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Abstract 

Building distributed operating systems benefits from the micro-kernel approach by al- 
lowing better support for modularization. However, we believe that we need to take this 
support a step further. A more modular, or object oriented approach is needed if  we wish 
to cross the barrier of complezity that is holding back distributed operating system devel- 
opment. The Chorus Object Oriented Layer (COOL) is a layer built above the Chorus 
micro-kernel designed to eztend the micro-kernel abstractions with support for object ori- 
ented systems. COOL v2, the second iteration of this layer provides generic support for 
clusters of objects, in a distributed virtual memory model. It is built as a layered system 
where the lowest layer support only clusters and the upper layers support objects. 

1 I n t r o d u c t i o n  

Building distributed systems is difficult simply because the complexity of interactions 
among entities scattered on a collection of machines is enormous. The distributed systems 
community has long been wrestling with this complexity and has developed methods 
such as RPC, group communications, distributed shared memory etc. in an attempt to 
provide mechanisms that abstract over some of this complexity. However, in attempting 
to build systems that actively use these mechanisms we have run into two major problems, 
performance and integration. Performance because we have tried to add these mechanisms 
to existing systems, and integration because we have tried to do so in an ad-hoc manner 
without fully considering how these tools should interact, or how applications will use 

these services. 
Work in the operating system comnmnity has tried to deal with these issues by re- 

visiting our existing operating systems and looking at the minimum abstractions necessary 
to build distributed operating systems. By combining these with a systems building archi- 
tecture that stresses modularity, we can begin to address the performance and complexity 
issues. This approach, oRen called the micro-kernel approach, allows us to provide a 
minimum set of abstractions that can be used to build operating systems themselves. 

We feel however, that while this is the correct approach, it is only one step in the 
right direction. We need to augment our basic mechanisms with a framework that allows 
system builders to glue functional components together in a coherent and perfonnant way. 
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In effect, we need to provide a system building environment that  supports a programming 
model, tools and services needed to work within that  framework. 

The object oriented paradigm offers a solution to this problem as it offers a framework 
for building large complex applications, such as OS's in a way that  is amenable to distri- 
bution. However, we must not repeat the mistakes of early distributed system builders 
by trying to impose a model on a set of mechanisms, rather, we must actively support  
the model at the lowest layers in our system, by making sure that  our abstractions are 
suitable for supporting objects. 

In this paper we discuss how the COOL system has been designed to exploit the 
unique features of the Chorus operating system model to provide an efficient set of ab- 
stractions that  are well suited to support  the object oriented metaphor.  We stress tha t  
this approach not only facilitates building distributed OS's, but  any distributed applica- 
tions as it reduces the mismatch between our OO services and the model we use to build 
distributed applications. Our goal is to provide a framework that  will allow operating 
system builders to develop their applications, the operating system, in a well structured, 
flexible and coherent environment. 

2 C O O L  v2  

The COOL project is now in its second iteration, our first platform, COOL v l  1, was 
designed as a testbed for initial ideas and implemented in late '88 [2] [3] [6] [7]. 

Our early work with COOL (COOL vl )  consisted with experimentation in the way 
that  systems could be built using the object oriented model, and how this supported dis- 
tr ibuted applications. ~.In an a t tempt  to move the COOL platform from a testbed towards 
a full object oriented operating system we began a redesign of the COOL abstractions 
in 1990. This work was carried out in conjunction with two European research projects,  
both building distributed object  based systems, the Esprit ISA project [4] and the Esprit 
Comandos project [5]. 

The result of this work has been the specification of the COOL v2 system and its 
initial implementation in late '91. 

3 T h e  C O O L  v2  a r c h i t e c t u r e  

COOL v2 is composed of three functionally separate layers, the COOL-base layer, the 
COOL generic run-time and the COOL language specific run-time layer (see Figure 1). 

3 . 1  T h e  C O O L  b a s e  

The COOL-base is the system level layer. It has the interface of a set of system calls and 
encapsulates the CHORUS micro-kernel [1]. It acts itself as a micro-kernel for object- 
oriented systems, on the top of which the generic run-time layer can be built. The  
abstractions implemented in this layer have a close relationship with CHORUS itself and 
they are intended to benefit from the performance of a highly mature micro-kernel. 

The COOL-base provides memory abstractions where objects can exist, support  for 
object sharing through distributed shared memory and message passing, an execution 
model based on threads and a single level persistent store that  abstracts over a collection 
of loosely coupled nodes and associated secondary storage. 

