
Rule-based Management of Distributed Operating Systems

Mark D. Wood
woo(F(~cs.w~.nl

Department of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

A b s t r a c t

This paper l~resent.s it l)ant(ligm fin" m~,mtg-
ing ~ distributed ()pending system using a
rule-l)~sed ~tr(:hite(:turc. I (eceut t r ends h~tve
led to tl,e stru(:turing of operating systems,
parti(:ularly those for distributed systems, as
a set of nficrokernels with much of the sys-
tem flmctionality being provided by it set of
servers oper;~ting in user sp~ce. The prolifer-
~tion of client-serw.'r l)asrd systems can easily
lead to a set of independm~t, non-(:,)Ol)erating
servm's, with lto COIlIIIIOII te (: l l l l iq l le for lll~tlt-
agement. The ot)eration of e~wh server is of-
te,t hard-coded iuto the server, with no fa(:ility
fi)r dynamic ~M~ptation aud m~m~tgement. A
generM-tmrpose, rule-l)ased ;tpl)roa(:h to server
coutrol fills the need for lmut~tgeme.nt ~md (:m~
even eliminate the need for some services.

1 I n t r o d u c t i o n

Distributed ,,l)er~d;ing systems have in re-
c(,ut years been ,:onstru('ted using microker-
nel t(,(:hnology. EXaml)les of ()l)erating sys-
tems (lesigned ;tround a ufi('rokernd include
Amoeba [6. 9]. Chorus [2] mid M;wh [71. The
microkernel cont;fius only ttmt functionality
which nmst execute in the supervisory mode
of tit,' l~ro(:essol: the 1)ala,l(:(; of tl,e oper;ding
systelU'S functions art; l)rovided by server pro-
cesses. For cx~tml~le, the uticrokcrnel typically
handles memory lll;tlt~tgenlellt &lid fine-grMn
task scheduliug while sl)eciM servers I)rovi,h"
functions such as long-term job scheduling.
file lll;,tll&g(',llleut, ~tll(1 sy s t em ~(hnhtistl"~tion.
lla.ther than receiving these services directly
fi'ol,t the kernel, processes be(:om,' clients of
the ;q)l)rol)ria~te server.

A microkernel-based distributed oper~tt-
ing syst(,m typically re(tuires Ill~tlly ditfm'ent
servers. For examt)le, the Amoeb;L systmn in-
cludes a run server for sdwduling jobs. a fih:
server. (t directory server. ~md cvcn it s('.lV,.'r for
maintMning the servers. (:Mh~d the boot sc, rver.
A distr ibuted operating system must eusure
that the at)t)ropriate servers ~r(.' avM1M)le: this
is tit(, function of the Amoeb~t boot server. To
provide f~mlt-tolerlmce or to iml)rove syst, cnl
i)erfl)rman(:e. ~t system may additioually wish
to run multiple copies of sonw. services.

Each server is usuMly responsibh, for the
lllallggelll(~llt of SOlll(? resource, sttch as a disk
or ~t set of CPU's . By dymmfi('Mly ~M~q)ting
to current conditions, a serw.w c:,u improve its
utilizlttion of the resource. For example, the
job scheduling server m;ty l)erfl)rm process nil-
gnttion in order to bM~m(-e the system lo~td.
Serw~rs which supi)ort dynamic adaptat ions to
current conditi,ms usuMly do so in ~t way that
is h~trtl-(:oded into tit(.' server.

The microkernel design with its a(:(:Olllpa~-
hying collection of serw,rs can easily le~M to ~
COml)licatted set of systcln m~tnagenmnt prob-
h,ms: these problems will only become more
acute ~ts distributed systems continue to grow
il, size. For example, the Amoeba Ol)er~tting
system sh~dl shortly 1)e rmming in a config-
ur~tim, containing well over ;t hundred pool
processors. Ensuring theft all the compoueuts
of this system function prop(My will be ~t serf
()IIS lll;tll;tgelllellt task.

