Computational Paradigms and Protection

Simon N. Foley and John P. Morrison,
Department of Computer Science,
University College, Cork, Ireland.

{s.foley,j.morrison}@cs.ucc.ie

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access Controls; D.1
[Programming Techniques]: General; F.1.2 [Modes of
Computation): Parallelism and concurrency

Keywords

Security models; protection mechanisms; condensed graphs;
imperative, functional and dataflow programming.

ABSTRACT

We investigate how protection requirements may be speci-
fied and implemented using the imperative, availability and
coercion paradigms. Conventional protection mechanisms
generally follow the imperative paradigm, requiring explicit
and often centralized control over the sequencing and the
mediation of security critical operations. This paper illus-
trates how casting protection in the availability and/or co-
ercion styles provides the basis for more flexible and poten-
tially distributed control over the sequencing and mediation
of these operations.

1. INTRODUCTION

The sequencing of operations in a computation may be
classified in terms of three fundamental paradigms. In the
traditional imperative paradigm, the programmer explicitly
determines the sequencing constraints of operations; in the
availability paradigm, the sequencing of operations depends
only on the availability of operand data; and, in the coercion
paradigm, operations are executed when, and only when,
their results are needed.

These paradigms can be interpreted in the context of pro-
tection. Conventional protection mechanisms generally fol-
low the imperative paradigm by enforcing explicit mediation
and sequencing on operations. For example, when medi-
ating a purchase order transaction [order; validate; invoice;
payment), an imperative protection mechanisin might ensure

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

NSPW’01. September 10-13™, 2002, Cloudcroft, New Mexico, USA.
Copyright 2002 ACM 1-58113-457-6/01/0009...55.00.

that the operations are done in the correct sequence, and
that suitable separation of duties are applied at each stage.

A weakness of the imperative approach is that protection
is based on the explicit control of sequencing and mediation.
Explicit control can become difficult when flexibility over the
sequencing of operations is required. For example, it is often
desirable to allow an un-validated order to progress through
the system with the assumption that validation will be done
at some stage, but before payment is made. Sometimes it
may even be expedient to make payment without any vali-
dation.

While such requirements can be constructed in terms of
explicit sequencing control, it may be more natural to con-
sider the requirements in terms of the data dependencies
between the operations. For example, operation pay de-
pends on operations validate and invoice, operation validate
depends on operation order, and so forth. These relation-
ships can be expressed in terms of a graph of operations
(nodes) linked together by the data that is passed between
them. The implicit parallelism of operations in the graph
gives rise to two different paradigms for specifying and en-
forcing protection requirements.

In the availability paradigm, sequencing and mediation of
operations depend only on the availability of operands. This
data-flow like sequencing of operations gives rise to eager
execution. For example, once an order is proposed then
validation and invoice processing can be done at any stage
(before payment). In the coercion paradigm, sequencing and
mediation of operations is determined on the basis of when
results are needed. This is the functional style of operation
sequencing and gives rise to lazy evaluation. For example,
only if and when payment is finally required should order
validation be sought.

In this paper we investigate how protection requirements
can be specified and implemented using the imperative, avail-
ability and coercion paradigms. This is done using the Con-
densed Graphs model of computation [8, 11] which provides
a single framework that unifies these three paradigms. In ad-
dition to providing flexibility in the sequencing and control
over security critical operations, these paradigms have facili-
tated the development of novel distributed protection mech-
anisms that are also described in this paper. By following
the inherently parallel availability and coercion paradigms,
the proposed protection mechanisms need not necessarily
rely on centralized security state.

Section 2 provides a brief outline of the Condensed Graphs
model. Using the purchase order transaction as an exam-
ple, Section 3 considers various sequencing constraints that



one may wish to enforce. This section also serves to illus-
trate the notation and semantics of the Condensed Graph
model. A protection model based on permissions and pro-
tection domains is described in Section 4. Specific protection
mechanisms for this model are considered in Section 5.