In our initial work with COOL (COOL vl )  our base level supported a simple generic 
notion of objects. This proved to be too expensive in terms of system overhead so that  
in COOL v2 we have moved the notion of object out of our base layer and replaced it 

ICOOL vl was built as a joint project between Chorus syst~mes, INRIA and SEPT 
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with two more generic abstractions, clusters and cluster spaces. A cluster is viewed from 
higher levels as a place where related objects exist. When mapped into an address space, 
it is simply a collection of virtual memory  regions [8]. The mapping can be done on an 
arbi t rary  address. The  collection of regions that  belong to a mapped  cluster is a set of 
CHORUS regions backed by segments, and forms a semantic unit managed by the base 
layer. By using a distr ibuted virtual memory mapper  2, regions and hence clusters, can be 
mapped  into multiple address spaces, which leads us to the notion of cluster space (see 

Figure 2). 
A cluster space is a collection of distinct address spaces on one or nmre nodes. The 

relationship between clusters spaces and address spaces is orthogonal, i.e., a cluster space 
can range over an arbi t rary  numbers of address spaces as well as contain many clusters. 
Any cluster belonging to a cluster space is mapped into all address spaces of that  dus ter  
space. In this case, we must  enforce that the cluster is mapped always at the same address. 
Therefore, a cluster space represents a distributed virtual address space, and so can be 
used to share clusters among threads of execution of a particular cluster space 3. 

Each cluster is uniquely identified in the system as the unit of persistence. Clusters 
can have references to other clusters and they are subject to garbage collection. 

The  COOL-base  also provides a low level mechanism for communication between clus- 
ters. This can be used to implement invocation of objects that  exist inside the cluster. 
Transparent  remote invocation is achieved with a simple communication model which 
uses the CHORUS conmmnication primitives and protocols. This model supports  multi- 
pie mechanism so tha t  invocations among clusters on a local site may use a lightweight 
invocation mechanism, whereas between clusters on different sites we use a traditional 

invocation model. 
The  COOL-base maps in clusters on behalf of the upper layers. It  can be used to 

enforce an invoking thread to carry on execution in a remote address space. In addition, 

2A mapper in CHORUS supports the relationship between virtual memory regions, and the secondary 

storage segments that a region 'maps'  
3Our initial implementation uses a memory mapper that supports strict memory coherency, we plan to 

investigate relaxed coherency later. 
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Figure 2: Clusters, clusters spaces and address spaces 

because clusters are persistent, the COOL-base provides a mechanism to locate non- 
active clusters, i.e., clusters currently swapped-out on secondary storage and load them 
transparently into a cluster spaces. This model is similar to work described in [11]. The 
mapper is used to store and retrieve passive clusters to and from secondary storage. 

Therefore, the COOL-base level supports a single-level, persistent cluster store with 
synchronous and asynchronous invocation between clusters, and distributed cluster shar- 
ing. 

3 .2  T h e  C O O L  g e n e r i c  r u n - t i m e  

The generic run-time implements a notion of objects. Objects are the fundamental ab- 
straction in the system for building higher level system servers or applications. An object 
is a combination of state and a set of methods. An object is an instance of a class which 
defines an implementation of the methods. The generic run-time has a sub-component, 
the virtual object memory that supports object management including: creation, dy- 
namic link/load, fully transparent invocation including location on secondary storage and 
mapping into cluster spaces. 

Two types of object identifiers are offered by the generic run-time: domain wide ref- 
erences and language references. A domain wide reference is a globally unique, persistent 
identifier. It may be used to refer to an object regardless of its location. A language 
reference is a virtual memory address (a pointer in C++) and is vahd in the context in 
which the object is presently mapped. 

The generic run-time defines the primitives to convert one type of reference to the other 
one. When a domain wide reference to a remote object is converted to language reference 
a proxy associated to the object is created [12]. This proxy is used to transparently invoke 
the remote object. 

Objects are always created in clusters. Each duster's address space is divided into 
three parts: the first one is used to store all the structures associated to the cluster used 
by the generic run-time, the second one is used to store the applications objects, and the 
last one is used to store the proxies. A different allocator is associated to each part, this 
allocator is used to allocate and free space. 



The classes are structured in modules (set of classes, unit of code). The generic run- 
time allows the code to be dynamically linked. The generic run-time offers a primitive to 
link a module. Each class contained in the module are store at the context level. When an 
instance of a class is created in a cluster, the class descriptor is saved in the cluster. This 
class descriptor is used to retrieve the appropriate module and therefore the appropriate 
class, when a cluster is remapped in another address space. 

The generic run-time provides an execution model based on the notion of activities 
which are mapped onto CHORUS kernel supported threads and job which model dis- 
tributed execution of activities. Each cluster can support multiple activities, with more 
than one activity capable of running within the same object at any particular time 4. 

One of the main problems with trying to use a single generic base to support multiple 
language level models is that of semantics. Most languages, and systems, have their 
own semantics, each of which are subtly different. To allow us to build sophisticated 
mechanism that support multiple models we have defined a generic run-time to language 
interface based on upcalis. 

The generic run-time maintains for each object a link between the object and its class. 
This link is used to find the upcall information associated with each object. 