Tl,e t)tol)lelns of systeln nl~magement ~tre
not limited to ~trchitectures t)~sed Ul)OU the
processor pool model of Amoeba. Distributed
systems st~uu,htg a, uetwork of workstations
likewise have a set of system-wlde services re-
quiring lll~tlt~tgelltellt,. These systems will Mso

http://crossmark.crossref.org/dialog/?doi=10.1145%2F506378.506429&domain=pdf&date_stamp=1992-09-21

benefit fl'om tit(', ai)proa(:h argued fl)r here.

2 Rule-based Sys tem
Management

The l)robh~ms of system ltl;u|¢tgellt,'ut |it ;t dis-
tril)uted operating system may be effectively
solved by the use. of a rule-based al)l)roach.
This approa(:h I)rovi(h's a uniiorm method
for controlling diverse aspects of the system.
Moreover. by utilizing a ruh'-based apl)roa.ch.
the polMes which ('ontrol the system may be
clearly scpar~tted fl'om the mechanism that en-
forces those polMes.

To iml)h.'ment a. rule-based at)l)ro~Lch, the
distributed operat ing system mM its servi('('.s
are instrumented with routines that expose the
state of the system. Borrowing t~:rminology
fl'om the area of process control, we call these
hooks il,to the system se'n.~ors and actuator .s .

with sensors being routines th~tt return some
aspect of [qte system state and actuators being
procedures that Mt('r some aspect of the state.
The exposed state is operated uI)On by a logi-
cal layer of control. Clearly any control system
for a (listributed operating system should itself
be distributed and reliable.

The Meta toolkit [5] is one such system.
This toolkit provides f~cilities for reliid~le man-
agement of general distributed applications
[3]: a distributed oI)eI'atillg system nlay l)e
viewed as an example of a distributed appli-
catioll. Meta typifies the kind of lnmta.genlent
system that ('ouht l)e used to control a dis-
t r ibuted operating syste,n. We briefly discuss
in the next section the main fl'atur(,s of Meta.

3 The Meta Sys tem

The basic s tructure of a system being lmula.ged
using Meta is as shown in Figure 1. Though
the apt)li(:ation layer and the control layer are
shown ~s singl(, boxes. ('.mJl of th(.~e layers ac-
tually consists of nmltii)le subCOmlmn(.,nts, dis-
tr ibuted through out the system.

A detailed (lis(:u~ion of the Meta. ~u-chitec-
ture al~t)(.~rs elsewhere [10]. but we briefly re-
view here the basic prin(iples. Each progrant
component of a ,listril)uted al)i)lication ix in-
strument('d 1,y linking in the Meta runt |me li-
t)rary and ~ul(ling a smMl amount of code to

Control L~yer

Sensors I 1 gc tua lo rs

lAI)l)lication Being Man~tg,'d [

Figure 1: Structure of an applicant|on unde,"
Meta

the program. Ill particular, the progranuner
must ~uld sensor a M ~ctuator routines which
l~rovidc • Meta with ~ lllliR)rlll llHl.lllter for &(-
tess|rig tit(, system sta~te. A mtml)er of t)re-
defined types (scalars. strings. <ets. and inter-
vals) ;-~re supported. Actuator routines return
either success or fifilure. The Meta stub calls
the sensor /ac tua tor routines ~s necessary. The
stub runs as a coroutine with the original pro-
gl'itlll, requiring the programmer to add calls
to the progranl which t.r~msfer collt.rol to the
stub. This coroutinc structure is typically not
a problem for operating system services, as
these servers usmdly h~tve a m~fin loolJ that
listens for work. Instrumenting such a serv(,r
with b'L t:t only requires that a (:all to th(, Meta
stub be added to the loop.

As an aside, we notc that the Meta toolkit
w;ts originMly developed for the Unix envi-
romnent mid included a fa(ility based ui)on
p t r a c e by which the st~te of an arbitnLry pro-
gram could be accessed without requiril,g re-
compilation. Itowevcr. using a facility such as
p t r a c e gen(,rall) leads to inconsistencies and
race conditions in the sampling of data. and
so this al)proach is not recommended tot most
applications.

