
ACM SIGSOFT Software Engineering Notes vol 25 no 3 May 2000 Page 63

author makes a distinction between concurrency: operations
executed in software, and para llelism : temporally overlap-
ping operations in hardware). Concepts are extensively illus-
trated with C M L code fragments.

C M L programming style is demonstrated using merge sort,
power series multiplication and client-server mechanisms as
examples. There are also examples implementing synchronous
programming mechanisms in CML.

One chapter is devoted to the design of the C M L primi-
tives. This is complemented by a later chapter that shows
how concurrent mechanisms can be implemented in standard
ML (specifically S M L / N J) .

In addition code fragments are used through most of the book,
the author demonstrates the scalability of C M L to larger
systems by implementing a 'parallel' UNIX/C build system,
a parallel windowing framework and Linda-style 9 extension
to CML.

Bottom line, if you have an available S M L / N J this book will
get you started with concurrent programming. If you're a
student of either functional or concurrent programming, this
is an excellent resource. However, if you're a 'mainstream'
applications programmer, this book will be of limited use.

Reviewed by Peter Claussen, Daktronics, Inc.
pclauss@daktronics.com.

T h e O p t i m a l I m p l e m e n t a t i o n of F u n c t i o n a l P r o -
g r a m m i n g L a n g u a g e s

Andrea Asperti and Stefano Guerrini

The Optimal Implementation of t~mctional Programming
Languages is written by Andrea Asperti and Stefano Guerrini
and published by Cambridge University Press ISBN 0-521-
62112-7

This book is quite complex, mainly dealing with lambda cal-
culus and sharing. The authors even provided a road map
to follow so the reader doesn't have to become an expert be-
fore moving on from one chapter to the next. This book is
aimed at grad students that want to improve the optimization
techniques in computer languages like lisp.

It consists of 382 pages of well-written material. I especially
enjoyed the graphs and figures without them, I would have
been completely lost. About a third of the book is focused on
an Optimal Reduction algorithm.

The book just kind of fades out at the end. I was expecting
a source listing of the language that was being built. The au-
thors did make reference to an FTP site, However, I couldn't
access the referenced file.

Reviewed by Ron Dinishak - Ron.Dinishak@fema.gov.

° L l n d a provides tuple-space extensions to s tandard imperative lan-
guages. The tuple space is shared b e t w e e n processes and provides t h e
mechanism for inter-process communication.

T e r m R e w r i t i n g a n d Al l That

Franz Baader and Tobias Nipkow

Term Rewriting and All That is written by Franz Baader
and Tobias Nipkow, and published by Cambridge University
Press, 1998 (paperback), 0-521-77920-0, 301 pp., $27.95.

Term Rewriting and All That is a self-contained introduction
to the field of term rewriting. The book starts with a simple
motivating example and covers all the basic material includ-
ing abstract reduction systems, termination, confluence, com-
pletion, and combination problems. Some closely connected
subjects, such as universal algebra, unification theory, Grob-
her bases, and Buchberger's algorithm, are also covered.

For those who want to get an understanding of the field of
term rewriting but do not want to go through the literature
and deal with different notations, this book is a great start
point. For those who are only interested in one or two of
the subjects covered in this book and do not mind dealing
with different notations, however, it might be a better idea to
directly dive into the literature. Even in this case, the bibliog-
raphy of this book, which contains a list of 252 publications,
could justify the price of the whole book. Most chapters close
with a "Bibliographic notes" section. These brief guides to
the literature can help readers stay focused.

The book contains many examples. Algorithms are presented
both informally and as ML programs. In addition, over 170
exercises make this book sufficient to serve as a textbook.

Besides the consistent style of presentations of various sub-
jects, I also like the text that is printed in easy-to-read big
fonts and the clearly presented figures.

Reviewed by Chang Liu, University of California, Irvine -
liu@ics.uci.edu.

T h e F u n c t i o n a l A p p r o a c h t o P r o g r a m m i n g

Guy Cousineau and Michel Mauny

The Functional Approach to Programming is written by Guy
Cousineau and Michel Mauny, and published by Cambridge
University Press, 1998. ISBN 0-521-57681-4(paperback),
$39.95, ISBN 0-521-57183-9(hardback), $85.00 445 pp.,

This book is an introduction to functional programming, us-
ing CAML (a dialect of ML) as the teaching language

The first 2 chapters cover the usual introductory material
on functional programming: builtin types, function defin-
itions, pattern matching, higher order functions, polymor-
phism, lists, Cartesian products, etc. and are as good an
introduction as can be found anywhere. They are also useful
reading for the reader unfamiliar with the syntax of CAML.

Chapter 3 (Semantics) introduces rewriting as a mecha-
nism for evaluating expressions, briefly discusses operational
(rewrite) semantics and denotational semantics, and explains

http://crossmark.crossref.org/dialog/?doi=10.1145%2F505863.505889&domain=pdf&date_stamp=2000-05-01

ACM SIGSOFT Software Engineering Notes vol 25 no 3 May 2000 Page 64

the difference between lazy and eager evaluation. A small sec-
tion on proving the correctness of programs introduces the ba-
sic strategies for proving partial correctness: equational rea-
soning and inductive reasoning, and the use of well-founded
orders for proving termination. The section on strategies pro-
vides an explanation for CAML's choice of eager evaluation.

