Rule-based Management of Distributed Operating Systems

Mark D. Wood

wood@cs.vi.nl

Department of Mathematics and Computer Science
Vrije Universiteit
Amsterdam, The Netherlands

Abstract

This paper presents a paradigm for manag-
ing a distributed operating system using a
rule-based architecture. Recent trends have
led to the structuring of operating systems,
particularly those for distributed systems, as
a sct of microkernels with much of the sys-
tem functionality being provided by a set of
servers operating in user space. The prolifer-
ation of client-server based systems can casily
lead to a sct of independent. non-cooperating
servers, with no common technique for man-
agement. The operation of each server is of-
ten hard-coded into the server, with no facility
for dynamic adaptation and management. A
general-purpose, rule-based approach to server
coutrol fills the need for management and can
even eliminate the need for sone services.

1 Introduction

Distributed operating systems have in re-
cent years been constructed using microker-
nel technology. Examples of operating sys-
tems designed around a wicrokernel include
Amocba [6. 9]. Chorus [2] and Mach [7]. The
microkernel contains ouly that functionality
which must execute in the supervisory mode
of the processui: the balance of the operating
system’s functions are provided by server pro-
cesses. For example, the microkernel typically
handles memory management and fine-grain
task scheduling while special servers provide
functions such as long-term job scheduling.
file management. and system administration.
Rather than recciving these services divectly
from the kernel, processes become clients of
the appropriate server,

A microkernel-based distributed operat-
ing system typically requires many different
servers, For example. the Amoeba systewn in-
cludes a run server for scheduling jobs. a file
server, a directory server. and even a server for
maintaining the servers. called the boot server.
A distributed operating system must ensure
that the appropriate servers are available: this
is thie function of the Amoeba boot server. To
provide fault-tolerance or to improve system
performance. a system may additionally wish
to run multiple copies of some services.

Each scrver is usually respousible for the
managenient of some resource. such as a disk
or a set of CPU’s. By dynamically adapting
to current conditions. a server cu improve its
utilization of the resource. For exawple. the
job scheduling server may perform process mi-
gration in order to balance the system load.
Servers which support dynamic adaptations to
current conditions usually do so in a way that
is hard-coded into the server.

The microkernel design with its accowmpa-
nying collection of servers can casily lead to a
complicated set of system management prob-
lems: these problems will only become more
acute as distributed systems continue to grow
in size. For example. the Amoeba operating
system shall shortly be ruuning in a config-
uration containing well over a hundred pool
processors. Ensuring that all the compouents
of this system function property will be a seri-
ous management task.

The problems of system managemcent are
not limited to architectures based npon the
processor pool model of Amocba. Distributed
systems spanuing a network of workstations
likewise hiave a set of systenmi-wide services re-
quiring mauagement. These systems will also

http://crossmark.crossref.org/dialog/?doi=10.1145%2F506378.506429&domain=pdf&date_stamp=1992-09-21

benefit from the approach argued for here.

2 Rule-based System
Management

The problems of system management in a dis-
tributed operating system may be effectively
solved by the use of a rule-based approach.
This approach provides a uniform method

for controlling diverse aspects of the system.

Moreover. by utilizing a rule-based approach,
the policies which control the system may be
clearly separated from the mechanism that en-
forces those policies.

To implement a rale-based approach. the
distributed operating system and its services
are wistrumented with routines that expose the
state of the systemn. Borrowing terminology
from the area of process control, we call these
hooks iuto the system sensors aud actuators,
with sensors being routines that return some
aspect of the system state and actuators being
procedures that alter some aspect of the state.
The exposed state is operated upon by a logi-
cal layer of control. Clearly any control system
for a distributed operating system should itself
be distributed and reliable,

The Mecta toolkit [5] ix one such systen.
This toolkit provides facilities for reliable man-
agement of general distributed applications
[3]: a distributed operating system may be
viewed as an example of a distributed appli-
cation. Mecta typifies the kind of management
system that could be used to control a dis-
tributed operating system. We briefly discuss
in the next section the main features of Meta.