Each instrmnented program coral)Orient de-
fincs a logical entity for Mcta, with a set of
sensors and actuators. A set of different in-
stances of the sam(, 1),'ogram may be grouped
together into mt aggregate: ",m ~tggreg;~te it, self
is t reated by Meta as a single logical entity, in-
h(.'riting the sensors and actuM:ors of the pro-
gram instances over which it is formed. A pro-
(:ess nlay belong to nmltil)le aggreg~ttes. For
exmnph!, a job execution server for ~ si)ecific

Sp',u'c CPU might belong to the FreeMachine
aggregate and also to the Sparc ;tggregatc.

Control policies are expressed to the Meta
system as a set of rules, written as guarded
commands (see, e,g., [1]). E;u:h guarded com-
man(l consists of a (lrr{dic, te. actio,~,) pair,
with the action taken when the global state of
the systeln satisfies the l)redicat(,. Meta sup-
ports two tyl)eS of gua.r(led (:Oll l l l t&llds. In 0110,
the a.ction is ellabhxl if the sy s t e n l state sat(s-
ties the predicate. In tit,' other, the action is
enabled only after the (!veil(of the predicate
becoming true.

The lmlguage for guard(.d commands is a
simple, postfix lmlgua.ge, designed for e~se of
interpretation. D(.'sl)ite its simplicity, the lan-
gu;tge is quite exl)ressive: arbi trary finite state
au tomata may be exl)ressed ;ts a sci of guarded
colnl l l ;ut(ls .

Colitrol 1)olMes ~r(~ iml)hmlentc(l by small
interpreters framing ;ts t)art of each Meta
stub. Rules governing the b(;havior of the
(listrilmte(l apl)lication may be assigned to
any stub for (~xecutiol,. though for (.,tficiency
reasons, rules should 1)e assigned in su(:h a
fashion as to minimize the number of re-
ira,re references. The Meta librm'y uses
causality-l)reserving atomic broa.(lcasts to pro-
vide gh)t)ally-col,sist(mt handling of remote
r(.ferences. A weak notion of an ; t tOllli(; tra.llS-
act(m(is emph)yed to carry out remot(' actua-
tions.

In addition to stul,s linked in with differ-
ent system cOral)Orients. Meta supl)orts free-
standing stubs. Su('h stubs flmcti(m as dedi-
cated Meta ac,'vcr.s. Aggregates are typically
handh'd by Meta servers: guarded commands
may also I)e :,~sign(.,d to theln for execution.
An import;ufl, characteristic of M('fa servers is
that they may t)e run limit-tolerantly.]ff run-
nilig nmltiph" replicas. Any number of Meta
servers lll&y l)(' r l l l l , a, l ld .el(oh serw.'r lll&y])(~
iml)lemented by ,mfltiple wl)licas.

It is too eXl)ensive a n d mmecessary to
have each stub contimudly be informed of the
current global state of l l,e apI)lic~tion. Con-
sequen t ly , g u a r d e d COIIIIIIaII(ls ktl'O O, vithlil, t(,Rt
in Meta ~gainst caasally-c~rnsistcnt views o f

the global state. (This is (tiscussed in nm(:h
more detail in [10].) Though strol~ger notions
of global s tate detection can be defined [4],
they are expecte(l to be mmecessary for dis-

tr i tmted operating system m;magement. Like-
wise. Meta does not block a ('Ollli)Oll(.~llt fl'Olll
executing during the interval l)etween when ~
co,~dition ix sensed and when the corrcsI)ond-
ing reactio,l actually takes I)la(:e. A system
which guarlmtees that global st~te detection
and 1'ea('lion are :ttomic (:rut Olfly do so with a
high ('()st of l)locking.

