
The COOL architecture and abstractions for object-oriented
distributed operating systems

Rodger Lea, Chr is t ian J a c q u e m o t

Chorus syst~mes

6 Avenue Gustave Eiffel
78182, SMut- Quent in-en-Yvel ines

tel. +33 (1) 30-64-82-00

fax. +33 (1) 30-57-00-66

e-mail: rodger@chorus .com, chris@chorus.fr

April 23, 1992

Abstract

Building distributed operating systems benefits from the micro-kernel approach by al-
lowing better support for modularization. However, we believe that we need to take this
support a step further. A more modular, or object oriented approach is needed if we wish
to cross the barrier of complezity that is holding back distributed operating system devel-
opment. The Chorus Object Oriented Layer (COOL) is a layer built above the Chorus
micro-kernel designed to eztend the micro-kernel abstractions with support for object ori-
ented systems. COOL v2, the second iteration of this layer provides generic support for
clusters of objects, in a distributed virtual memory model. It is built as a layered system
where the lowest layer support only clusters and the upper layers support objects.

1 I n t r o d u c t i o n

Building distributed systems is difficult simply because the complexity of interactions
among entities scattered on a collection of machines is enormous. The distributed systems
community has long been wrestling with this complexity and has developed methods
such as RPC, group communications, distributed shared memory etc. in an attempt to
provide mechanisms that abstract over some of this complexity. However, in attempting
to build systems that actively use these mechanisms we have run into two major problems,
performance and integration. Performance because we have tried to add these mechanisms
to existing systems, and integration because we have tried to do so in an ad-hoc manner
without fully considering how these tools should interact, or how applications will use

these services.
Work in the operating system comnmnity has tried to deal with these issues by re-

visiting our existing operating systems and looking at the minimum abstractions necessary
to build distributed operating systems. By combining these with a systems building archi-
tecture that stresses modularity, we can begin to address the performance and complexity
issues. This approach, oRen called the micro-kernel approach, allows us to provide a
minimum set of abstractions that can be used to build operating systems themselves.

We feel however, that while this is the correct approach, it is only one step in the
right direction. We need to augment our basic mechanisms with a framework that allows
system builders to glue functional components together in a coherent and perfonnant way.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F506378.506407&domain=pdf&date_stamp=1992-09-21

In effect, we need to provide a system building environment that supports a programming
model, tools and services needed to work within that framework.

The object oriented paradigm offers a solution to this problem as it offers a framework
for building large complex applications, such as OS's in a way that is amenable to distri-
bution. However, we must not repeat the mistakes of early distributed system builders
by trying to impose a model on a set of mechanisms, rather, we must actively support
the model at the lowest layers in our system, by making sure that our abstractions are
suitable for supporting objects.

In this paper we discuss how the COOL system has been designed to exploit the
unique features of the Chorus operating system model to provide an efficient set of ab-
stractions that are well suited to support the object oriented metaphor. We stress tha t
this approach not only facilitates building distributed OS's, but any distributed applica-
tions as it reduces the mismatch between our OO services and the model we use to build
distributed applications. Our goal is to provide a framework that will allow operating
system builders to develop their applications, the operating system, in a well structured,
flexible and coherent environment.

2 C O O L v2

The COOL project is now in its second iteration, our first platform, COOL v l 1, was
designed as a testbed for initial ideas and implemented in late '88 [2] [3] [6] [7].

Our early work with COOL (COOL vl) consisted with experimentation in the way
that systems could be built using the object oriented model, and how this supported dis-
tr ibuted applications. ~.In an a t tempt to move the COOL platform from a testbed towards
a full object oriented operating system we began a redesign of the COOL abstractions
in 1990. This work was carried out in conjunction with two European research projects,
both building distributed object based systems, the Esprit ISA project [4] and the Esprit
Comandos project [5].

The result of this work has been the specification of the COOL v2 system and its
initial implementation in late '91.

