 
TCP MSS whenever an ACK is received by the sender). Such 
modifications are still being studied by the lnternet community, 
but are not recommended to use in a shared Internet, since they 
may impact the stability of TCP over a large network [12, 15]. 
Therefore, alternative solutions are needed to reduce ACK 
Congestion which suit the characteristics of a DVB Network. 

3.2 Transport Layer Gateway 
One other possible way is to use a modified TCP or even an 
alternate (based on UDP) protocol over the DVB network while 
letting all the other hosts in the network use standard TCP [16]. 
In this case, the end-to-end connection has been divided into at 
least two sections, one with standard TCP and the other with a 
modified protocol. For example, the hub gateway will store and 
acknowledge the reception of any data from a standard TCP 
sender, while the gateway forwards data to the DVB receiver 
using the modified protocols. Therefore, the hub may act as a 
transport layer gateway and implement any necessary 
modifications (the gateway needs to implement both standard 
TCP and the modified protocols). The role of transport layer 
gateways is currently an area of active research within the Internet 
community. There are number of potential problems with this 
scheme [17] as follows: 

(1) A substantial processing overhead may be required at the 
gateways (e.g., sending ACKs for the standard TCP sender, and 
processing each packet over two protocol stacks up to the 
transport layer). 

(2) The gateway needs to take the full responsibility for the 
delivery of the data already ACKed and stored (i.e., the gateway is 
responsible for reliably transmitting stored data to the receiver; 
the gateway cannot delete these packets (like it can IP datagrarrus) 
until the receiver ACKs them, and therefore needs proper resource 
management and potentially substantial non-volatile storage). 

(3) The scheme is vulnerable to unexpected failures (e.g., data 
may be lost due to gateway failure, even after the sender has 
finished the data transfer). These are difficult to correct after the 
original connection to the sender has been removed. 

(4) The scheme does not work, if IP security is used over the 
forward path or the return path, since the gateway is unable to act 
in place of the receivers (i.e., it does not know its secret keys). 

3.3 Transparent Modifications 
The alternative approach is to modify the return link ACK stream. 
First, data over the return link can be compressed. CCITT V.42 
bis data compression is commonly employed by modems. V.42 
bis uses the Lempel and Ziv data compression algorithm [18]. 
This is particularly eflb, ctive for ASCII text data, but less effective 
for pure protocol data (e.g. ACKs). Neither is compression 
suitable for random data (such as encrypted protocol headers). It 
reduces the TCP header from 40 bytes to an average of 16 bytes 
[19]. The TCP/IP header compression algorithm is an alternative 
technique specifically designed for compression of the TCPflP 
header [19] and achieves higher compression for ACKs (reducing 
the TCP header from 40 bytes to an average of 6-7 bytes [19]). 
Both these compression techniques are designed for point-to-point 
modem links. Even though compression improves the modem 
link performance, the Internet Service Provider (ISP) may still 
need to guarantee a high bandwidth over the remainder of the 
Internet path to ensure uncompressed packets are transmitted after 
decompression at the end of  the modem link. Failure to provide 
the required bandwidth (later in the network path) will also lead to 
ACK congestion. 

Secondly, the return link ACK stream can be modified by using 
ACK suppression (also known as ACK filtering) [3-5] to reduce 
the volume of data transmitted through the return link. This 
technique uses the same concept as ACK_delay which exploits the 
cumulative nature of the TCP ACKs. The main advantage of this 
approach is that it can be implemented between the IP layer and 
link layer drivers (in a host or gateway) without modifying the 
TCP protocol. 