Chapter 4 introduces the characteristic that distinguishes the
ML-family of languages from the pure functional languages
like Haskell: the presence of imperative features. Its use is
illustrated in defining side-effecting functions (such as I /O
functions), and mutable data structures such as Vectors and
Records. CAML introduces 3 subtly different assignment op-
erators (=, :=, and +-), which the authors explain. (Ba-
sically, variables in CAML are not variables in the sense of
Pascal or C, but are more akin to constants. A statement
of the form x := x + 1 is not legal in CAML. To update
a location of type T requires a reference to that location of
type T r e f . The equivalent to x:=x+l in CAML would be
a_x := !a_x + 1, where a_x is of type ±nt r e f . The vari-
able a_x itself does not change value. Instead the object
it refers to (the location) changes. This is similar to the
idea of objects and constant references in C + + , where given
T* c o a s t x, x is a constant reference to the object of type
T. However, the object (*x) being pointed at can be modi-
fied. Arrays and mutable records in CAML are also treated
like objects. However, this connection (between CAML data
structures and objects) is not discussed.

Par t II of the book covers Applications. The applications
addressed are in the domains of symbolic computation (pat-
tern matching, unification, rewriting), data structures (binary
search trees, AVL trees), graphs, formal language (lexical and
syntax analyzers), graphics (drawing shapes, trees, tiling),
and computer arithmetic.

Par t III deals with implementation. Chapter 11 looks at Eval-
uation mechanisms, including lazy evaluation, (for writing an
interpreter), Chapter 12 at a simple compiler for the language,
and Chapter 13 at a type synthesizer for the language.

The book is an introduction to functional programming in
a strict language, and particularly in CAML. Unfortunately,
the authors do not say at whom the book is targeted, apart
from mentioning that it was used as part of a teaching course
by one of the authors. My guess would be that the style of the
book makes it suitable for an introductory graduate course,
or perhaps an upper-division class. For a lower division un-
dergraduate course, I would prefer to see a more gentle devel-
opment of the functional approach, not introducing advanced
concepts like recursion, references, function spaces, semantics,
etc until later in the book (ala Bird and Wadler's Introduction
to Functional Programming). The examples in an undergrad-
uate text would also have to be more motivational.

I liked the explanations and snippets of theoretical back-
ground interspersed throughout the book. Chapter 12 on a
simple compiler for the language was particularly good for
letting students know that not only do functional languages
support symbolic evaluation (and thereby serve as a proto-

typing tool) but they can also be efficiently compiled down
into directly executable code. This chapter gives studeJats a
nice simplified overview of how this might be done, and ,some
of the compilation techniques used to make it practical. The
use of functions in Chapter 7 to define graphs that cou]Ld be
infinite was a nice solution to the general problem of how to
define potentially infinite structures in a strict language. The
book is generally well organized and free of typos and errors.

I suppose my biggest gripe about this book is a gripe I have
about many books on functional programming. Namely, the
examples used (under the guise of "Applications") only serve
to reinforce the stereotype of functional languages as "acad-
emic" languages. This is far from the t ru th as the many indus-
trial applications of functional languages show, but sonmone
new to functional programming would be left with the over-
all impression that functional languages are confined mainly
to abstract mathematical problems such as puzzles, computer
algebra, and computing 7r, or for "canned" problems like sort-
ing and tree traversal. These are certainly important prob-
lems, but they are hardly likely to encourage graduates to go
out into industry and push for the widespread use of func-
tional languages. Where are the "real world" examples, like
a (]UI editor, a web server, or a simple payroll application? I
was particularly disappointed in that regard with this book,
since a wonderful opportunity was lost to show how judicious
use of CAML's imperative features could make the writing
of such applications not only more efficient but less unwieldy
(notwithstanding the examples of linked lists). This is par-
ticularly odd, since the CAML web site mentions at least two
real applications (an interactive editor and a web browser
MMM) written in CAML. A simplified version of these appli-
cations could perhaps have been presented and dissected as a
case study.

Minor issues:
Chapter 3 ought to have explained that certain theorems are
not provable by equational reasoning (the associativity ,of ap-
pend being a case in point) to justify introducing proof by
induction.

Also, the subsection on How to Deal with Recursion in Chap-
ter 3 left me somewhat confused. Essentially, the authors are
trying to explain that defining recursive functions in the A cal-
culus is not straightforward, and that one needs the fi)~oint
operator Y, definable only in the untyped 1 calculus.]In the
typed A calculus, upon which CAML is based, Y is not well
typed. Hence the claimed need for l e t r ec . The alterJaative
(discussed in the next subsection) is to require all function
definitions to be named (which is in fact how functional lan-
guages get around the problem!). But the l o t t e e construct
is not used in function expressions (CAML's A-expressions)
but for regular named function definitions. Tha t seems to de-
feat the claimed purpose of l e t r ec . Also, why don ' t other
functional languages need a l e t r e c ? Is this more of a 1-pass
compiler issue than anything else? In any case, the issue has
very little to do with evaluation strategies and its appearance
in that section seems out of place.

