
A fair certification protocol
Chris J. Mitchell and Konstantinos Rantos

Information Security Group
Royal Holloway, University of London

Egham, Surrey, TW20 0EX, UK
Tel: +44 1784 443423

C.Mitchell@rhbnc.ac.uk, K.Rantos@dcs.rhbnc.ac.uk

ABSTRACT
In this paper a ‘fair’ key generation and certification protocol for
Diffie-Hellman keys is proposed, which is intended for use in
cases where neither User nor CA are trusted to choose the User’s
key on their own. This protocol also ensures that key agreement
mechanism 1 in ISO/IEC 11770-3 [2] provides ‘fair key
agreement’ [4].

Keywords
Key agreement, commitment, certification.

1. INTRODUCTION
In the multi-part international standard ISO/IEC 11770, a number
of key establishment techniques are described. Key establishment,
as defined in ISO/IEC 11770-3 [2], is “the process of making
available a shared secret key to one or more entities”, and it can
be subdivided into key transport and key agreement. Key
agreement is “the process of establishing a shared secret key
between entities in such a way that neither of them can
predetermine the value of that key” [2]. This definition implies
that the shared secret is derived as a function of the information
contributed by or associated with all the communicating parties
such that none of them can predetermine the value of the key [3,
§12.2].

Key agreement mechanisms are used in environments where the
communicating parties, who may not trust one another, wish to be
sure that a session key used to protect communications between
them is derived so that neither of the communicating parties can
predetermine part or all of its value. As briefly discussed in [4],
the mechanisms described in ISO/IEC 11770-3 [2], clause 6, and
11770-2 [1], clauses 5.5 and 5.6, do not provide ‘fair key
agreement’, as they do not prevent one of the communicating
entities from choosing part of the shared secret key.

The basic idea behind most key agreement protocols, and
certainly all the protocols described in ISO/IEC 11770, is that
both parties provide a ‘key component’, and the two components
are combined in some way to give the key. The method used to
combine the components is typically a one-way function. As

mentioned in ISO/IEC 11770-3 [2], certain checks, depending on
the particular key agreement mechanism and/or cryptographic
functions used, should also be enforced to prevent the use of weak
values (key components).

However, in the mechanisms in the above standard, neither the
use of a one-way ‘combiner’ function, nor these checks can
prevent one entity gaining an advantage over the other. Suppose,
as is the case with most such schemes, one entity (A say) sends its
component to the other entity (B say) before B sends its
component back to A. There is then nothing to stop B from
working on the key component received from A prior to choosing
its own component, allowing B to choose part of the shared secret

key. Specifically, ‘if B is prepared to perform approximately s2
computations of the one-way function used to combine key
components prior to sending a response to A, then B will be able
to choose s bits of the shared secret key’ [4]. The computation of
the combinations has to be performed within the limited space of
time that B has prior to sending a response back to A. Yet, if a fast
hash function, such as SHA-1, is used to combine components, B

may be able to test as many as 54 1010 − key components in a
second or so, allowing him to choose as many as 16 bits of the
shared secret key.

Before proceeding we consider why allowing one of the two
entities to choose a few bits of the shared key might be a threat.
Suppose entity B has agreed to allow party C to have access to his
keys for key recovery purposes, but B does not wish to let A
know. Moreover, although this could be achieved by having B
pass a copy of every key to C, this is potentially costly in
communications and storage, and B and C wish to find an
alternative. Suppose that the keys agreed between A and B are 64
bits long. Then, using essentially the same technique as described
in [4], B may be in a position to choose every key shared with A
such that the last 16 bits are a fixed function (known only by B
and C) of the first 48 bits. When C wishes to recover a key, C

needs only test at most 482 possibilities for the key (e.g. using a
known plaintext/ciphertext pair).

2. THE COMMITMENTS SOLUTION
To avoid the above problem, the use of commitments is proposed
in [4]. The notion of commitments in cryptographic protocols is a
well-established one, particularly in the context of zero-
knowledge protocols (see, for example, [3]). By a commitment
here we mean the disclosure of a value by an entity which binds
that entity to a related value, without revealing that related value
(in some contexts the disclosed value is referred to as a witness).
The main idea behind using commitments to make key agreement
schemes fair is to ensure that both parties choose their own key
component before seeing the other party’s component. This is

achieved by requiring one entity, say B, to hash its key component
using a one-way hash function, and to send the resulting hash-
code as the commitment to the other entity, say A, before A sends
its own key component to B. Assuming that the key component
contains sufficiently many bits, A cannot calculate B’s key
component before choosing its own. Therefore, A has to generate
and send its own key component without seeing the exact value of
B’s component. After that B can pass its key component back to
A, who hashes the value and checks whether the two hashed
values match.