3 The Meta System

The basic structure of a system being managed
using Meta is as shown in Figure 1. Though
the application layer and the control layer are
shown as single boxes. each of these layers ac-
tually consists of multiple subconmponents. dis-
tributed through out the system.

A detailed discussion of the Meta architec-
ture appears elsewliere [10]. but we briefly re-
view here the basic principles. Eacli program
compouent of a distributed application is in-
strumented by linking in the Meta runtime li-
brary and adding a small amount of code to

Control Layer

Sensors Actuators

Application Being Managed

Figure 1: Structure of an application uuder

Meta

the program. In particular. the programmer
must add sensor and actuator routines which
provide Meta with a uniform manuver for ac-
A wumber of pre-
defined types (scalars. strings. cets, and inter-
vals) are supported. Actuator routines return
either success or failure. The Meta stub calls
the seusor/actuator routines as necessary. The

cessing the system state.

stub runs as a coroutine with the original pro-
gram. requiring the programmer to add calls
to the programn which transfer control to the
stub. This coroutine structure is typically not
a problemy for operating system services, as
these servers usually lhave a main loop that
listens for work. Instrumenting such a server
with Mcta only requires that a call to the Meta
stub be added to the loop.

As an aside. we note that the Meta toolkit
was originally developed for the Unix envi-
ronment and included a facility based upon
ptrace by which the state of an arbitrary pro-
gram could be accessed without requiring re-
compilation. However. using a facility such as
ptrace generally leads to inconsistencies and
race conditions in the sampling of data. and
so this approach is not recommended for most
applicatious.

Each iustrumented program component de-
fines a logical cutity for Meta. with a sct of
sensors and actuators. A set of different in-
stances of the same program may be grouped
together into an aggregate: an aggregate itself
is treated by Meta as a single logical entity. in-
Lieriting the scusors and actuators of the pro-
grant instauces over which it is formed. A pro-
cess may belong to multiple aggregates. For
exaiple. a job exccution server for a specific

Sparc CPU might belong to the FreeMachine
ageregate and also to the Sparc aggregate.

Control policies are expressed to the Meta
system as a set of rules. written as guarded
commands (see. c.g.. [1]}). Each guarded com-
maud cousists of a (predicate. action) pair.
with the action taken when the global state of
the system satisfies the predicate. Meta sup-
potts two types of guarded commands. In one.
the action 1s enabled if the system state satis-
fies the predicate. I the other. the action is
enabled only after the eveut of the predicate
becoming true.

The language for guarded commands is a
simiple. postfix language. designed for ease of
interpretation. Despite its simplicity. the lan-
guage is quite expressive: arbitrary finite state
automata may be expressed as a sei of guarded
commands.

Control policies are implemented by small
interpreters running as part of cach Meta
stub. Rules governing the behavior of the
distributed application may be assigned to
any stub for execution. though for efficiency
reasons. rules should be assigned in such a
fashion minimize the number of re-
mote references. The Meta library uses
causality-prescerving atomice broadeasts to pro-
vide globally-consistent handling of remote
references. A weak notion of an atomic trans-
action is employed to carry out remote actua-

as to

tions.

In addition to stubs linked in with differ-
ent system components. Meta supports free-
standing stubs. Such stubs function as dedi-
cated Meta scrvers. Aggregates are typically
handled by Meta servers: gnarded commands
may also be assigned to them for execution.
An important characteristic of Mcta servers is
that they may be run fault-tolerantly. by run-
ning multiple replicas. Any number of Meta
servers may be run. and cach server may be
implemented by mnltiple replicas.

It is too cxpensive -and unnecessary to
have cach stub continually be informed of the
current global state of the applicatiou. Con-
sequently. guarded commands are evaluated
in Meta against causally-consistent views of
the global state. (This is discussed in much
wore detail in [10].) Though stronger notions
of global state detection can be defined [4].
they are expected to be unnecessary for dis-

tributed operating systemn management. Like-
wisce. Meta does not block a component from
executing during the interval between when a
condition 1s sensed and when the correspond-
ing reaction actually takes place. A system
which guarantees that global state detection
and reaction are atomic can only do so with a
high cost of blocking.