3 T h e C O O L v2 a r c h i t e c t u r e

COOL v2 is composed of three functionally separate layers, the COOL-base layer, the
COOL generic run-time and the COOL language specific run-time layer (see Figure 1).

3 . 1 T h e C O O L b a s e

The COOL-base is the system level layer. It has the interface of a set of system calls and
encapsulates the CHORUS micro-kernel [1]. It acts itself as a micro-kernel for object-
oriented systems, on the top of which the generic run-time layer can be built. The
abstractions implemented in this layer have a close relationship with CHORUS itself and
they are intended to benefit from the performance of a highly mature micro-kernel.

The COOL-base provides memory abstractions where objects can exist, support for
object sharing through distributed shared memory and message passing, an execution
model based on threads and a single level persistent store that abstracts over a collection
of loosely coupled nodes and associated secondary storage.

In our initial work with COOL (COOL vl) our base level supported a simple generic
notion of objects. This proved to be too expensive in terms of system overhead so that
in COOL v2 we have moved the notion of object out of our base layer and replaced it

ICOOL vl was built as a joint project between Chorus syst~mes, INRIA and SEPT

2

. , , ° o ° ° ° . o , . . . ° , . . ° . . °

AppliceUon level
. , . . . ° o . 0 , 0 , , , . , . . . , , , , 0 . , ,

U s e r COOL-generic run-time space

O b j e c t s , d i s t r i b u t e d a n d p e r s i s t e n t

S y s t e m

s p a c e

C H O R U S N u c l e u s C H O R U S N u c l e u s I I C H O R U S N u c l e u s

I I I
B u e o r n e t w o r k

F i g u r e 1: T h e C O O L v2 l aye red a r c h i t e c t u r e

l r y store

with two more generic abstractions, clusters and cluster spaces. A cluster is viewed from
higher levels as a place where related objects exist. When mapped into an address space,
it is simply a collection of virtual memory regions [8]. The mapping can be done on an
arbi t rary address. The collection of regions that belong to a mapped cluster is a set of
CHORUS regions backed by segments, and forms a semantic unit managed by the base
layer. By using a distr ibuted virtual memory mapper 2, regions and hence clusters, can be
mapped into multiple address spaces, which leads us to the notion of cluster space (see

Figure 2).
A cluster space is a collection of distinct address spaces on one or nmre nodes. The

relationship between clusters spaces and address spaces is orthogonal, i.e., a cluster space
can range over an arbi t rary numbers of address spaces as well as contain many clusters.
Any cluster belonging to a cluster space is mapped into all address spaces of that dus ter
space. In this case, we must enforce that the cluster is mapped always at the same address.
Therefore, a cluster space represents a distributed virtual address space, and so can be
used to share clusters among threads of execution of a particular cluster space 3.

Each cluster is uniquely identified in the system as the unit of persistence. Clusters
can have references to other clusters and they are subject to garbage collection.

The COOL-base also provides a low level mechanism for communication between clus-
ters. This can be used to implement invocation of objects that exist inside the cluster.
Transparent remote invocation is achieved with a simple communication model which
uses the CHORUS conmmnication primitives and protocols. This model supports multi-
pie mechanism so tha t invocations among clusters on a local site may use a lightweight
invocation mechanism, whereas between clusters on different sites we use a traditional

invocation model.
The COOL-base maps in clusters on behalf of the upper layers. It can be used to

enforce an invoking thread to carry on execution in a remote address space. In addition,

2A mapper in CHORUS supports the relationship between virtual memory regions, and the secondary

storage segments that a region 'maps'
3Our initial implementation uses a memory mapper that supports strict memory coherency, we plan to

investigate relaxed coherency later.

AS 1

. 4

CSl !
x

: : :.:::: ~1

CS2 r' i~i~!~

AS 2 As31
AS - Address Space

CS - Cluster Space

C - Cluster

Cm~

Figure 2: Clusters, clusters spaces and address spaces

because clusters are persistent, the COOL-base provides a mechanism to locate non-
active clusters, i.e., clusters currently swapped-out on secondary storage and load them
transparently into a cluster spaces. This model is similar to work described in [11]. The
mapper is used to store and retrieve passive clusters to and from secondary storage.

