
ACM SIGSOFT Software Engineering Notes vol 25 no 3 May 2000 Page 62

Interpreter with Lazy Evaluation, dovetailed nicely with this
books's Chapter 14 A Normal-Order Language).

In contrast, I didn't find much comparable material in The
Design and Evolution of C++ 4. Languages discusses types
and polymorphism but these seem just a little differently
the than corresponding concepts in C + + OO programming.
While the book's discussion on imperative languages can ap-
ply to portions of my daily work programming objects in
C++, the most interesting behaviors of our programs derive
from interactions between objects, so I would have welcomed
rules for reasoning about object correctness.

This book starts with an introduction to the predicate logic
used throughout the text, the follows with the base semantics
for a simple imperative language.

From this, the author develops methods for specifying and
proving programs in the simple imperative language. Follow-
ing chapters (4 and 5) add arrays, failure, I /O and contin-
uations to the simple imperative language. The transition
semantics of this language is considered in chapter 6.

The next several chapters (7-9) cover concurrent program-
ming concepts, starting with a discussion of non-determinism
and ending with chapters on the two main types of concur-
rency: shared variable concurrency and message-passing con-
currency.

Chapters 10-14 cover topics in functional programming.
Chapter 10 is a review of the lambda calculus, 11 introduces
an eager-evaluation. Chapter 12 introduces continuations to
the eager-evaluation language.

Chapter 13 describes the Iswim 5 approach to combining func-
tional and imperative approaches. Chapter 14 introduces re-
turns to functional languages by introducing a normal order
functional languages.

Chapters 15-17 cover type systems, including simple types,
subtypes and type polymorphism(functional polymorphic
programming, which is somewhat different than (C++)
object-oriented programming).

Finally, chapter 19 covers Algol-like languages. As stated
above, the final section of the book includes an appendix sum-
marize basic formal logic and methods.

Reviewed by Peter Claussen, Daktronics, Inc. -
pclauss@daktronics.com.

4Bjarne Stroustrup, Addison-Wesley
5for C + + programmers, like myself, unfamiliar with Iswim, Iswim-

like languages incorporate imperative features into an eager-evaluation
functional language. This is contrasted with Algol-like languages, in-
cluding C + + , where different imperative features are added to a normal
order language.

C o n c u r r e n t P r o g r a m m i n g in M L

John H. Reppy

Concurrent Programming in ML is written by John H. Reppy,
and published by Cambridge University Press, 1999, ISBN 0-
521-48089-2, 308 pp., $44.95

Concurrent ML is a set of concurrency primitives added to
the S M L / N J 8 implementation of Standard ML.

The open sentence of this book states quite simply that "this
book is about the union of two important programming par-
adigms in programming languages, namely higher-order 7 lan
guages and concurrent languages." If you are currently an
ML user, specifically S M L / N J , and wish to use the concur-
rent features available through Concurrent ML (CML), this
is your user manual. 'Nuff Said.

For the rest of us, this book is a very good introduction to con-
current programming if you've had some experience with ML
or at least functional programming s and is a pretty accept-
able introduction to functional ideas, if you've had concurrent
experience.

I wouldn't recommend this book if you're a primarily impera-
tive (i.e. C /C++) programmer; the combination of functional
constructs with concurrent primitives will give you just a little
to much cognitive dissonance for comfort, plus the examples
aren't all that useful unless you intend to learn functional
progrmamming.

This book covers the fundamental concepts of concurrent pro-
gramming, such as processes, shared-memory concurrency,
message-passing concurrency and parallel programming (the

6 S M L / N J , including C M L , can be obtained at
http ://cm. bell-labs, c om/cm/cs/what/smlnj/index, html
More information on C M L itself can be found at:
h t t p : / / a m . b e l l - l a b s , corn/ j h r / s m l / c m l / i n d e x , htlal
7higher-order meaning functions are first-class; commonly this trans-

lates to functional.
SPersonally I 'm something of an ML neophyte but have had enough

experience with Scheme to follow most of the examples in the book. Foi
instance, the sample code

fun i n s e r t (BUF{data, mu, d a t a h v a i l , dataEmpty}, v)~--- le t
fun waitLp NONE = data := SOME v; signal dataAvail)

] waitLp (SOME v) = (wait dataEmpty; waitLp(!data))

in
withLock mu waitLp(!data)

end

can be roughly translated into the Scheme code

(def ine i n s e r t
(lambda (data mu dataAvai l dataEmpty v)

(l e t ((waitLp
(l~nbda (data)
(tend ((nu l l ? data) ((s i g n a l dataAvail)(SOME v)))
(#t ((wai t dataEmpty) (waitLp (not data)))))))
)

(withLock mu (waitLp (not da ta)))
1))

Note to Schemers: I don' t vouch for the accuracy of the above tran~
lation; if you can indentify errors you should have no trouble with th~
examples presented in this book.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F505863.505886&domain=pdf&date_stamp=2000-05-01

ACM SIGSOFT Software Engineering Notes vol 25 no 3 May 2000 Page 63

author makes a distinction between concurrency: operations
executed in software, and para llelism : temporally overlap-
ping operations in hardware). Concepts are extensively illus-
trated with C M L code fragments.