Most of the standardized key agreement mechanisms with joint
key control described in ISO/IEC 11770-2 [1] and 11770-3 [2]
can easily be adapted, using commitments, to provide ‘fair key
agreement’. However, of the seven key agreement methods
specified in ISO/IEC 11770-3, the use of the commitment-based
solution only applies to four of them; it does not work for the
mechanisms involving use of pre-established key agreement key
pairs (key agreement mechanisms 1–3 in ISO/IEC 11770-3). The
main reason is that if one of the communicating parties has a
public key agreement key certified by a CA, the other party can
work on it for a long period of time before choosing its key
component.

The purpose of this paper is to consider key agreement
mechanism 1 in ISO/IEC 11770-3 and provide a solution to the
‘fair key agreement’ problem for this scheme. The proposed
solution could more generally serve as a ‘fair certification
protocol’ for Diffie-Hellman keys where the User does not choose
his private key, but neither is the private key released to the CA.
The mechanism could be deployed in environments where neither
the CA nor the User trust each other to choose the User’s key.

3. KEY AGREEMENT USING PUBLIC
KEY CRYPTOGRAPHY
In the key agreement mechanisms described in ISO/IEC 11770-3
[2], both communicating parties contribute to the shared secret
key, which is computed as a one-way function of the key
components that the parties have chosen. The requirements for
use of the mechanisms are given in ISO/IEC 11770-3 clauses 5
and 6. Most importantly, entities A and B using one of these
protocols must have agreed on a function GGHF →×: , with
the following properties.

1. F satisfies the commutativity condition
)),(,()),(,(ghFhFghFhF ABBA = .

2. It is computationally intractable to find)),(,(21 ghFhF

from),(1 ghF ,),(2 ghF and g. This implies that

),(gF ⋅ is a one-way function.

Also A and B must share an element g in G, which may be
publicly known, and A and B must be able to efficiently compute
values),(ghF and generate random elements in H. One
‘obvious’ candidate for F is to choose a large prime p, put

pZG = , put ∗= pZH , let g be a primitive element modulo p, and

define

pgghF h mod),(=

The seven key agreement mechanisms specified in ISO/IEC
11770-3 [2] can be divided into three classes.

• In one scheme (mechanism 1) the shared secret key is
generated as a function of the two parties’ pre-established
key agreement keys. According to mechanism 1 two entities
A and B non-interactively establish a shared secret key using
their key agreement key pairs. Use of the mechanism requires
each entity X to have a private key agreement key Xh in H

and a public key agreement key),(ghFp XX = , and both

entities to have an authenticated copy of each other’s public
key agreement key [2, clause 6.1]. The mechanism involves
the following steps:

1. A computes, using its own private key agreement key

Ah and B’s public key agreement key Bp , the shared

secret key as),(BAAB phFK = .

2. B computes, using its own private key agreement key

Bh and A’s public key agreement key Ap , the shared

secret key as),(ABAB phFK = .

• In two schemes (mechanisms 2 and 3) the shared secret key
is generated as a function of one party’s pre-established key
agreement key, and the other party’s dynamically generated
component.

• In the other four schemes (mechanisms 4–7) the shared
secret key is computed as a function of two dynamically
generated components, one for each party.

As already discussed, the ‘commitments’ solution only applies to
the third class of mechanisms. The fairness problem arises in the
first class of mechanisms because one party may select his/her key
agreement key pair so as to choose part of the key shared with
another specified entity. Suppose entity A gets and publishes its
public key agreement key. When B chooses its key agreement key
it can ensure that the key established between A and B has certain
properties. Of course, B has no control over keys established
between himself and other entities, so the problem is restricted in
scope. Nevertheless, B potentially has a long time in which to
work on A’s key before choosing its own, and in this respect the
problem is worse than for mechanisms 4–7. We now propose a
solution to the first class of mechanisms, based on the idea of
preventing a user choosing his/her key pair, whilst preserving the
secrecy of the user's private key.
Finally note that we do not have a solution to the problem for the
second class of mechanisms. This case appears particularly
intractable, and if the lack of ‘fairness’ is a major problem then a
mechanism from one of the other two classes should be used.

