
ACM SIGSOFT Software Engineering Notes vol 25 no 3 May 2000 Page 61

morphic function test. Good definitions help one to readily
recognize which pat tern to apply. There is also a well written
section on inheritance related bugs, carried through to chap-
ter 11 on testing reusable components. Table 11.1 shows the
six languages compared with respect to performance across
abstract and generic class. The advantage of Java over the
others is apparent. Chapters 13 and 14 build subsystem test
into system tests. Keep in mind that subsystem and system
are defined by the author for his purpose. Chapter 15 is de-
voted to regression where regression is defined as once having
passed a baseline test but now has a modified component. The
system with modified component is said to be in need of re-
gression testing.

Section 4 Test Models is composed of chapters 16 through
19. The purpose of this section is to help the reader develop
application specific test automation. Since it is application
specific, it may be of limited value for those that fall outside
the authors application set. The book is a little quirky in the
way chapters are developed. Chapter 16 is only five pages
long compared to chapter 10s 175 pages. The author takes
literary license here , but perhaps allowance should be made
for the complexity of the topic. Chapter 17 introduces a in-
teresting concept of building in test code into the application.
The author says that a assertion is a Boolean expression that
defines the necessary conditions for correct execution. Basi-
cally these are checks and double checks, and they make good
sense in some applications such as an operating system. To
bolster this view the author gives some amazing statistics on
IBMs OS/400 operating system. Chapter 18 is on test oracles.
A test oracle is a code fragment of a test code system that
produces the results of a test case. An oracle is something
that can be trusted to deliver the expected results. Several
patterns of oracles are discussed from parametric to gold. He
foes on to tackle automated test result evaluation. Some of
these concepts make sense for a trusted operating system but
not for an application running under a trusted OS but the
author does not make that distinction. Chapter 19 is on the
topic of test harness design. A test harness is the nomencla-
ture of a set that contains test case, test suites, stubs, drivers
and control systems. This is all the elements of a test system.
When the system is said to support effective and repeatable
automated testing it becomes a harness. Funny how hardware
terminology weans its way into software engineering.

A software designer will most likely be fluent in more than
one language but probably not all six as used here. Given
the power of Java, it may be a designers second language.
References are made to Java and high speed RDB on clustered
systems. The reader is left with the impression that Java is
the most powerful O-O language in use today, but the other
five are still powerful. Thus all six are deserving of the full
test and verify treatment. This book belongs on every serious
software designers library where it should be used as reference.

Reviewed by Claude Caci, Lockheed Martin -
claude.caci@lmco.com

T h e o r i e s o f P r o g r a m m i n g L a n g u a g e s

John C. Reynolds

Theories of Programming Languages is written by John C.
Reynolds, and published by Cambridge University Press,
1998, ISBN 0-521-59414-6, 500 pp. $49.95

To be very clear, this is not a book about computer program-
ming languages. Rather, the primary topic of this book is
how to reason about computer programming languages.

I was expecting a text similar to most programming language
texts I've read; texts focusing on syntax, s tructure and imple-
mentation of different historical and currently popular com-
puter languages. I had expected a comparative languages
text. In hindsight the title should have warned me.

This book is devoted to programming language theory. In the
course of the entire text, I can remember only one example
using a code fragment in a real world programming language;
most of the ideas are progressively developed through creation
of an entirely artificial language.

Although the cover notes suggest this is a advanced un-
dergrad/beginning graduate student course text, the author
makes it clear in the preface that the book's primary audience
is doctoral level students. The back cover also states that the
book assumes only elementary programming and mathemat-
ics; this is true, in that there is an appendix that provides an
introduction to the mathematic theories and notations used
throughout the text.

However, if you are not comfortable reading formal notations
(or like me, just rusty) this book is something of a struggle
to follow. The formulas ana proofs get quite busy, as the
author adds the ideas (and corresponding notations) for state,
environment and continuations to the semantics presented.

Will you benefit from reading this book? If you're a graduate
student, the answer is most likely yes. This book expands
theoretical concepts that were only touched in my graduate
programming languages course.

As a practicing programmer, I can't say the concepts pre-
sented are going to find their way into my code, no more than
previous study of formal logic and proofs have found their way
into my code (occasionally I use predicate logic to restructure
a complex i f construct; frequently I 'm tempted to formally
prove the bug cannot be in my algorithm!). I suspect that if
I were working on a tool to prove formal program correctness
I would turn to this as a resource.

More important, at least in my world, this book seems to
focus on functional programming languages, while we are pri-
marily an object-oriented C + + shop. In a previous lifetime
I spent a lot of time with LISP and Scheme, so this book
was comfortable; I was able to fill in gaps in my knowledge
of the lambda calculus. I went back to SICP 3 and found a
lot of overlap in topics (for example Sec 4.2.2 in SICP An

3Structure and Interpretation of Computer Programs, Abelson, Suss-
man and Sussman, The MIT Press

http://crossmark.crossref.org/dialog/?doi=10.1145%2F505863.505885&domain=pdf&date_stamp=2000-05-01

ACM SIGSOFT Software Engineering Notes vol 25 no 3 May 2000 Page 62

Interpreter with Lazy Evaluation, dovetailed nicely with this
books's Chapter 14 A Normal-Order Language).