3.4 Simulated Network Configuration 
A DVB link has been simulated to understand the impact of ACK 
congestion and the performance of the three techniques described 
in the preceding sections. The techniques have been implemented 
in a TCP/IP simulator, which contains a full implementation of 
TCP [20]. The simulator was configured to use Reno with the 
window sealing extension [5]. The simulation configuration is 
shown in figure 2. A DVB-S transponder typically provides a 
bandwidth of 30-40 Mbps. It was assumed that up to 10Mbps of 
the satellite bandwidth was available for data transfer, while the 
rest of the capacity was allocated to video traffic. Most modern 
telephone networks support 28.8 kbps modems, although some 
areas still only offer 9.6 kbps capacity. Since we should not be 
optimistic about the bandwidth available through the Interact 
(often subjected to congestion), this study first considers a 9.6 
kbps return link to analyse the worst case (a network with 
asymmetric ratio of ~1000:1). The performance using a range of 
return path speeds will be analysed later in the paper. TCP was 
configured to use a MSS of 1024 bytes, and had transmit and 
receive buffer sizes of 720Kbytes, sufficient for the DVB link [5]. 

Figure 2: Network configuration. 
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4.0 TCP/IP H E A D E R  C O M P R E S S I O N  
TCP header compression [19] is widely used on modem links and 
may compress the TCPflP header. This allows the size of an ACK 
to be reduced by ~70% over the return link. TCP performance 
over a DVB network was studied using the above described 
network configuration (section 3.4), by implementing TCP/IP 
header compression over the return link. For simplicity, a single 
session was considered limited to a maximum of 10 Mbps over 
the DVB channel. 

Figure 3 shows the variation of cwnd with time for a data transfer 
from the hub server to a client when using TCP/IP header 
compression. Figure 4 shows the time required to transfer a 
number of bytes over the DVB link (the gradient of a curve 
represents the TCP throughput in Mbps). The results are also 
compared with unmodified TCP (i.e., without any transparent 
modifications, and assuming that the ACK delay at the TCP 
receiver is zero). The other graphs labeled "Suppression" and 
"Compactious" will be discussed in subsequent sections. 

ACK Congestion arises when unmodified TCP is used, resulting 
in a slow increase in cwnd (figure 3) and a low TCP throughput 
(i.e. large transmission time, figure 4). In addition, the large 
queuing delay at the return link interface ultimately causes the 
TCP timers at the sender to expire indicating potential data loss 
and triggering unnecessary retransmission of data. The TCP 
congestion control algorithms is also triggered, reducing cwnd to 
a single segment and ssthresh to one half of the current value of 
cwnd [20, 21 ]. TCP throughput has therefore been degraded over 
the DVB network. 

Since ACKs arrive at the sender at a higher rate when using 
header compression, the value of cwnd may grow more rapidly 
(figure 3). However, the compression ratio is not sufficient to 
eliminate ACK congestion for a DVB network, which still results 
in expiry of the TCP retransmission timer, and subsequent slow 
start. This results in only a small improvement in overall TCP 
throughput when using TCP/IP header compression (figure 4). 
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Figure 3: The variation of the cwnd with time. 

The TCP/IP header compression method is designed for a point- 
to-point link and the performance of  TCP may be degraded if a 
compressed packet is lost during the transmission, since the 
header compression uses differential encoding [22]. The packets 
tunneled through the return path may be lost during transmission. 
TCP/IP compression may therefore provide poor performance 
through such a tunnel. Improving the robustness of  IP header 
compression algorithms is a current area of  research [12, 22]. 
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Figure 4: First sequence number of  the transmitted packet against 
time. 

5.0 A C K  S U P P R E S S I O N  
Another way to avoid ACK congestion is to delete ACKs from the 
queue that builds up at the return interface. This technique is 
called ACK Suppression (or ACK filtering) [3-5], which exploits 
the cumulative property of  TCP ACKs similar to the concept used 
in TCP ACK_delay (section 3.1). Such a scheme may be 
implemented below the transport layer. Avoiding modifications to 
standard TCP may compensate for the extra processing overhead 
(per ACK) performing ACK suppression. Implementation at the 
u s ~  machine may also reduce any interaction with security and 
encryption procedures. 