C M L programming style is demonstrated using merge sort,
power series multiplication and client-server mechanisms as
examples. There are also examples implementing synchronous
programming mechanisms in CML.

One chapter is devoted to the design of the C M L primi-
tives. This is complemented by a later chapter that shows
how concurrent mechanisms can be implemented in standard
ML (specifically S M L / N J) .

In addition code fragments are used through most of the book,
the author demonstrates the scalability of C M L to larger
systems by implementing a 'parallel' UNIX/C build system,
a parallel windowing framework and Linda-style 9 extension
to CML.

Bottom line, if you have an available S M L / N J this book will
get you started with concurrent programming. If you're a
student of either functional or concurrent programming, this
is an excellent resource. However, if you're a 'mainstream'
applications programmer, this book will be of limited use.

Reviewed by Peter Claussen, Daktronics, Inc.
pclauss@daktronics.com.

T h e O p t i m a l I m p l e m e n t a t i o n of F u n c t i o n a l P r o -
g r a m m i n g L a n g u a g e s

Andrea Asperti and Stefano Guerrini

The Optimal Implementation of t~mctional Programming
Languages is written by Andrea Asperti and Stefano Guerrini
and published by Cambridge University Press ISBN 0-521-
62112-7

This book is quite complex, mainly dealing with lambda cal-
culus and sharing. The authors even provided a road map
to follow so the reader doesn't have to become an expert be-
fore moving on from one chapter to the next. This book is
aimed at grad students that want to improve the optimization
techniques in computer languages like lisp.

It consists of 382 pages of well-written material. I especially
enjoyed the graphs and figures without them, I would have
been completely lost. About a third of the book is focused on
an Optimal Reduction algorithm.

The book just kind of fades out at the end. I was expecting
a source listing of the language that was being built. The au-
thors did make reference to an FTP site, However, I couldn't
access the referenced file.

Reviewed by Ron Dinishak - Ron.Dinishak@fema.gov.

° L l n d a provides tuple-space extensions to s tandard imperative lan-
guages. The tuple space is shared b e t w e e n processes and provides t h e
mechanism for inter-process communication.

T e r m R e w r i t i n g a n d Al l That

Franz Baader and Tobias Nipkow

Term Rewriting and All That is written by Franz Baader
and Tobias Nipkow, and published by Cambridge University
Press, 1998 (paperback), 0-521-77920-0, 301 pp., $27.95.

Term Rewriting and All That is a self-contained introduction
to the field of term rewriting. The book starts with a simple
motivating example and covers all the basic material includ-
ing abstract reduction systems, termination, confluence, com-
pletion, and combination problems. Some closely connected
subjects, such as universal algebra, unification theory, Grob-
her bases, and Buchberger's algorithm, are also covered.

For those who want to get an understanding of the field of
term rewriting but do not want to go through the literature
and deal with different notations, this book is a great start
point. For those who are only interested in one or two of
the subjects covered in this book and do not mind dealing
with different notations, however, it might be a better idea to
directly dive into the literature. Even in this case, the bibliog-
raphy of this book, which contains a list of 252 publications,
could justify the price of the whole book. Most chapters close
with a "Bibliographic notes" section. These brief guides to
the literature can help readers stay focused.

The book contains many examples. Algorithms are presented
both informally and as ML programs. In addition, over 170
exercises make this book sufficient to serve as a textbook.

Besides the consistent style of presentations of various sub-
jects, I also like the text that is printed in easy-to-read big
fonts and the clearly presented figures.

Reviewed by Chang Liu, University of California, Irvine -
liu@ics.uci.edu.

T h e F u n c t i o n a l A p p r o a c h t o P r o g r a m m i n g

Guy Cousineau and Michel Mauny

The Functional Approach to Programming is written by Guy
Cousineau and Michel Mauny, and published by Cambridge
University Press, 1998. ISBN 0-521-57681-4(paperback),
$39.95, ISBN 0-521-57183-9(hardback), $85.00 445 pp.,

This book is an introduction to functional programming, us-
ing CAML (a dialect of ML) as the teaching language

The first 2 chapters cover the usual introductory material
on functional programming: builtin types, function defin-
itions, pattern matching, higher order functions, polymor-
phism, lists, Cartesian products, etc. and are as good an
introduction as can be found anywhere. They are also useful
reading for the reader unfamiliar with the syntax of CAML.

Chapter 3 (Semantics) introduces rewriting as a mecha-
nism for evaluating expressions, briefly discusses operational
(rewrite) semantics and denotational semantics, and explains