2. CONDENSED GRAPHS

Like classical dataflow [1], the Condensed Graphs (CG)
model [8, 11] is graph-based and uses the flow of entities on
arcs to trigger execution. In contrast, Condensed Graphs
are directed acyclic graphs in which every node contains
not only operand ports, but also an operator and a desti-
nation port. Arcs incident on these respective ports carry
other Condensed Graphs representing operands, operators
and destinations. Condensed Graphs are so called because
their nodes may be condensations, or abstractions, of other
Condensed Graphs. (Condensation is a concept used by
graph theoreticians for exposing meta-level information from
a graph by partitioning its vertex set, defining each subset
of the partition to be a node in the condensation, and by
connecting those nodes according to a well-defined rule [6].)
Condensed Graphs can thus be represented by a single node
(called a condensed node) in a graph at a higher level of
abstraction.

The basis of the CG firing rule is the presence of a Con-
densed Graph in every port of a mode. That is, a Con-
densed Graph representing an operand is associated with
every operand port, an operator Condensed Graph with the
operator port and a destination Condensed Graph with the
destination port. This way, the three essential ingredients
of an instruction are brought together (these ingredients are
also present in the dataflow model; only there, the operator
and destination are statically part of the graph).

Any Condensed Graph may represent an operator. It may
be a condensed node, a node whose operator port is asso-
ciated with a machine primitive (or a sequence of machine
primitives) or it may be a multi-node Condensed Graph.

© ©

o -

Figure 1: Condensed Graphs congregating at a node
to form an instruction

The present representation of a destination in the CG
model is as a node whose own destination port is associated
with one or more port identifications. Figure 1 illustrates
the congregation of instruction elements at a node and the
resultant rewriting that takes place. We decorate connec-
tions to distinguish between different kinds of ports, and
use numbers to distinguish input ports.

Executing a Condensed Graph corresponds to scheduling
its fireable nodes to run on ancillary processors, based on the
constraints of the graph. The nodes in a graph are repre-
sented as triples (operation, operands, destination) and are
constructed by the Triple Manager (TM) as the graph exe-
cutes. Once a node is ready to fire, the triple manager can
schedule it for execution on an ancillary processor. The CG

operators can be divided into two categories: those that are
‘value-transforming’ and those that only move Condensed
Graphs from one node to another in a well-defined manner.
Value-transforming operators are intimately connected with
the ancillary processors and can range from simple arith-
metic operations to the invocation of software components
that form part of an application system. In contrast, Con-
densed Graph moving instructions are few in number and
are architecture independent. These T'M primitives include
the condensed node evaporation operator and the ifel node.

A number of working prototypes that use Condensed Graphs
bhave been developed, demonstrating it usefulness as a gen-
eral model of computation. Prototypes include a sequential
TM interpreter [8] and a web-based distributed computing
engine [10]. WebCom [10] schedules the execution of coarse-
grain computations described as Condensed Graphs. Web
clients (ancillary processors) connect to a WebCom server
(Triple Manager) whereupon they are served appropriate
computations (CG operations).

By statically constructing a Condensed Graph to contain
operators and destinations, the flow of operand Condensed
Graphs sequences the computation in a dataflow manner.
Similarly, constructing a Condensed Graph to statically con-
tain operands and operators, the flow of destination Con-
densed Graphs will drive the computation in a demand-
driven manner. Finally, by constructing Condensed Graphs
to statically contain operands and destinations, the flow of
operators will result in a control-driven evaluation. This lat-
ter evaluation order, in conjunction with side-effects, is used
to implement imperative semantics. The power of the CG
model results from being able to exploit all of these evalu-
ation strategies in the same computation, and dynamically
move between them, using a single, uniform, formalism.

3. OPERATION SEQUENCING

In this section we consider a variety of controls that one
may wish to place on the purchase order transaction example
discussed in Section 1. The examples also serve to illustrate
the notation and semantics of the CG model.

ExAMPLE 1. Condensed node POj specifies the allowable
behaviour for order processing (Figure 2). By definition [8],

Figure 2: Imperative Style Deflnition of PO;

the behaviour of a Condensed Node such as POj; is con-
structed as a Condensed Graph with a single entry node
(E) and single exit node (X). The other nodes in the graph
represent the operations available: propose an order (O),
validate the order (V), process the associated invoice (I) and
make a payment (P).