In contrast, I didn't find much comparable material in The
Design and Evolution of C++ 4. Languages discusses types
and polymorphism but these seem just a little differently
the than corresponding concepts in C + + OO programming.
While the book's discussion on imperative languages can ap-
ply to portions of my daily work programming objects in
C++, the most interesting behaviors of our programs derive
from interactions between objects, so I would have welcomed
rules for reasoning about object correctness.

This book starts with an introduction to the predicate logic
used throughout the text, the follows with the base semantics
for a simple imperative language.

From this, the author develops methods for specifying and
proving programs in the simple imperative language. Follow-
ing chapters (4 and 5) add arrays, failure, I /O and contin-
uations to the simple imperative language. The transition
semantics of this language is considered in chapter 6.

The next several chapters (7-9) cover concurrent program-
ming concepts, starting with a discussion of non-determinism
and ending with chapters on the two main types of concur-
rency: shared variable concurrency and message-passing con-
currency.

Chapters 10-14 cover topics in functional programming.
Chapter 10 is a review of the lambda calculus, 11 introduces
an eager-evaluation. Chapter 12 introduces continuations to
the eager-evaluation language.

Chapter 13 describes the Iswim 5 approach to combining func-
tional and imperative approaches. Chapter 14 introduces re-
turns to functional languages by introducing a normal order
functional languages.

Chapters 15-17 cover type systems, including simple types,
subtypes and type polymorphism(functional polymorphic
programming, which is somewhat different than (C++)
object-oriented programming).

Finally, chapter 19 covers Algol-like languages. As stated
above, the final section of the book includes an appendix sum-
marize basic formal logic and methods.

Reviewed by Peter Claussen, Daktronics, Inc. -
pclauss@daktronics.com.

4Bjarne Stroustrup, Addison-Wesley
5for C + + programmers, like myself, unfamiliar with Iswim, Iswim-

like languages incorporate imperative features into an eager-evaluation
functional language. This is contrasted with Algol-like languages, in-
cluding C + + , where different imperative features are added to a normal
order language.

C o n c u r r e n t P r o g r a m m i n g in M L

John H. Reppy

Concurrent Programming in ML is written by John H. Reppy,
and published by Cambridge University Press, 1999, ISBN 0-
521-48089-2, 308 pp., $44.95

Concurrent ML is a set of concurrency primitives added to
the S M L / N J 8 implementation of Standard ML.

The open sentence of this book states quite simply that "this
book is about the union of two important programming par-
adigms in programming languages, namely higher-order 7 lan
guages and concurrent languages." If you are currently an
ML user, specifically S M L / N J , and wish to use the concur-
rent features available through Concurrent ML (CML), this
is your user manual. 'Nuff Said.

For the rest of us, this book is a very good introduction to con-
current programming if you've had some experience with ML
or at least functional programming s and is a pretty accept-
able introduction to functional ideas, if you've had concurrent
experience.

I wouldn't recommend this book if you're a primarily impera-
tive (i.e. C /C++) programmer; the combination of functional
constructs with concurrent primitives will give you just a little
to much cognitive dissonance for comfort, plus the examples
aren't all that useful unless you intend to learn functional
progrmamming.

This book covers the fundamental concepts of concurrent pro-
gramming, such as processes, shared-memory concurrency,
message-passing concurrency and parallel programming (the

6 S M L / N J , including C M L , can be obtained at
http ://cm. bell-labs, c om/cm/cs/what/smlnj/index, html
More information on C M L itself can be found at:
h t t p : / / a m . b e l l - l a b s , corn/ j h r / s m l / c m l / i n d e x , htlal
7higher-order meaning functions are first-class; commonly this trans-

lates to functional.
SPersonally I 'm something of an ML neophyte but have had enough

experience with Scheme to follow most of the examples in the book. Foi
instance, the sample code

fun i n s e r t (BUF{data, mu, d a t a h v a i l , dataEmpty}, v)~--- le t
fun waitLp NONE = data := SOME v; signal dataAvail)

] waitLp (SOME v) = (wait dataEmpty; waitLp(!data))

in
withLock mu waitLp(!data)

end

can be roughly translated into the Scheme code

(def ine i n s e r t
(lambda (data mu dataAvai l dataEmpty v)

(l e t ((waitLp
(l~nbda (data)
(tend ((nu l l ? data) ((s i g n a l dataAvail)(SOME v)))
(#t ((wai t dataEmpty) (waitLp (not data)))))))
)

(withLock mu (waitLp (not da ta)))
1))

Note to Schemers: I don' t vouch for the accuracy of the above tran~
lation; if you can indentify errors you should have no trouble with th~
examples presented in this book.