To perform ACK suppression, each incoming ACK forwarded to 
the link interface queue is classified by a flow (TCP packets are 
identified by the protocol type of  the IP header, TCP port 
numbers and IP addresses then uniquely identify a flow). The 
suppresser tags each ACK with a flow identifier before storing it 
in the transmission queue. Although a separate queue may be 
implemented for each flow, our implementation employs a single 
drop tail queue to store ACKs from all flows (as usually found in 
the Internet). However, the suppressor keeps a flow count for 
each flow, which is initialized to zero on the initialization of the 
interface driver. The corresponding flow counter is incremented 
by one whenever an ACK is received by the interface, and 
decremented by one whenever an ACK is transmitted or 
suppressed. 

A flow counter (the number of  ACKs belonging to a single flow) 
is allowed to be increased up to a low water mark value (e.g. a 
similar value used in Random Early Detection (RED) algorithm 
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[23]) before suppression. A suitable limit (set according to the 
burstiness of generating TCP ACKs) improves TCP performance, 
allowing the first ACKs of a flow to be received without 
suppression which, in turn, permits the sender to open cwnd 
quickly. 

When a flow counter exceeds the low water mark (e.g., 4 ACKs), 
ACKs belonging to this session will be deleted from the front of 
the queue (oldest ACKs) leaving a single (cumulative) ACK. The 
maximum number of ACKs deleted from the flow is restricted to a 
high-water mark value to permit the sender to periodically receive 
ACKs (at least one ACK in a high water mark of ACKs). 
However, the high water mark should be large enough to achieve 
a high throughput (improving data asymmetry). 

Some ACKs also have other functions in the TCP protocol and 
must not be deleted to ensure normal operation of TCP. The 
suppresser must therefore not delete an ACK that carries any data, 
or has any other TCP flags set (sync, reset, urgent, and final) [19]. 
In addition, the suppresser should avoid deleting a series of 3 
duplicate ACKs which indicates a lost packet [21]. The 
suppressor caches the highest transmitted acknowledgement 
number (copied from the header of the latest transmitted ACK) for 
each flow. It looks at the header of the next ACK and the cached 
acknowledgement number to detect whether this is a duplicate 
ACK, before deleting an ACK from the front of the queue. This 
ACK will be transmitted without suppression if it is a duplicate 
ACK. This procedure may be optimized to limit the number of 
unsuppressed ACKs only up to 3, but our implementation 
prevents the risk of not detecting a lost packet by the sender due 
to the loss of a duplicate ACK. 

The previous simulations have been repeated, this time 
implementing ACK suppression at the link layer. The low and 
high water marks were set to 4 and 60 ACKs respectively. Figure 
3 shows the variation of cwnd with time for a data transfer from 
the hub server to a client. Figure 4 shows the time required to 
transfer a number of bytes over the DVB link (the gradient of a 
curve represents the TCP throughput in Mbps). The results are 
also compared with unmodified TCP and the TCP performance 
with header compression. 
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Figure 5: Number of bytes transmitted against time. 

ACK Suppression achieves higher TCP performance (for transfer 
> 1.2 Mbps) compmexl to header compression by significantly 
reducing the queuing delay. ACK Suppression eliminates ACK 
congestion (the cwnd has been continuously increased, figure 3). 
However, the throughput may still remain low during the initial 
part of the file transfer. This is because cwnd still grows slowly, 
due to the small number of ACKs received - even though all data 
has been cumulatively acknowledged. (The sender congestion 
avoidance algorithm only increases cwnd on reception of an ACK 
and does not consider the cumulative nature). 

A TCP sender uses each received ACK for two purposes. First, it 
indicates a previously transmitted packet has left the network, so 
the sender may increase cwnd allowing it to transmit more data to 
the network. Second, it indicates the receiver will accept more 
data. During the Slow start phase, the transmission rate is 
constrained by the first factor, and when the cwnd is sufficiently 
open, the transmission rate is constrained by the second factor. 