ACM SIGSOFT Software Engineering Notes vol 25 no 3 May 2000 Page 65

I was left won-
dering where the definition of g e n t r e e _ o f _ s t r i n g used on
p.136 was, before remembering that several chapters back,
the authors mention they assume the existence of a function
T _ o f _ s t r i n g for any type T. This is something that is easy
to overlook and a reminder to that effect would have helped.
The same goes for the l i s t _ i t function on p. 138 that is
used without comment.

I would recommend the book for anyone looking for teaching
material on CAML, and as a text for a graduate course on
functional programming.

Reviewed by Srinivas Nedunuri, Semantic Designs, Austin,
Texas - snedunuri@semdesigns.com.

A u t o m a t e d Software Test ing
M a n a g e m e n t and Performance

Introduct ion,

Elfriede Dustin, Jeff Rashka, and John Paul

Automated Software Testing - Introduction, Management and
Performance is written by Elfriede Dustin, Jeff Rashka, John
Paul, and published by Addison Wesley, 1999 paperback,
ISBN 0-201-43287-0, 575 pages, US $44.95

This book is almost the job description or a field handbook of
a software test manager. The authors have managed to sim-
plify the whole process as close to the actual way of working
as possible - while reading it, you can ahnost imagine yourself
doing it yourself !

Chapter 1 builds-up the case for software testing in general,
and introduces the Automated Test Life-Cycle Methodology
(ATLM) and its six steps. Surprisingly, there is a discussion
on software testing careers - which is strange because it dis-
tracts the main theme of the book and also because complete
Appendix C is devoted to the same topic in much more de-
tails.

The six steps of ATLM are introduced one by one from Chap-
ter 2 through Chapter 10. Every chapter has the same look-
and-feel: There is a graphic of the ATLM that specifies which
step of the ATLM is being discussed in the following chapter.
Whenever required, the chapter describes the work break-
down structure of the task or the activity being discussed,
sometimes also accompanied by a flowchart. I guess that
makes the whole discussion really deployable. The summaries
at the end of each chapter are good.

The Appendices are a real value-addition. Appendix A is a
good paper on "How to Test Requirements". Appendix B
is on tools that support automated testing lifecycle - a real
wealth of information on tools, nicely described phase-wise,
available in the market with all details you might want, should
you decide to explore more about a particular tool. Appendix
C is on career management for a test engineer. I like the
authors highlighting the soft-skills required for a test engineer
in molding his / her career. Appendix D is Sample Test Plan
- I am almost sure no one will actually write such a detailed

plan. However, it does bring out the most minute details one
must be careful of while planning a test activity (though a
few of these things might happen implicitly and hence might
not be required to be put on paper in such detail). One thing
is for sure, though, you could not land up in a surprise if you
create a test plan with this much details. Appendix E is for
on Best Practices, but it is not t reated well.

A CD comes along with the book. It contains chapters from
the book on Sample Test Plan, etc. in the PDF format. I
would have expected the authors to put the document on
"Test Tool Evaluation" and "Sample Test Plan" as a template
in some editable format (Word, RTF, etc.) so that it could
add value to the readers looking for a jumpstar t in deploy-
ing some uniformity in their evaluation or planning process.
Nevertheless, the files are still not bad for a quick, on-line
reference, and with some effort, one can create the template
on his own.

References are good in general, and abundantly point to
sources on the web.

This book is timed well - in the world of internet-cycle
projects, there is a double-edged pressure on a software test
manager to improve test quality in the ever-shrinking test
schedules. The book makes its point that there is no cowboy
substitute to carefully planning the whole aspect of automat-
ing the software testing process

The authors rightly highlight the correct audience for this
book - software test manager. The book is not meant for
entry-level engineers or even people with limited experience
in complete software lifecycle.

I liked the discussion on "Test Effort Sizing" (chapter 5.3) and
examples of causal analysis and corrective actions in chapter
10. In my experience, I have seen most people uncomfortable
in these two important aspects and need some handholding.
This book manages to at least accomplish the later one.

Reviewed by Tathagat Varma, Digital Networks - Home Ac-
cess Solutions, Philips Software Centre, Bangalore, India
tathagat.varma@philips.com

Object-Oriented S o f t w a r e E n g i n e e r i n g : C o n -
q u e r i n g C o m p l e x a n d C h a n g i n g S y s t e m s .

Bernd Bruegge and Allen H. Dutoit

Object-Oriented Software Engineering: Conquering Complex
and Changing Systems. was written by Bernd Bruegge and
Allen H. Dutoit and published by Prentice Hall, New Jersey,
2000. ISBN 0-13-489725-0

This is the book I have been looking forI Twelve chapters
covering the important highlights of software engineering, us-
ing UML when a design notation is needed and Java when a
snippet of code will make things clear. The book does not
go into all the gory details of UML notation semantics and