Therefore, the COOL-base level supports a single-level, persistent cluster store with
synchronous and asynchronous invocation between clusters, and distributed cluster shar-
ing.

3 .2 T h e C O O L g e n e r i c r u n - t i m e

The generic run-time implements a notion of objects. Objects are the fundamental ab-
straction in the system for building higher level system servers or applications. An object
is a combination of state and a set of methods. An object is an instance of a class which
defines an implementation of the methods. The generic run-time has a sub-component,
the virtual object memory that supports object management including: creation, dy-
namic link/load, fully transparent invocation including location on secondary storage and
mapping into cluster spaces.

Two types of object identifiers are offered by the generic run-time: domain wide ref-
erences and language references. A domain wide reference is a globally unique, persistent
identifier. It may be used to refer to an object regardless of its location. A language
reference is a virtual memory address (a pointer in C++) and is vahd in the context in
which the object is presently mapped.

The generic run-time defines the primitives to convert one type of reference to the other
one. When a domain wide reference to a remote object is converted to language reference
a proxy associated to the object is created [12]. This proxy is used to transparently invoke
the remote object.

Objects are always created in clusters. Each duster's address space is divided into
three parts: the first one is used to store all the structures associated to the cluster used
by the generic run-time, the second one is used to store the applications objects, and the
last one is used to store the proxies. A different allocator is associated to each part, this
allocator is used to allocate and free space.

The classes are structured in modules (set of classes, unit of code). The generic run-
time allows the code to be dynamically linked. The generic run-time offers a primitive to
link a module. Each class contained in the module are store at the context level. When an
instance of a class is created in a cluster, the class descriptor is saved in the cluster. This
class descriptor is used to retrieve the appropriate module and therefore the appropriate
class, when a cluster is remapped in another address space.

The generic run-time provides an execution model based on the notion of activities
which are mapped onto CHORUS kernel supported threads and job which model dis-
tributed execution of activities. Each cluster can support multiple activities, with more
than one activity capable of running within the same object at any particular time 4.

One of the main problems with trying to use a single generic base to support multiple
language level models is that of semantics. Most languages, and systems, have their
own semantics, each of which are subtly different. To allow us to build sophisticated
mechanism that support multiple models we have defined a generic run-time to language
interface based on upcalis.

The generic run-time maintains for each object a link between the object and its class.
This link is used to find the upcall information associated with each object.

The upcall information, and associated functions is used for a variety of purposes,
including support for persistence, invocation and re-mapping between address spaces. In
fact, any time where a functionality of the generic run-time needs access to information
about objects that only the language specific environment will know.

For example to support clusters persistence, and hence object persistence, we need
access to the layout of objects to locate references held in the objects data: When a cluster
is mapped into an address space all the objects are scanned by using the appropriate upcall
function to locate the internal references (to external objects) and performing a mapping
from the domain wide references (used when an object is on secondary storage) to address
space specific references, this technique if often called pointer swizzeling.

Another example is for object invocation. Invocations between objects in the same
cluster is based on the standard method invocation of the language (C++ method). Invo-
cations between objects in different address space use the model offered by the COOL-base
layer (CHORUS communication primitives). The proxy is used to trap the normM func-
tion invocation and replace it by a remote invocation which marshals the parameters,
issues a remote procedure call, and umuarshals the results. On the receiver, a dispatch
procedure, which is part of the upcall function associated with an object is used to call
the appropriate method on the appropriate object.

Invocation may also use the underlying cluster management mechanisms to map clus-
ters into local address spaces for efficiency reasons, or locally to allow light weight RPC
and maintain protection boundaries. Again the upcall functions are used to support this.

This is further discussed in section 4.2.