The return path acts: as a bottleneck and determines the rate at 
which ACKs are reCeived at the sender so that the congestion 
window increases slowly during the initial phase of a data transfer 
(figure 3). Figure 5 zooms in on the initial part of the data 
transfer during the previous simulation. TCP performance with 
ACK suppression is poor for short f'de transfers (e.g. when the file 
size is less than 1.2 Mbytes with this simulation configuration, as 
shown in figure 5). This is particularly significant for Internet 
traffic as most connections are short-lived [24] and therefore are 
always constrained by the value of cwnd. Therefore we have 
developed a new technique which almost reproduces the original 
ACK stream at the sender without increasing the return link 
bandwidth. 

6.0 ACK COMPACTION 
A new ACK Compaction technique is proposed which eliminates 
the effect of ACK congestion, but maintains an acceptable arrival 
rate of ACKs at the sender. A data link layer compactor first 
establishes an IP tunnel to a remote expander that could be at the 
DVB transmitter site (i.e., collocated with the tunnel router at the 
hub site). 

ACK Compaction uses similar techniques as ACK Suppression, 
but with several modifications. When a queue of ACKs builds up 
at the return interface, older ACKs will be deleted from the front 
of the queue, leaving the latest ACK for transmission (as 
explained in section 5). In performing ACK Comp~tion, the 
transmitter appends information to this remaining ACK that is 
later used by an expander for extraction (regeneration) of deleted 
ACKs. The information contains the number of deleted ACKs 
(one byte) and the total number of bytes acknowledged by the 
deleted ACKs (two bytes). (Please note that this modified ACK 
may not be removed from the transmission queue, but marked to 
indicate that it has already been compacted.) 

Since these modified ACKs are no longer IP datagrams, they need 
to be tunneled to the expander that recognizes the new header. 
Tunneling packets over the asymmetric return link is already 
desirable as explained in section 2. 

The expander is stateless (i.e. processes each received packet 
independently of previously received packets). It extracts the 
header (3 bytes of prefixed information), and uses this information 
together with the acknowledgement field in the TCP header of the 
received ACK (the highest acknowledgment number from all 
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compacted packets) to produce a burst of ACKs equivalent to the 
number of ACKs previously deleted by the compactor. In 
performing extraction, the expander generates the required 
number of copies of this received ACK, and overwrites the 
acknowledgement number of each generated ACK by a calculated 
value (starting with the calculated lowest value and then 
incrementing it by equal steps up to the highest acknowledgement 
number). The expander also needs to recalculate the TCP/IP 
checksum of each extracted ACK. These ACKs are then 
forwarded to the original destination (i.e. the TCP sender). This 
process is simple to implement and requires little modification to 
the tunneling software at the remote site. 

The previous simulations have been repeated, this time 
implementing ACK Compaction at the link layer. The low and 
high water marks were set to 4 and 60 ACKs respectively. Figure 
3 shows the variation of cwnd with time for a data transfer from 
the hub server to a client. Figure 4 shows the time required for 
transfer of a number of bytes over the DVB link. 

TCP throughput has been significantly improved using the ACK 
Compaction technique (figure 4). Our simulated implementation 
only compacts the ACKs when a threshold value of 4 ACKs is 
exceeded at the return interface queue. When compared with 
header compression, there is still an initial slow growth of cwnd 
(for the first 4 sees) for ACK compaction (figure 3 and 4). This 
arises since compressed ACKs are received more rapidly than the 
initially non-compacted ACKs. Once ACK compaction starts to 
take place, the performance rapidly exceeds header compression 
and completely eliminates ACK congestion. The simulation 
results suggest that this approach has significant advantages over 
the other techniques. Section 8 will also compare the 
performance of this technique with other return link optimization 
techniques, using a range of network topologies. 

7.0 ACK SPACING 
ACK Compaction and subsequent extraction generate a series of 
back to back ACKs and forward them to the TCP sender. This 
allows the sender to open cwnd within a very short period of time 
resulting in a transmission of a burst of packets to the network. 
This bursty nature of transmission could be alleviated by either 
modifying the current method of opening cwnd [3] or by spacing 
the generated ACK stream at the expander. 