Arcs represent data paths between the operations which,
in this case, may fire (execute) when data arrives at their
input ports. For example, when the order has been pro-
posed a value (the details) is output from O and passed to
V, which may, in turn, fire, and so forth. Firing a condensed
node evaporates it into the graph that defines it, with input



available from the F node and final output emanating from
its X node.

Figure 2 may be regarded as specifying sequential ordering
constraints [O;V;];P] in an imperative style. A

ExAMPLE 2. Figure 3 specifies the purchase order trans-
action in a simple dataflow or availability manner. Once the
order has been proposed, details are available to both V and
|, which may fire in either order. Only when both inputs

(V)

@040‘00

Figure 3: Availability Style Definition of PO 4

(outputs from V and I) are available, can payment proceed.
A

ExXAMPLE 3. In Figure 4, orders are validated only when
needed, that is, V is executed in a demand or coercion -
driven manner. The V node acts as an input value to node

Figure 4: Demand-Driven Validation of Orders PO¢

P, which results in V becoming fireable only when needed,
as illustrated in Figure 5. If id represents a transaction iden-

tifier then evaporates on firing to its defining

graph with id passed on from entry node F to operation O,
which fires (denoted as *) generating, as output, a purchase
order po (Figure 5(a)). This acts as input to V and I. Oper-
ation | fires (Figure 5(b)) since its input value is present and
its output port is bound to a destination. However, while
an input value is present for V, its output port is not bound
to any destination, and therefore, it may not yet fire.

Once operation | has fired, operation P has values at both
ports (a simple value inv, and a graph connected to node V),
has an output destination, and therefore, is fireable. How-
ever, P expects the values on its input ports to be atomic
values (such as po), and not an executable graph object. A
‘preliminary’ firing of P does not execute P, but ‘grafts’ node
V to the input port to which it acts as a value (Figure 5(c)).
As a result, P is no longer fireable; the output port of V
becomes bound and fires (Figure 5(d)). As a result, opera-
tion P has atomic input values, fires, and generates a check
(Figure 5(e)).

In this example, V is executed in an availability or demand-
driven manner: only when a result (validation) is required,
is it scheduled for execution. Execution of | may be regarded
as eager, while execution of V regarded as lazy. A

EXAMPLE 4. Figure 6 specifies a variation of the purchase
order graph whereby the validation requirement may be by-
passed for invoices up to a certain limit. The operation lim?

Figure 6: Lazy Order Validation POy;.

inspects the invoice, returning true if its value is below a cer-
tain limit; otherwise it returns false. Payment operation P’
has the same behaviour as P, except that it takes only one
input (from I). The conditional operation ifel is provided by
the Triple Manager. It takes a boolean value on its B input
port, and if true then it passes the value at its T(hen) port
to output, otherwise it passes the value at its E(Ise) port to
output.

Note that the decorations on ports T and E indicate that
they are non-sirict, that is, their input values will not be
grafted if they are not atomic. This is unlike sirict ports
where non-atomic values are always grafted. Thus, when ifel
fires the graph at its T or E port simply passes through it,
depending on the value at the B port. Figure 7 illustrates
part of the behaviour when lim? returns true. The input
port to X is strict and the output of P' will be grafted to
the input of X, making P' fireable. Note that in this case P
never fires, and consequently, V never fires. If P is selected
by the ifel then it becomes grafted to X and fireable (and
P’ never fires).

If the graph in Figure 6 had, instead, specified a direct
grafted connection from outputs of P and P’ to the ifel aper-
ation then then operation V may eventually fire, regardless
of whether it is needed. This is analogous to a kind of specu-
lative validation (may validate regardless), as opposed to the
conservative validation (validate only if required) specified
in the original graph.