The upcall information, and associated functions is used for a variety of purposes, 
including support for persistence, invocation and re-mapping between address spaces. In 
fact, any time where a functionality of the generic run-time needs access to information 
about objects that only the language specific environment will know. 

For example to support clusters persistence, and hence object persistence, we need 
access to the layout of objects to locate references held in the objects data: When a cluster 
is mapped into an address space all the objects are scanned by using the appropriate upcall 
function to locate the internal references (to external objects) and performing a mapping 
from the domain wide references (used when an object is on secondary storage) to address 
space specific references, this technique if often called pointer swizzeling. 

Another example is for object invocation. Invocations between objects in the same 
cluster is based on the standard method invocation of the language (C++ method). Invo- 
cations between objects in different address space use the model offered by the COOL-base 
layer (CHORUS communication primitives). The proxy is used to trap the normM func- 
tion invocation and replace it by a remote invocation which marshals the parameters, 
issues a remote procedure call, and umuarshals the results. On the receiver, a dispatch 
procedure, which is part of the upcall function associated with an object is used to call 
the appropriate method on the appropriate object. 

Invocation may also use the underlying cluster management mechanisms to map clus- 
ters into local address spaces for efficiency reasons, or locally to allow light weight RPC 
and maintain protection boundaries. Again the upcall functions are used to support this. 

This is further discussed in section 4.2. 

3.3 The language specific run-time 
The language specific run-time maps a particular language object model to the generic 
run-time model. This may be achieved through the use of pre-processors t o  generate the 
correct stub code and the use of the upcall table. 

As discussed above, the generic run-time will, in the process of operations such as 
mapping or unmapping an object from an address space, upcall into the language specific 
run time responsible for that object by using the upcall table associated with the object 
and generated by the language specific run-time. This requires that the language run-time, 
usually the compiler, generates enough information to interface to the generic run-time. 

4Subject to language level constraints. 



Currently we use pre-processor techniques to generate this information so that  at run 
time objects can be managed  by the underlying COOL system. 

4 M a i n  r e s e a r c h  a r e a s  

While the project  covers a number  of areas of interest in distr ibuted,  persistent systems, 
the architecture poses a number  of problems at the lowest level. 

4 . 1  D i s t r i b u t e d  m e m o r y  m o d e l  

Each cluster space represents a logical distributed address space, with each cluster mapped  
into a number  of physical address spaces. The  model makes a coupling between virtual  
memory  addresses and  object  addresses only during the t ime tha t  clusters are mapped.  I t  
makes no s ta tement  about  the coupling between these addresses when a cluster is moved 
to persistent store. Thus we can support  a model where a cluster always occupies a set of  
addresses and tha t  range does not change when it moves between persistent store, or we 
may adopt  a model whereby, the binding is only maintained while a cluster is mapped  into 
a cluster space. Of  course we need higher level support  for relocation of objects within 
clusters (at  the generic run-t ime level) if we adopt  this approach.  

Both of these models impose a criteria for distr ibuted memory  allocation, since al- 
locating a new cluster requires tha t  all machines in the cluster space allocate the same 
space. Currently we adopt  a simple model where portions of  an address space are initially 
allocated to different machines. Creation of clusters initially uses this space and uses a 
s tandard distr ibuted virtual  memory  to ensure tha t  the allocation is p ropaga ted  to all 
machines represented in the cluster space. When a machine exhausts  this initial space, it 
must a rb i t ra te  with others to allocate space from a common pool as is done in [10]. 

4 . 2  S i n g l e  i n v o c a t i o n  m o d e l  

The base level abstract ions include an invocation mechanism that  works between clusters. 
Invocation fails into one of three cases. Local invocation, ie that  which stays within an 
address space. Invocation local to a machine but between address spaces, and s tandard  
remote invocations (RPC).  In a persistent,  distributed system, there are a number  of 
possibilities, when invocation takes place, concerning the location of the object.  

In particular,  the interaction between the invocation model and the cluster model 
provides us with the ability to optimize invocation: 

• For a cluster tha t  is held in persistent store, the cluster is mapped  into the calling 
cluster space. 

• For clusters mapped  into an existing cluster space, instead of using an RPC call, we 
are able to de-map the cluster and re-map it into the calling cluster space, or into 
a cluster space on the same machine allowing us to use the light weight form of the 
s tandard  RPC call. 

• Finally, if no address space or protection clashes exist we can extend the cluster space 
to incorporate the cluster in its current location. The  distributed virtual memo ry  
will then make the cluster available to the calling cluster. 

COOL-base  is capable of using this range of mechanism to carry out the invocation. 
The choice of  mechanism will be dependent on higher level policy, but a simple approx-  
imation, using invocation efficiency as a criteria allows us to build a lightweight, default  
policy into the base level. 