The former approach modifies the sender congestion control 
algorithm [25] to adjust cwnd, preventing the transmission of a 
burst of packets. On reception of a burst of ACKs, the sender will 
not open cwnd to its maximum possible value, instead it will 
smoothly increase within the next round trip time (the average 
round trip time (sat) is usually cached by the sender). The sender 
will implement a timer for this purpose. The timer interval will be 
calculated using the maximum possible value of cwnd (according 
to the number of received ACKs and the unmodified congestion 
control algorithm), the current value of cwnd and srtt. 

We have implemented an alternative ACK spacing technique 
(which does not need modifications to the TCP sender). The 
expander implements an algorithm similar to a leaky bucket traffic 
shaping algorithm [26]. The expander does not forward extracted 
ACKs immediately to the sender and instead they are stored in a 
queue, o It also keeps a token counter that will be periodically 
incremented by a timer. Our implementation does not classify 
packets from different flows (sessions). If a classifier is also 

implemented, the expander may maintain a separate queue and a 
token counter for each flow. A received normal packet (not 
compacted) will also be stored in the same queue, but the 
expander increments the token counter without waiting for the 
next timer event. The number of ACKs forwarded to the sender is 
constrained by the available tokens. Every time an ACK is stored 
in the queue or when the timer expires (at the end of the period of 
the timer), and if tokens are available, ACKs are forwarded to the 
sender from the front of the queue (and an equivalent number of 
tokens are removed from the token counter). 

The token counter is periodically incremented by a timer (ACK 
spacing timer). The period of the timer is calculated dynamically 
by measuring the inter-arrival time between two compacted 
ACKs. If all the extracted ACKs arrived well spaced, the inter- 
arrival time between each ACK (ack_iat) would be the measured 
inter-arrival time (between two compacted ACKs) divided by the 
number of ACKs that have been compacted into the received 
compacted ACK. To reduce the number of timer interrupts, 
ack_iat is multiplied by N for the calculation of the period of the 
ACK spacing timer (ack_tov). N is the number of tokens added to 
the token counter on expiry of the timer. Every time ACKs are 
forwarded to the sender, the expander (re) starts the timer, if it is 
not already running or the remaining time before the current timer 
due to be expired is greater than ack_.tov. In our implementation, 
N is set to 4 or a lesser value equivalent to the number of ACKs 
remaining in the queue. 

It is important to accurately estimate the initial inter-arrival time 
to space the first compacted ACK, since an underestimation may 
cause the sender to transmit a large burst of packets to the network 
or an overestimation may result in a slow growth of cwnd. The 
expander, therefore, continuously measures the average inter- 
arrival time between initial normal ACICs (not compacted). The 
average value is estimated using a recent window of N received 
ACKs. Prior to the compaction of ACKs (from the queue that is 
built at the return interface), the interface transmits packets at the 
line speed. The most recent estimated average value, therefore, 
represents the inter-arrival time for the first compacted packet. 
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Figure 6: The variation of the cwnd with time when using 
Compaction and Compaction with ACK spacing 
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The previous simulations (with the same configuration) have been 
repeated, also implementing the ACK spacing algorithm at the 
expander. Figure 6 shows the variation of cwnd with time for a 
data transfer from the hub server to a client. As shown in the 
figure 6, ACK Compaction causes transmission bursts (abrupt 
increments of the cwnd, each represented by a horizontal line 
followed by a time gap). ACK spacing significantly reduces this 
by properly spacing extracted ACKs. 
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Figure 7: The variation of the queue length at the DVB satellite 
interface (when a single session is active). 