EXAMPLE 5. Non-strictness provides a degree of higher-
orderedness to graphs: an operation/graph may be treated
as data as it moves around the graph with execution deferred
until it arrives at a strict port whereupon it becomes grafted.
In Figure 8, a revised invoice-processing operation is non-

Figure 8: Lazy Validation IT PO.2

strict on its ‘validation’ port; it checks the invoice against
the order and outputs a suitable value (graph) that includes
the yet-to-be executed V operation (and its inputs).

The payment operation P" also has a non-strict input
port; it generates a print-check operation Ck with a depen-
dency on the V operation (see Figure 9(a)). This graph value



Figure 7: Snapshot of Lazy Order Validation POy,

may be thought of as representing the behaviour “before is-
suing the check, validation must bz done”.

‘When this graph arrives at the strict port of X, it is
grafted (Figure 9(b)), which in turn, results in the graft-
ing of V (Figure 9(c)), which in turn becomes fireable. Only
when validation is done, can the check be printed, and POL3
completed. A

Condensed Graphs provide an executable notation that al-
lows us to precisely specify how operations should be ‘glued’
together. The next section proposas a protection framework
for this ‘glue’.

4. PROTECTION FRAMEWORK

A Triple Manager schedules the nodes of a graph to be
fired on the ancillary processors that are participating in
the computation. These processors could be the components
of a parallel machine, a network of workstations or a vari-
ety of heterogenous systems, conr.ected over local networks
and/or the Internet. From a security perspective, we as-
sume that when a node fires, it does so within some security
domain, which reflects the resources that can be accessed
by the node. Thus a domain could correspond to a specific
host on a network, a subnet, and so forth. However, we are
not limited to a network computing model: a domain could
represent a traditional protection domain [7]. For example,
a node that performs a secret operation could be scheduled
to domain secret. Alternatively, an authenticated domain
might be represented by the public-key that speaks for it.

An operation may be scheduled to a particular security
domain only if the security domain holds the correct permis-

sion that provides authorization to execute the operation.
Each node has a permission attribute that reflects the nec-
essary authorization (required by a domain) to execute it.
The Triple Manager provides a primitive operation

Perm perm(NonStrict Node n);

where, perm(n) returns the permission associated with node
n. Non-strictness is required since examining the permission
attribute of a node should neot result in its execution.

Permissions are treated as primitive value nodes within
a condensed graph and are assumed to be structured as a
lattice (Perm, <, U), whereby z < y means that permission
y provides no less authorization than . A simple example
is the powerset lattice of {read, write}, with ordering defined
by subset, and lowest bound (U) defined by union. Thus
the lowest upper bound operator may be used to compose
permissions.

A Triple Manager schedules the nodes of the graph it is
executing to fire in security domains that have appropriate
permissions. A primitive operation is provided.

Perm sdom(NonStrict Node n);

Given node A, then sdom(A) returns the permission as-
signed to the domain that A is scheduled to. If A is not
yet ready to fire then sdom may either return the domain
planned for A or it may block until it is known and/or ready
to fire. Only a single permission need be associated with
each security domain since composite permissions may be
constructed using L.

If the node A is not a primitive operation, that is, it is a
condensed node, and if it is to be scheduled to the same do-



inv

(a) (b)

(c

Figure 9: Strictness and Eventual Validation in POr;

main as that of the current Triple Manager, then the current
Triple Manager will manage the scheduling for the graph
that A defined. If A is scheduled to fire in a different do-
main then another Triple Manager running in this domain
sdom(A) will schedule the graph that A defines. The prim-
itive TM operation

Perm cdom();

returns the permission assigned to the domain of the graph
currently executing, that is, the permission assigned to that
the Triple Manager executing the graph. Figure 10 illus-
trates the relationship between the security-related TM prim-
itives: a triple manager has scheduled the condensed node
A (security attribute a) to be executed by another Triple
Manager that is running in a domain with permission x.
The graph defined by A is said to run in a security context
(,a).

The Triple Manager is regarded as a trusted component
in the sense that the triples that it manages may be ac-
cessed only by the Triple Manager and that it constructs
and schedules triples faithfully and according to the graph
it is executing'.