The relatively weak model used by Meta for
detection and reaction was chosen to minimize
the cost that the management systein has on
the application being controlled. Siuce the
manageient system is being imposed on top
of & preexisting application. it is cracial that
the cost of monitoring and control be very low:
otherwise the use of the management system
beconies unacceptable. -

Though the weak counsistency guarantees
provided by Meta are probably unacceptable
for real-time process control. we expect that
Meta's detection and reaction scmantics will
prove to be adequate for managing a dis-
tributed operating system. To justify this ar-
guntent. we must consider in more detail the
semantics of the system being managed. A
distributed operating systen has a number of
characteristics which make the low-cost - ap-
proach of Meta feasible.

o Many predicates of interest are dependent
[8]. Such predicates. ouce
true. will remain true until some external
action is takeun,

momnotonic

For example. a manager for a distributed
operating system might have rules de-
tecting deadlock. Each deadlocked par-
ticipaut will be unable to make progress
until a corrective action is taken. Coun-
sequently. i there exists a causally-
consistent global state in which cach par-
ticipant is seen as being deadlocked. then
the actual system is in fact deadlocked.
and will remain so until the manager takes
SONie ('()l'l'(?(',tiv() it(fti()ll. :

As another example. consider rules which
restart failed services. The condition «lf
file servers have fuiled is also dependent
monotonic. remaining true until the man-
ager restarts the servers.

Many conditions within a distributed sys-
tem change slowly. Al that is required is

that the manager react in a “tunely™ fash-
ton. In some cases. the observed state of
the system 1s only used as a hint by the
nianager.

As an example. supposce the manager is to
start a new task on the least loaded pro-
cessor. It probably is not crucial that the
manager know exactly what the load 1s on
each processor. nor is it likely to be sig-
nificant if another processor actunally had
a lower load at the justant the task was
initiated.

Note that iuteraction between the manager
and the system beitng managed is a feedback
loop. The manager responds to conditions as
it sces them. taking the appropriate actions.
which results in the manager seeing a new
state of the systemr. Ervors in management
can arise when the distributed control layer re-
sponds to conditious which are not dependent
monotonic and which change quickly. Such
errors may often be subsequently corrected.
For example. suppose the manager is tryiug
to run a job on the least loaded processor. but
because of out-of-date information. incorrectly
schiedules the job on some other processor. Un-
less the scheduler’s information is very dated.
this error is likely to be of little consequence.
However. if desived. such crrors can be cor-
rected: in this case. by migrating the process.
Of course. corrective action is often expensive,
and can lead to instabilities. Care must be
taken in the specification of system rules to
cusure that such problems do not arise. How-
ever. we believe that for most applications,
the exercise of such care is preferable to using
a managewment system which minimizes feed-
back problems by guarantecing a stronger de-
tection and reaction semantics,

4 Advantages of
Rule-based
Management

The rule-based approach argued for in this pa-

per offers a munber of benefits to the current
ad-lhoc approach to system management.

o [t provides a uniform method for manag-
ing all aspects of the systew.

e Policies may be dynamically updated
without rebooting servers. or worse yet,
the eutire operating system. The sys-
tem may even dynamically update its own
rules. Moreover. the set of rules may be
divided iuto differeut rule spaces. allowing
individual users or subsystems to manage
their own subspaces.

e The functionality of many servers is sub-
sutied by the rule-based systen.

We illustrate this last poiut with a couple
of examples.
Swiss Arny Kuife (SAK) server. which makes
specified RPC calls according to a time sched-
ule. (The SAK server fulfills the same func-
tion as the Unix eron demon. but with greater
flexibility.) This functionality could ecasily be
handled by guarded conmmands which perform
the desired actions. Using guarded commands
permits actions to be initiated in respouse to
much more than just the current time of day.