The relatively weak model used by M('ta for
detection and reaction was chosen to minimize
tit(,, cost that the lll~t, l lag(?lll(!ll t system h~s on
the apldi('ation being controlled. Sin('(' th(,
mal l .~geme | l t syst('m is being imi)osed on to t)
of a preexisting ~q)plication. it is (:rutted that
the cost of lnonitoring and control be very low:
otherwise the use of the management system
beco l l l e s ltlla,(,(:(~pta, ble. ,

Though the weak c o n s i s t e n c y guarantees
provided by Mrta are probably una(:c(,1)tabh~
tor real-time i)rocess (:ontrol. we expe(:t tha.t
Meta 's detecti,m and reaction scram,tics will
prove to t)e ~deq t l~ te for man;~ging a dis-
tr ibuted olmrating system. To justity this ar-
gument, we nmst consider in more detail the
semalltics of the system being managed. A
distrilmt('d operant(rig system has a mmd~er of
characteristics wlfi('h make the low-cost at)-
proach of Meta feasible.

• Many predicates of interest are dependent
mom~tordc [8]. Such predicates, once
true. will remain true until some external
~u:tion is ta~ken.

N)r ,,xamph~. a manager for ~ distributed
operating system might have rules de-
tecting deadlock. Each deadlocked p~tr-
tMpant will t)e unable to make progress
unlil a corrective action is taken. Col>
sequently, if there exists a causally-
consistent global s tate in wlfich each par-
tic(pant is seen as I)eing deadlocked, then
th(' actual system is ill fact deadlocked.
~md will rmmdu so until the manager takes
SOlllO ('orre(: t ive i ~ c t i () l l .

As mtother example, consider rides which
restart failed services. The condition al'
Jih' .~c,'ve,'s have ~'iled is also (lep(mdent
monotonic, remaining true until the man-
ager restarts the. servers.

• Mitny conditions within a distritmted sys-
tem ('h~utge slowly. All that is required is

tha t the manager react in a "'tinwly'" fash-
ion. In some (-ascs. the obscrv('d state of
the system is only used +ts a hint by the
ln&nltger.

As an e×aml)le. SUl)l)OS(' the lll~tltltg(;r is tO
ShU't a new task on the Icast lo+~d('(I pro-
(:cssor. It l)rob~d)ly is not crucial tha t tit(:
man+~ger know (,×~wtly what the hind is o,t
each t)roccssor, nor is it likely to be sig-
nifi(:ant if ;ulotlmr l)ro(:essor actual ly had
~t l o w e r l(,+t(l a t the instmtt th(' t+~sk wits
ini t i~ , tc(l .

Note that in t (' r ; t (' l ion b(: tween the lll~.Uta.ger
and the syst(,m being m~tnag(:d is a feedb~ck
looi). The mmmg(,r rcsl)onds to conditions as
it s('(:s th(!m, h~king the al)prot)ri~t(' ;tctions,
whi(:h results in tit(: manager seeing a new
state of the system. Errors in m+magement
can arise when the distr ibuted control layer re-
sponds to conditions whi(h +~r(? not dei)endent
monotonic and which chm~ge qui(:kly. Su(:h
e r ro r s llllty o f t en })(, su])se(lll(:lttly (:orr(.'(:f,(:d.
For exmnph,, sui)l><)sc the manager is t ry ing
to run ~t job on the least h)adcd proc(:ssor, lint
bccaus(, of o u r - o f all(to information, in(:orrectly
scheduh~s th(' job on some other processor. Un-
less th(, sclwduh:,"s informatim, is very d~te(t.
this error is likely to bc of little cons(~(tu(,ncc.
tIowcv(,r, if desired, such (,rrors (:ira b(: cor-
rcctc(l: in this (:~tsc. by migntt ing tit(., process.
Of (:ours(:. corre('tiv(, +t(:tion is oftOll ('xpcnsive,
and can h,ad to instabilities. Ca,'e must be
t+&cn in (.he Sl)ecifi(:~d;ion of syst('m ruh's to
cnsur(: tha t such l)robh'ms do not m:ise. How-
ever. w(' Imlievc tl,at fl)r most +q)l)li(:+~tions,
the (:x(:rcis(: of such (:arc is t),'efl, rabh: to using
~t m a n a g (m w n t s y s t e m which ntinimiz(,s tided-
back problems by guarante(dng a s t ronger de-
t(,ction and r(~+t(:tit)n stunanti(:s.