When a node with permission attribute a fires in a do-
main with permission z then it is said to have a security
contert (z,a). Security is defined in terms of whether a
graph in one security context may schedule a node to fire
in another security context (or possibly the same). A node
with permission attribute b that is part of a graph with a
security context (z,a) may be scheduled to a domain y if
implies((z, a), (¥, b)) bolds, where implies is a partial order-
ing relation between security contexts. This relation, called
the scheduling constraint, controls how graphs evaporate

We do not prescribe a specific definition for the implies
relation. However, one possible definition could be based on
the permission orderings.

implies((z,a), (y,b)) = (@ <z)A(y<z)A (B<LY)

Considering Figure 10, the Triple Manager must have suffi-
cient permissions to execute (the graph defined by) A (a <
z). This Triple Manager must also have sufficient permis-
sion to schedule any node of this graph to another domain
(v < z). Similarly, B must be authorized to run in this
domain (b < y), and thus we have implies((z,a), (y,b)).

ExAMPLE 6. A Triple Manager schedules the nodes of a
graph to be fired on the ancillary processors participating in
the computation. Suppose that the purchase order system
is implemented across a network of personal workstations
connected to a trusted server.

Define the set of permissions as the powerset of {clk, mgr},
with subset as the ordering relation. Operations O and |

1We believe that assuring the correctness of the Triple Manager
should be straightforward; the core of its current implementation
stands at a few hundred lines of C code.

have permission attribute {clk}; operations V and P have
permission attribute {mgr}, and condensed node POy has
permission attribute {}. Alice is a manager and is bound to
permission {mgr}, while Bob, a clerk, is bound to permission
{clk}.

Suppose that Alice requests that an instance of POy is to
be executed on a trusted server (domain {clk, mgr}). This
provides a context ({clk, mgr}, {}) from which the operations
O, I, V and P will be scheduled. Operations O and | may
be scheduled to Alice’s domain (context ({clk},{}) on her
workstation). Similarly, V and P may be scheduled to Bob.
A

5. PROTECTION MECHANISMS

The security of a graph (based on the scheduling con-
straint) can be defined in an operational or denotational
manner. Operationally, a graph is secure if the Triple Man-
ager schedules only those nodes that uphold the scheduling
constraint. The disadvantage of this approach is that the se-
curity mechanism must be hard-coded as part of the Triple
Manager and is implementation dependent. The alternative
is to define security in a denotational way, that is, define the
enforcement of the scheduling constraint in terms of a Con-
densed Graph. We take this approach, guaranteeing that
our proposed security mechanisms can be implemented, not
having to worry at this stage about low-level operational de-
tails. Another advantage of defining security in this way is
that we can program alternative protection mechanisms.

5.1 Fragile Protection

The fragile protection operation /)+> takes a node
A as its input operand and if the scheduling constraint is

upheld then A may fire, that is, Aaill} evaluates to A.
If the scheduling constraint fails then A may not fire and
the result of the evaluation is null. Figure 11 defines the
operation as a condensed node. For the purposes of this

Figure 11: Definition of Fragile Protection Operator

paper we assume that the graph that is defined by /?+>



Context (w,p)

Context (x.a)

Context (y,b)

::Z:_;fi'r"-e-.;/evapo rates

----- -r» B ezecutes

Operation B executes
in a domain that holds
permission y

Graph containing condensed
node A runs in a3 domain that
holds permission w.

Graph defined by A scheduled
to aTriple Manager running
in domain with permission x

Figure 10: Condensed Node B Scheduled to Fire

executes (is scheduled) in the same protection domain as
its parent. This ensures that the value edom referenced in
Figure 11 corresponds to the cdom of its parent, that is, the

domain that schedules the node input (A) to ﬁ+>

Since the input port of the fragile protection operation
is non-strict, its operand A passes into its graph without
grafting/firing. Lazy evaluation within the graph ensures
that A passes to the X node only if it is to be scheduled
to an appropriate domain, whereupon it becomes grafted to
the strict port of X and fires.