4.3  S y s t e m  b u i l d i n g  m o d e l  

We have tried in the COOL system to provide a minimal set of abstractions that are suited 
to building applications using the object oriented model. One of our stated goals is also 
to build a platform that allows operating system builders to construct system services in 
the same way as end user applications would be constructed. Thus for example, elements 
of the generic run-time are built using objects who interact using serviices provided by the 
core of the run-time. Some aspects of this are similar to work carried out in [9]. However, 
Choices concentrates more on the functional objects that make up the operating system 
and their relationship at build time. Our emphasis is how those objects are supported 
and interact at run-time. 

This provides a great benefit in that operating system services can be invoked, mi- 
grated between address spaces, moved to persistent store, etc, in the same way as user 
objects. This model provides us with the ability to dynamically add services to an existing 
operating system and to reconfigure our operating system at run-time to exploit haidware 
or to adapt to specific user needs. 

5 C o n c l u s i o n  a n d  c u r r e n t  s t a t u s  

The COOL project is building an object oriented kernel above the CHORUS micro-kernel. 
Its aims are to provide a generic set of abstractions that will better support the current 
and future object oriented languages, operating systems and applications. 

Our premise is that the abstractions we provide at the lowest level will support both the 
model for constructing operating systems, and for developing applications via intermediary 
run-time levels. Our goal is to provide a flexible dynamic environment which allows 
operating system builders to easily build and add new functionalities into the operating 
system, in a coherent and fully modular approach. 

We currently have a limited COOL platform running above the CHORUS lnicro-kernel, 
native on 386 based PC's. This platform implements the basic cluster level including the 
distributed virtual memory support but still lacks light weight RPC. The COOL generic 
run-time offers full support for object distribution and for persistence. In addition we 
have built a pre-processor enviromnent which generates pre-processor tools that can be 
used to extend existing languages such as C++ to take full advantage of the COOL v2 
operating system interface. 

R e f e r e n c e s  

[1] Marc Rozier, Vadim Abrossimov, Francois Armand, Ivan Boule, Michel Gien, Marc 
Guillemont, Fr6d6ric Herrmann, Claude Kaiser, Sylvain Langlois, Pierre L6onard, Will 
Neuhauser 
CHORUS Distributed Operating Systems 
Computing Systems Journal, Vol 1,No 4, December 1988, USENIX Association 

[2] Sabine Hubert, Laurence Mosseri, and Vadim Abrossimov. COOL: Kernel support 
for object-oriented enviromuents. In ECOOP/OOPSLA '90 Conference, volume 25 of 
SIGPLAN No,ices, pages 269-277, Ottawa (Canada), October 1990. ACM. 

[3] Deshayes, ].M., Abrossimov, V. and Lea, R. The CIDRE distributed object system 
based on Chorus. Proceedings of the TOOLS'89 Conference, Paris, France. July 1989. 

[4] The Integrated Systems Architecture project. ISA - Esprit project 2267. The ISA 
consortium, APM ltd, Castle Park, Cambridge, UK. 



[5] Vinny Cahili, Rodger Lea and Pedro Sousa. Comandos: generic support for persis- 
tent object oriented languages. Proceedings of the Esprit Conference 1991. Brussels, 
November 1991. also Chorus systAmes technical report CS-TR-91-56. 

[6] Lea, R. and Weightman, J., COOL: An object support environment co-existing with 
Unix. Proceedings of Convention Unix '91, AFUU, Paris France. March 1991. 

[7] Lea, R. and Weightman, J. Supporting Object Oriented Languages in a Distributed 
Environment: The COOL approach. Proceedings of TOOLS USA'91, July 29-August 
1, 1991. Santa Barbara, CA. USA. 

[8] Abrossimov, V., Rozier, M. and Shapiro, M., Generic virtual memory management for 
operating system kernels. In Proceedings of the 12th ACM Symposium on Operating 
Systems Principles, pages 123-136, Litchfield Park AZ (USA), December 1989. ACM. 

[9] Campbell, R. H. and Madany, P. W. Considerations of Persistence and Security in 
Choices, an Object-Oriented Operating System. Procs. of International Workshop 
on Computer Architectures to Support Security and Persistence of Information. May 
1990, Bremen (Germany). 

[10] Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and 
Richard J. Littlefield 
The Amber System: Parallel Programming on a Network of Multiprocessors 
ACM SIGOPS, Litchfield Park, AZ, December 1989 

[11] Partha Dasgupta, R Ananthanarayanan, Sathis Menon, Ajay Mohindra, Raymond 
Chen 
Distributed Programming with objects and Threads in the Clouds System 
Computing Systems, Vol 4, No 3, Smnmer 1991, USENIX Association 

[12] March Shapiro 
Structure and Encapsulation in Distributed Systems: the Proxy Principle 
Proceedings of the 6th ICDS Conference, May 86 