4 Advantages o f
Rule-based
Management

The rule-t)+tse(l al)proactt argued for in this t)+r-
l)(,r oflers a munl:)er of benefits to the current
a([-hoc +tppro;t(:h to sys tem lll~tll&g~(:tlteltt.

* [t 1)rovides a uniforln m(,thod fin' lmm;~g-
ing M1 asI)(:cts of the system.

o Policies may be dymmfical ly upd~m.'d
wi thout reboot ing scrw~rs, or worse yet .

the entire opera t ing system, The sys-
tem m~ty ewm <lymmfically u p d a h ' its own
ru les . Mol'c.over, the set of rules lll~ky])(~
divided into different rule sp~tct, s. +dlowing
indivi(hml us(','s or subsyst(,ms to nl+tn~tge
t h e i r own su|)sl)~t('es.

® The functionali ty of many servers is sub-
sum('d by th,~ rule-t)+~s(',l systcm.

We illustrat(' this l+~st, point with ;t COul)h,
of e×mnl)les. Anloeblt includes a s('rw',', the
Swiss Army Knife (SAK) server, vddch makes
st~e(:ified R P C calls according to a time s('h,,d-
ulc. (The ShK server fltlfill.s the sawn(, func-
tion ~LS the Unix c r o n demon, but with grc~m'r
flexibility.) This f lmctionali ty could (,asily b('
h;mdled t)y guarded (:ommmtds whi('h t)(?rform
the desired ;wtions. Using guarded conuna.n(ls
permi ts +t(tions to bc initbttcd in response to
much mor(' than just tit(! current t ime of &~y.

For exlmtl)lc, we might have ~t sys tem t)oli(:y
th+tt s tates thed ;t file system b+tcku t) is to l)e
stltrt, ed Mt(,r 1 am its soon as the file system is
"'idle", to, some notion of idhmcss: in tuty ca(so
the ba('kuI) should be st~rtcd no lat(:r thin) 5
~un. This c(mld be expressed by th(: following
rule:

when (((1 : 0 0 < tim¢:<5:00) and idh:)

o r (t i m e = 5am))
a n d n o t bacl,:ed-up
do baclcup

Rules lmky also bc used to exl)rcss the I)(:-
h a v i o r of)hc Amoeba b o o t server, tire serw, r
which ensures (hlrt o ther s(>,'v(,rs +~r(: ~wail~d)h'.
SUl)l)OS(' we h+tve somc serv ice . ,5'crvicc. for
which it is the cas(~ that(~tny lllelll])er of the ser-
vice llt,:ly ha.ndl(~ *t request mid rl t l t l t i l tg l l lore
instlmces of tit(' servic(, <'n~tbles more r(:quests
to b(' handled. Using ;t rule-bascd sys tcm t)cr-
mits rules such as the fi)llowing:

when SIZE(Service) < 3 or

Load(,gt'rricc) > 1.0

do S tar t a n o t h e r i.n, s tauce of Ser'vic(.

Tl,is rul(' creates another instance of Ser-
vice wh(,n tit(: smmber of instances falls beh)w
thre(' or when the lo~d of the s(:rvice as a whole
goes +d,ov(, 1.0. Ex('cuting this rule +d +t rcl)li-
(:at('d M('ta s(,rvice eliminates a i)roblem with

the current boot server, n~u,,ely, what hal)pens
wh(,n the boot server itself fails. (The current
boot server is not fault-tolerant).

Amoeba also includes a run server which
llla, illtaills ~t ve<tor of l)rocessor loads. (Hie eli-
try for each l)rocessor on the network: this in-
tormation is used to schc(hfle tasks tor exc-
<:ution. Instrumenting the distributed operat-
ing system and managing it with Mct a cnabh~s
Meta to directly carry out load-sensitive task
sch(,duling. M()reover. a rule-based system en-
ables complex l)oli,:ie, s su(:h as pro(:cssi)r ~t~'ilt-
ity to be expressed.