ExXAMPLE 7. Figure 12 protects the ordering process de-
fined in Figure 8. The protection nodes that protect opera-
tions O, I" and P” are immediately available to fire. Figure 13
illustrates the result of these nodes firing. An alternate fir-
ing sequence might fire the protection node of O, followed by
O, and so forth. The validation operation is mediated on a

lazy basis: The protected V operation (sub-graph la@)
passes through the I' and P” nodes. On becoming an input
to the X node the protection operation becomes grafted,
and fires, mediating the scheduling of V. A

In this paper we consider only the security constraints
on the scheduling of nodes. How exactly a Triple Manager
decides when to schedule fireable nodes must be left to the
Triple Manager. It would be straightforward to implement a
Triple Manager that tried to ensure that the scheduling con-
straint was always upheld when scheduling. In practice, we
expect that a fragile protection node would be implemented
as a TM primitive, rather than as a condensed node.

An implementation of the Triple Manager must also de-
cide whether the protection operation should fire as soon as
possible or whether it should wait until the node it mediates
has all of its input ports bound. Immediately firing a protec-
tion node gives rise to the notion of speculative protection,
whereby the Triple Manager scheclules, in advance, an (au-
thorized) domain for an operation before it is ready to fire.
Alternatively, deferring the firing of the protection node un-
til the operation it mediates has all of its input ports bound
gives rise to conservative protection. Like speculative and
conservative computation these can be controlled within the

Triple Manager.

5.2 Tenacious Protection

The disadvantage of the fragile protection operator is that
potential results are lost if the scheduling constraint is not
upheld. Rather than failing, it would be preferable to re-
schedule the node for later evaluation, or allow it to be
scheduled by another Triple Manager that has authority
to assign an appropriate domain. This is achieved by the
tenacious protection operation defined in Figure 14. Graph

Aa@ is defined recursively. If the scheduling constraint is

Figure 14: Definition of the Tenacious Protection
Operator

upheld then node A becomes grafted to the input port of X
and may be fired. If the scheduling constraint is not upheld

then the result is A, lazily protected, that is, A—B@ Un-
like fragile protection, the tenacious protection operator be-
haves like a security wrapper that can be repeatedly probed,
but can only be unwrapped (scheduled) in an authorized do-
main.

The tenacious protection operator could be implemented
as a TM primitive. One interpretation is that the TM post-
pones the scheduling of a node until an authorized domain
1s available. However, more general interpretations are pos-
sible. For example, if the current Triple Manager cannot
assign an authorized domain then the protected operation
can be scheduled to another Triple Manager that can assign
an authorized domain.

EXAMPLE 8. Suppose that a network is partitioned in
terms of a clerk subnet and a management subnet and each
subnet has its own server which routes traffic to other sub-
nets. A Triple Manager on the clerk server starts a PO



= oY VTG

Figure 12: Protecting the Ordering Process

DL PR

Figure 13: Protecting the Ordering Process

transaction graph, and schedules the requested O operation
to a clerk’s workstation. Since it cannot schedule a manage-
ment V operation, it passes the ‘wrapped’ operation to the
Triple manager on the management server for, scheduling,
which in turn schedules it to an appropriate management
workstation.

Domain scheduling heuristics, such as that discussed in
Example 8 should be considered part of the implementation
of the Triple Manager. The tenacious protection operator
could be thought of as a scout node that can be sent out
across the network looking for a suitable Triple Manager to
schedule the protected node. Once found, the underlying
Triple Manager transparently retrieves the protected node.
An alternative and speculative approach would be to mul-
ticast the protection operator across the network; as soon
as one Triple Manager can schedule the protected node, the
node migrates and all other speculative protection nodes are
garbage collected. Low-level protocols to support, what is
in effect, remote node invocation has been investigated else-
where: a Triple Manager scheduling PVM processes [9] and
a traditional dataflow system [13]. Investigating suitable
domain scheduling heuristics is a topic for future research.