Figure 7 shows the variation of the queue size at the satellite 
interface of the hub router during the previously simulated data 
transfer. ACK spacing has reduced the sharp peaks in the queue 
size (figure 7) resulting from transmission bursts caused by ACK 
Compaction. 
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Figure 8: The variation of the queue length at the DVB satellite 
interface and the variation of cwnd with time (the return link 
speed is 430kbps). 

However, a persistent queue of packets has been formed in the 
satellite interface (even after ACK Spacing). This is due to the 
transmission bursts caused by the slow start algorithm [27]. The 
previous simulations have been repeated using a high speed return 
link (sufficient to prevent ACK congestion) to explain this 
problem. The return link speed was 430kbps, but other 
configurations were, remained without any change. Figure 8 
shows the variation of the queue size at the satellite interface of 
the hub router and the variation of cwnd with time for a data 
transfer from the hub server to a client. 

As shown in figure 8, every burst of ACKs received during the 
slow start period results in a queue of packets formed at the 
router. This is because the sender transmits two new segments for 
each received ACK, although the spacing between received ACKs 
roughly represents the available bandwidth of the bottleneck link. 
This results in transmission of packets at twice the speed of the 
bottleneck link, forming a queue of packets equal to half the 
bandwidth-delay product of the network at the end of the slow 
start phase [27]. A solution to this problem of overwhelming the 
bottleneck router due to the slow start procedure has not been 
addressed in this paper, but identified as future research. 
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Figure 9: The variation of the queue length at the DVB satellite 
interface (when three sessions are sharing the satellite bandwidth). 

The previous simulations (with the same configuration) have been 
repeated with three data transfer sessions sharing the DVB 
satellite link capacity (the return link bandwidth was again 9.6 
kbps). Figure 9 shows the variation of the queue size at the 
satellite interface of the hub router for three simultaneous data 
transfers from the hub server to a client. The simulation results 
demonstrate the accuracy of the ACK Spacing algorithm even 
when a number of sessions are sharing the DVB network. 
(Suppression of sharp peaks due to ACK Compaction can be 
clearly noticed.) 

Simulations were extended to examine the performance of the 
ACK Spacing algorithm in the presence of network congestion. 
This time, each session started with a time gap of 10ms (after the 
previous session has reached the bandwidth delay product of the 
network). Figure 10 shows the time required to transfer a number 
of bytes over the DVB link (the gradient of a curve represents the 
TCP throughput in Mbps). The network has been congested 
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resulting in some packet loss from the first session, when the 
second session started bursting packets to the network (figure 10). 
This resulted in a low throughput for the first session (the gradient 
of the curve has been reduced) and a fair sharing of the bandwidth 
between two sessions. When the third session started bursting 
packets to the network, the throughput of the first session has 
again been reduced, and the other sessions have gained the 
bandwidth. 

This unfairness for the first session is due to the drop-tail queuing 
policy of the router. When a network queue is nearly fulL 
subsequent packets from any session sharing the queue may be 
dropped (irrespective of the transmission rate of the session). 
This results in a low throughput for the session that experiences 
the packet loss due to the involvement of TCP congestion control 
and avoidance algorithms [25]. An implementation of a fair 
queuing algorithm [26] may alleviate such unfairness by (a) 
isolating different sessions sharing the resources of the router and 
Co) allocating a fair share of the total bandwidth to each session. 
Alternatively, the router may implement a fair packet discarding 
policy (e.g., ERD [23]), which increases the probability of losing 
packets from the sessions that overuse the bandwidth. Such a 
queuing technique is easier to implement in a video broadcasting 
network where the broadcaster has a better control over the 
transmission of data to the network and may also limit the number 
of simultaneous sessions sharing the network. 

20 

z 

0 
0 

C,'C, ' 1st Sessio'n ' ' j  " /  

2 _ 2 .  2ha Session ~ / 

(1 st Sessl~n/ (2rid Sclsion / 

/ 
10 20 30 Time [sec] 50 

Figure 10: First sequence number of the transmitted packets 
against time, when three sessions are sharing the satellite 
bandwidth (the gap between starting time of each session is 
10ms). 