3.3 The language specific run-time
The language specific run-time maps a particular language object model to the generic
run-time model. This may be achieved through the use of pre-processors t o generate the
correct stub code and the use of the upcall table.

As discussed above, the generic run-time will, in the process of operations such as
mapping or unmapping an object from an address space, upcall into the language specific
run time responsible for that object by using the upcall table associated with the object
and generated by the language specific run-time. This requires that the language run-time,
usually the compiler, generates enough information to interface to the generic run-time.

4Subject to language level constraints.

Currently we use pre-processor techniques to generate this information so that at run
time objects can be managed by the underlying COOL system.

4 M a i n r e s e a r c h a r e a s

While the project covers a number of areas of interest in distr ibuted, persistent systems,
the architecture poses a number of problems at the lowest level.

4 . 1 D i s t r i b u t e d m e m o r y m o d e l

Each cluster space represents a logical distributed address space, with each cluster mapped
into a number of physical address spaces. The model makes a coupling between virtual
memory addresses and object addresses only during the t ime tha t clusters are mapped. I t
makes no s ta tement about the coupling between these addresses when a cluster is moved
to persistent store. Thus we can support a model where a cluster always occupies a set of
addresses and tha t range does not change when it moves between persistent store, or we
may adopt a model whereby, the binding is only maintained while a cluster is mapped into
a cluster space. Of course we need higher level support for relocation of objects within
clusters (at the generic run-t ime level) if we adopt this approach.

Both of these models impose a criteria for distr ibuted memory allocation, since al-
locating a new cluster requires tha t all machines in the cluster space allocate the same
space. Currently we adopt a simple model where portions of an address space are initially
allocated to different machines. Creation of clusters initially uses this space and uses a
s tandard distr ibuted virtual memory to ensure tha t the allocation is p ropaga ted to all
machines represented in the cluster space. When a machine exhausts this initial space, it
must a rb i t ra te with others to allocate space from a common pool as is done in [10].

4 . 2 S i n g l e i n v o c a t i o n m o d e l

The base level abstract ions include an invocation mechanism that works between clusters.
Invocation fails into one of three cases. Local invocation, ie that which stays within an
address space. Invocation local to a machine but between address spaces, and s tandard
remote invocations (RPC). In a persistent, distributed system, there are a number of
possibilities, when invocation takes place, concerning the location of the object.

In particular, the interaction between the invocation model and the cluster model
provides us with the ability to optimize invocation:

• For a cluster tha t is held in persistent store, the cluster is mapped into the calling
cluster space.

• For clusters mapped into an existing cluster space, instead of using an RPC call, we
are able to de-map the cluster and re-map it into the calling cluster space, or into
a cluster space on the same machine allowing us to use the light weight form of the
s tandard RPC call.

• Finally, if no address space or protection clashes exist we can extend the cluster space
to incorporate the cluster in its current location. The distributed virtual memo ry
will then make the cluster available to the calling cluster.

COOL-base is capable of using this range of mechanism to carry out the invocation.
The choice of mechanism will be dependent on higher level policy, but a simple approx-
imation, using invocation efficiency as a criteria allows us to build a lightweight, default
policy into the base level.

4.3 S y s t e m b u i l d i n g m o d e l

We have tried in the COOL system to provide a minimal set of abstractions that are suited
to building applications using the object oriented model. One of our stated goals is also
to build a platform that allows operating system builders to construct system services in
the same way as end user applications would be constructed. Thus for example, elements
of the generic run-time are built using objects who interact using serviices provided by the
core of the run-time. Some aspects of this are similar to work carried out in [9]. However,
Choices concentrates more on the functional objects that make up the operating system
and their relationship at build time. Our emphasis is how those objects are supported
and interact at run-time.

This provides a great benefit in that operating system services can be invoked, mi-
grated between address spaces, moved to persistent store, etc, in the same way as user
objects. This model provides us with the ability to dynamically add services to an existing
operating system and to reconfigure our operating system at run-time to exploit haidware
or to adapt to specific user needs.