The al)proach taken I)y Mcta for system
lllalli~gelllelll makes many of the signifi(:ant
<:on(-cl)ts of ,[istributcd syst(ql.ls theory read-
ily accessible tbr use in system management.
For examph,, the iml>hqnenta,tion of Meta
exi)loits repli('ation techniques and causally-
<>r(lered atomic broadcasts to control the sys-
tem in a fault=t<)lerant and consistent nla, ttner.
Moreow~r, the Meta appr<>ach makes uniiied
nl;ulag(.'nlellt policies feasible fo,' the control
of modular, client-server based designs.

The ideas 1)rcs(-ntcd here will bc tested out
by using the M(q.a toolkit for system mamtgc-
ment tasks in Amoeba. The Meta system is
currently being t)orted t.o Amoeba wl,ile wo,'k
is concurrently un(lerway at defining a high-
level language fin' specit}qng control ImlMes.

A c k n o w l e d g e m e n t s This work has bene-
fited greatly fi'om discussions with members of
thc ISIS project at Corm!ll University. Meta
was originally deveh)pcd while the a, uthor was
at Cornell. A high-leve! control lan.e;uage is
jointly being develope(l with memb(',rs of the
ISIS t)rojcct. L(,cndcrt van Doorn. Frans
Kaashock and Andrew Tanenbaum l)rovided
wduable feedba<'k in the writing of this paper.

R e f e r e n c e s

[1] K. Mani Chandy mid Jaya, tev Misra.
Parallel Pro qram Dr.'d!ln. Addison Wcs-
h'y (I{ea(ling. Mass.). 1988.

[2] Mar(: Guillemont. Jim Lipkis. Doug Orr,
an<l Marc Rozier. A secoml-gmleration
micro-kernel based UNIX: Lessons in per-
fornmn(:e and c<m,tmtibility. In Proc(cd-
ings o / th t USENL¥ Win.tot 1991 Co,fi:r-
cute. l)ages 13 21. 1991.

[3] Keith Marzullo. Robert Cooper. Mark
Woo<l. and Kcn ,e th P. Birman. Tools
tor distributed application lnan~g(.'nlent.
IEEE Computer. 24(8):42 51. August
1991.

[4] Keith Marzullo and Gil Nciger. Detection
of global state 1)re<licatcs. In Proc~'cdirqla
of th, FO'th. Workah.ol> oil Distribv, tcd Al-
gorithms a,M Graph.*. October 1991.

[5] K d th Marzullo real Mark Wood. Tools
for monitoring an(l (:ontrolling (list ributcd
al)pli<'ations. In Spring 1991 Co,flrcncc
Procr,'diug.~. pages 185 196. Eur(Ji)en.
May 1991.

[6] Sapc J. Mullcnder. Guido wm Rossum.
Andrew S. Tancnbaum. Robl)ert wm R('-
n e s s e , a l ld Hans va, n StaverelL i l n o e b a
a distributed operating system for the
1990"s. IEEE Computer. 23(5):-:[4 53,
May 1990.

[7] Richard F. Rashi<t, Thrca<ls of a new sys-
tem. Unix R~vicw, 4:37 49. August 1986.

[8] M. St)eziah',tti and J. P. Kcmn~. A gen-
eral at)proach to recognizing ewmt oc-
currences in distributed computations.
In The Eighth hdcrn,ticnal Cor~fcrc',cc
on Dislrib~dcd Cornputiag ,qystems, pages
30{1 307. IEEE Comt)utcr Society. 1988.

[9] A. S. Tanenbaum. R. wm Rcnesse. H. van
Stavcrcn. G. a. Sharp. S. a. Mulh'nder.
a. Jansen. and G. van Ilossltm. Expe-
riences with the Amoeba distributed op-
erati,g system. Communications of the
ACM. 33:46 63, December 1990.

[10] Mark D. Wood. Faalt-Tob-lunt Man-
aycmcnt of Distributed Applicatio.,,s u,s-
tug the Reactive System, Architecture.
PhD thesis. Cornell Uuiwwsity. Deccml)er
1991.