4. A FAIR CERTIFICATION PROTOCOL
We present a protocol between an entity and a CA which provides
the entity with a private key and a certified public key, where the
user cannot choose his/her private key but also no other entity
(including the CA) knows the private key. Use of the proposed
certification and key derivation mechanism requires the User and
CA to share a secure channel and have agreed a modulus (a large
prime number p), an element g of large multiplicative order q
modulo p, and a collision-resistant hash-function h. The values p,
g and h would typically be shared by a large domain of users, and
could be distributed as part of an implementation of the scheme.
Alternatively, the agreement of these values could be done using
one of the mechanisms proposed in [3, §13.4]. The proposed
protocol consists of the following steps.

• The User chooses a private key component x, computes

)(xgh , and sends it to CA.

CAU
xgh →)(

• CA chooses a second private key component y, and also

computes qy mod1− . The CA sends y to the User.

CAU y←

• The User computes its private key as qxy mod and sends its

public key xyg to the CA.

CAU
xyg →

• The CA computes))((1−yxygh and checks that the result
equals the value sent by the User in the first message. If the

check is successful CA accepts xyg as the public key of the
User, certifies it, and returns the certificate to the User.

CAU
xy

CA gCert ←)(

It is simple to verify that the User cannot choose the private key
xy, and also that the CA does not know xy. Use of this protocol for
the establishment and certification of all the users’ key agreement
keys ensures that a User cannot influence a key established with
another User. In other words, the protocol prevents the User
choosing his key agreement key to have certain specific properties
[4]. Thus, in particular, B will not be able to choose part of the
shared secret key established between A and himself, even if B has
a long time to work on A’s public key agreement key. However,
although the User cannot control the generation of his key
agreement key, the User’s privacy is protected as neither the CA
nor any other entity get knowledge of the generated private key
agreement key. It is also clear that, through the use of
‘commitments’, the CA cannot choose part of the final key. This
mechanism, as mentioned earlier, could more generally serve as a
fair certification protocol for Diffie-Hellman keys in cases where
neither User nor CA is trusted to choose the User’s private key
‘on their own’. As long as one party’s contribution is random, the
resulting key will be ‘good’.

The value of g will typically be fixed for a particular application.
If the multiplicative order of g (q say, where)1(| −pq) is non-
prime, as would be the case if g were chosen to be primitive, then
the User can have an influence on the value of their private key,
albeit at the cost of choosing a rather ‘weak’ key. To see how this
might arise, suppose r is a small prime dividing q. The user now

chooses x so that xg has order r. This is easily achieved by

choosing a random value z)0(rz << and putting rzqx = .

Whatever the CA chooses as the value y, the final private key will
be one of a set of r possible values.

To avoid this pathological case it is necessary to choose q to be

prime, and also for the CA to check that 1≠xg .

5. CONCLUSIONS
In this paper a new fair certification protocol was described,
which enables a User to be provided with a certificate for a Diffie-
Hellman public key such that the User does not choose his/her
private key, but neither is this private key known to anyone other
than the User. This protocol provides a solution to the fair key
agreement problem for one of the three standardised mechanisms
in ISO/IEC 11770-3 to which the commitment based solution
does not apply.

6. REFERENCES
[1] International Organization for Standardization, Genève,

Switzerland. ISO/IEC 11770-2, Information technology–
Security techniques–Key Management–Part 2: Mechanisms
using symmetric techniques, 1996.

[2] International Organization for Standardization, Genève,
Switzerland. ISO/IEC 11770-3, Information technology–
Security techniques–Key Management–Part 3: Mechanisms
using asymmetric techniques, 1999 (to be published).

[3] Menezes, A.J., van Oorschot, P.C., and Vanstone, S.A.
Handbook of Applied Cryptography. CRC Press, Boca
Raton, 1997.

[4] Mitchell, C.J., Ward, M., and Wilson, P. Key control in key
agreement protocols. Electronics Letters, 34:980-981, 1998.