5 C o n c l u s i o n a n d c u r r e n t s t a t u s

The COOL project is building an object oriented kernel above the CHORUS micro-kernel.
Its aims are to provide a generic set of abstractions that will better support the current
and future object oriented languages, operating systems and applications.

Our premise is that the abstractions we provide at the lowest level will support both the
model for constructing operating systems, and for developing applications via intermediary
run-time levels. Our goal is to provide a flexible dynamic environment which allows
operating system builders to easily build and add new functionalities into the operating
system, in a coherent and fully modular approach.

We currently have a limited COOL platform running above the CHORUS lnicro-kernel,
native on 386 based PC's. This platform implements the basic cluster level including the
distributed virtual memory support but still lacks light weight RPC. The COOL generic
run-time offers full support for object distribution and for persistence. In addition we
have built a pre-processor enviromnent which generates pre-processor tools that can be
used to extend existing languages such as C++ to take full advantage of the COOL v2
operating system interface.

R e f e r e n c e s

[1] Marc Rozier, Vadim Abrossimov, Francois Armand, Ivan Boule, Michel Gien, Marc
Guillemont, Fr6d6ric Herrmann, Claude Kaiser, Sylvain Langlois, Pierre L6onard, Will
Neuhauser
CHORUS Distributed Operating Systems
Computing Systems Journal, Vol 1,No 4, December 1988, USENIX Association

[2] Sabine Hubert, Laurence Mosseri, and Vadim Abrossimov. COOL: Kernel support
for object-oriented enviromuents. In ECOOP/OOPSLA '90 Conference, volume 25 of
SIGPLAN No,ices, pages 269-277, Ottawa (Canada), October 1990. ACM.

[3] Deshayes,].M., Abrossimov, V. and Lea, R. The CIDRE distributed object system
based on Chorus. Proceedings of the TOOLS'89 Conference, Paris, France. July 1989.

[4] The Integrated Systems Architecture project. ISA - Esprit project 2267. The ISA
consortium, APM ltd, Castle Park, Cambridge, UK.

[5] Vinny Cahili, Rodger Lea and Pedro Sousa. Comandos: generic support for persis-
tent object oriented languages. Proceedings of the Esprit Conference 1991. Brussels,
November 1991. also Chorus systAmes technical report CS-TR-91-56.

[6] Lea, R. and Weightman, J., COOL: An object support environment co-existing with
Unix. Proceedings of Convention Unix '91, AFUU, Paris France. March 1991.

[7] Lea, R. and Weightman, J. Supporting Object Oriented Languages in a Distributed
Environment: The COOL approach. Proceedings of TOOLS USA'91, July 29-August
1, 1991. Santa Barbara, CA. USA.

[8] Abrossimov, V., Rozier, M. and Shapiro, M., Generic virtual memory management for
operating system kernels. In Proceedings of the 12th ACM Symposium on Operating
Systems Principles, pages 123-136, Litchfield Park AZ (USA), December 1989. ACM.

[9] Campbell, R. H. and Madany, P. W. Considerations of Persistence and Security in
Choices, an Object-Oriented Operating System. Procs. of International Workshop
on Computer Architectures to Support Security and Persistence of Information. May
1990, Bremen (Germany).

[10] Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and
Richard J. Littlefield
The Amber System: Parallel Programming on a Network of Multiprocessors
ACM SIGOPS, Litchfield Park, AZ, December 1989

[11] Partha Dasgupta, R Ananthanarayanan, Sathis Menon, Ajay Mohindra, Raymond
Chen
Distributed Programming with objects and Threads in the Clouds System
Computing Systems, Vol 4, No 3, Smnmer 1991, USENIX Association

[12] March Shapiro
Structure and Encapsulation in Distributed Systems: the Proxy Principle
Proceedings of the 6th ICDS Conference, May 86