For example. we might have a system policy
that states that a file system backup is to be
started after 1 am as soon as the file system is

Amoecba includes a server. the

“idle”™. for sonie notion of idleness: in auy case
the backup should be started no later than &
am. This could be expressed by the following
rule:

when ({{1:00< tzme<5:00) and idle)
or {time = bam))

and not hacked-up

do backup

Rules may also be used to express the be-
havior of the Amoeba boot server. the scrver
which ensures that otlier servers are available.
Suppose we have some service. Service. for
which it 1s the casce that any member of the ser-
vice may handle a request and ruuning more
instances of the service enables more requests
to be handled. Using a rule-based system per-
wits rules such as the following:

when SIZE(Secrvice) < 3 or
Load(Scretec) > 1.0
do Start another instance of Service

This rule creates another iustance of Ser-
vice when the number of instances falls below
three or when the load of the service as a whole
goes above 1.0. Exccuting this rule at a repli-
cated Meta service elininates a problem with

thie current boot server. namely. what happens
when tlie boot server itsclf fails. (The current
boot server is not fault-tolerant).

Amocba also includes a run server which
maintains a vector of processor loads. one en-
try for eacli processor on the network: this iu-
formation is used to schedule tasks for exe-
cution. Instrumenting the distributed operat-
ing system and managing it with Mcta cnables
Meta to directly carry out load-sensitive task
scheduling, Morcover. a rule-based system en-
ables complex policies such as processor affin-
ity to be expressed.

The approach taken by Meta for system
management makes many of the significant
concepts of distributed systems theory read-
ily accessible for nse in system management.
For example. the implenientation of Meta
exploits replication technignes and causally-
ordered atomic broadcasts to control the sys-
tem i a fault-tolerant and consistent manner.
Morcover, the Meta approach makes unified
management policies feasihle for the control
of modular. clicut-server based desigus.

The ideas presented here will be tested out
by using the Mcta toolkit for system manage-
ment tasks in Amoeba. The Meta system is
currently being ported to Amocha while work
is concurrently underway at defining a high-
level language for specifying control policies.

Acknowledgements This work lias bene-
fited greatly from discussions with members of
the ISIS project at Cornell University. Meta
was originally developed while the author was
at Coruell. A high-level control language is
jointly being developed with members of the
ISIS project. Leendert van Doorn. Frans
Kaashock and Andrew Tanenbaum provided
valuable feedback in the writing of this paper.

References

[1] K. Mani Chandy and Jayadev Misra.
Parallel Program Design. Addison Wes-
ley (Reading. Mass.). 1088.

Marc Guillemout. Jim Lipkis. Doug Orr.
and Mare Rozier. A sccoud-generation
niicro-kernel based UNIX: Lessons in per-
formance and compatibility. In Proceed-
ings of the USENIX Winter 1991 Confer-
ence, pages 13 21, 1991,

[)

[3] Keith Marzullo. Robert Cooper. Mark
Wood. aud Keuneth P. Birman. Tools
for distributed application management.
IEEE Computer. 24(8):42-51. August
1991.

Keith Marzullo and Gil Neiger. Detection
of global state predicates. Iu Procecdings
of the Fifth Workshop on Dustributed Al-
gorithms and Graphs. October 1991.

Keith Marzullo and Mark Wood.
for mouitoring and controlling distributed
applications. In Spring 1991 Conference
pages 185 196. EurOpen.

Tools

Proceedings.

May 1991.

Sape J. Mullender. Guido van Rossum.
Andrew S. Tancnbamm. Robbert van Re-
nesse. and Hans van Staveren. Amocha

a distributed operating system for the
1990°<. IEEE Computer. 23(5):44 53,
May 1990.

(6]

Richard F. Rashid. Threads of a new sys-
tem. Uniz Review. 4:37-49. Aungust 1986.

M. Spezialetti and J. P. Kearns. A gen-
eral approach to recognizing event oc-
currences in distributed computations.
In The Eighth Internaticnal Conference
on Distributed Computing Systems. pages
300 307. [EEE Computer Sociery. 1988.

A. S. Tanenbaum. R. van Renesse, H. van
Staveren. G. J. Sharp. S. J. Mullender.
J. Jausen. and G. van Rossum. Expe-
riences with the Amoeba distributed op-
erating system. Communications of the

ACM. 33:46 63, December 1990.

Mark D. Wood. Foeull-Tolerant Man-
agement of Distributed Applications us-
ing the Reactive System Architceture,
PUD thesis. Cornell University, December
1991.

[10]