8.0 END TO END PERFORMANCE 
The end to end performance of a range of techniques for 
optimization of the return path was studied using the same 
simulation configuration shown in figure 2. Three TCP sessions 
shared the DVB network, and it was assumed that 10 Mbps of the 
satellite bandwidth was allocated for data transfer. The set of 
simulations was repeated, varying the bandwidth of the return 
link, to study the performance over a range of network topologies. 
The satellite delay was 280rns, while the return path delay was 

200ms. TCP MSS was 1024 bytes. The window scaling 
extension was enabled and had transmit and receive buffers 
sufficient for the bandwidth delay product of the DVB network. 

Figure 11 shows the aggregated throughput for 3 TCP sessions 
over the DVB network. As explained in the previous sections, the 
TCP performance over a DVB network significantly suffers due to 
the bandwidth asymmetry, if the return link is not optimized (the 
graph labeled "Unmodified"). TCP/IP header compression 
improves the throughput by improving the data asymmetry, but 
the return link may still suffer from ACK congestion, since the 
bandwidth asymmetry is still higher than the data asymmetry. 
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Figure 11: TCP throughput over a DVB network for a range of 
return path speeds (when using different return link optimization 
techniques). 

Figure 12 shows the variation of the queue length at the return 
interface (only the case of a 32 kbps return link was considered 
for simplicity). Sharp glitches in the graph labeled "Unmodified" 
are due to the transmitter time outs which result from high 
variation of the queuing delay. TCP header compression prevents 
these timeouts by increasing the arrival rate of (compressed small) 
ACKs at the transmitter. However, the return link still suffers 
from ACK congestion (a persistent long queue of ACKs formed at 
the return interface), resulting in a low TCP throughput. 

Both suppression and compaction eliminate queuing delay at the 
return interface (figure 12). This result was observed for most of 
the other network topologies. However suppression achieves 
lower throughput over low speed return links, since the growth 
rate of cwnd limits performance (figure 11). Even though a high- 
speed modem link can be used, the ISP may still need to provide a 
bandwidth (equivalent to the speed of the modem link) over the 
Interact. Compaction overcomes this limitation and achieves 
highest performance irrespective of the bandwidth of the return 
path (figure 11). 
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Figure 12: The variation of the queue length at the return interface 
of a client. 

9.0 CONCLUSIONS AND FUTURE WORK 
This study has investigated a range of different techniques to 
enable utilizing the full bandwidth of a satellite link whenusing a 
low speed return link~ The bandwidth asymmetry in the forward 
and return paths may be higher than the asymmetry in the volume 
of the forward and return data leading to ACK congestion in the 
return rink. 

Link and TCP/IP header compression techniques reduce the 
volume of data over the return path, but they are typically 
designed for point-to-point modem links. Furthermore, since the 
data is uncompressed at the Interact Service Provider (ISP), the 
ISP may still need to guarantee a high bandwidth over the 
Internet. Therefore, even if these techniques could be used for 
this type of link, it would not provide sufficient gain to allow bulk 
transfers to take full advantage of the available satellite 
bandwidth. 

ACK Suppression achieves higher TCP performance by 
significantly reducing queuing delay. However, since the actual 
number of ACKs received by the sender is significantly reduced 
due to suppression, the growth rate of cwnd lim3ts performance, 
especially when the return bandwidth is very low (e.g., a 
congested Internet path). 

The new ACK Compaction technique with the ACK Spacing 
achieve the highest performance by maintaining an acceptable 
arrival rate of ACKs at the sender and preserving TCP self- 
clocking. An implementation would require only modifications to 
network driver software at both ends of the return tunnel (i.e., at 
the client and the hub station). 

The techniques may not interact with any security service 
implemented over the DVB link. We are currently investigating 
an appropriate implementation of security functions at the return 
interface of the DVB receiver. Alternatively, the security 
functions may be implemented at the transport layer (e.g., [28]). 
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