ExaMPLE 9. Condensed Graphs are used to exploit par-
allelism in a computation and the Triple Manager(s) can
schedule the computation across networks of workstations
[10]. Figure 15 gives an example of a graph that schedules a
distributed brute-force key search given known plain/cipher
text. The key space is split into a series of intervals indexed
as 0,1,... ,mazindez. Primitive operation

Int er(Int interval);

searches a specified interval for the key. If found the key is
returned, otherwise 0 is returned. Operation search is de-
fined recursively and has a high degree of parallelism that
can be exploited by the Triple Manager which schedules op-
eration cr to be executed on participating processors. Op-
eration search is passed the initial value nazindez.

An organization wishes to use this application to find a
particular key. For the purposes of security, search oper-
ations may be scheduled only to systems within the orga-
nization intranet, while the cr operation may be scheduled
to any recognized system. Figure 15 illustrates how these
requirements are selectively programmed within an appli-
cation. Operations search and cr are assigned permission
attributes in and out, respectively. A permission may be
associated with a node by introducing an additional per-
misgion input port to the node and is illustrated by using

Figure 15: Programming Protection

a solid input arrow-head. Given the permission ordering
(out < in), then systems (domains) within the intranet are
given permission in, and recognized external systems are
given permission out. Schedules implies((in,in),(in,in)), im-
plies((in,in),(out,out)) and implies((in,in),(in,out)) hold, while
implies((in,in),(out,in)) does not. A

5.3 Emergent Protection

Many protection policies base access decisions on previous
decisions and/or behaviour, for example Chinese Walls [3]
and Dynamic Separation of Duties [12]. Condensed Graphs
represent distributed computation and it is preferable not
to rely upon a centralized-state approaches such as [4] to
provide mechanisms that enforce these requirements.

The wrapping protection mechanism, specified in Figure 16,
can be used to support, in a distributed fashion, a limited
form of dynamic separation of duties. The wrapping opera-
tor W(z, A) takes as input a node A, and permits it to fire
in any domain y that is strictly more authorized, or has an
uncomparable authorization, to z. The result R from firing
A is then ‘wrapped’ as W(z U y,R). Thus, the first param-
eter of W is used to continue a local state (for this node)
by acting as a high-water mark of the permissions of past
domains.

Figure 17 gives a snapshot of this mechanism in opera-
tion. Given W(A,z) and if we have sdom(A) £ z, then A
is explicitly grafted to the- second input port of a new W
operation. This makes A fireable, but the non-strictness of
this port of W will not graft the resulting output R. This
resulting output R of A is protected and may fire only in
a suitably different domain, and so forth. This wrapping
operation is tenacious and is easily extended to enforce the



A fires in domain y!<=x, outputs R

(v=wz)

2§ T

R fires in domain wl<=2z, outputs S

Figure 17: Snapshot of a Wrapping and Unwrapping

Figure 16: Wrapping Protection Mechanism

scheduling constraint.

ExXAMPLE 10. Consider a simplified version of the pur-
chase order transaction (Figure 18). The order operation
takes as input an order-id, and (nomn-strict) a payment op-
eration, and outputs the payment operation P appropri-
ately transformed to include order value, and so forth. The

0L Ce-o

Figure 18: Dynamic Separation of Duty

order operation is mediated as W(O, {}), where {} is the
empty permission. A manager (permission {mgr}) may ex-
ecute the O operation, and the result is the wrapped node
W(P, {mgr}). Payment P may novwr fire only in domains with
permissions {clk} or {clk,mgr}. A

While tailored to a specific requirement, the proposed
wrapping mechanism illustrates the flexibility in using Con-
densed Graphs to specify (and implement) protection re-
quirements. Rather than maintaining a centralized security
state, the operator W can be thought of as providing emer-
gent protection: mediation results in the emergence of a
further protection mechanism to mediate a subsequent op-
eration. Investigating how this mechanism might be applied
in practice and developing emergent mechanisms for general
protection policies is a topic for future research.

10

6. DISCUSSION AND CONCLUSION

The Condensed Graphs model provides a single frame-
work in which protection requirements can be specified and
implemented within the imperative, availability and coer-
cion paradigms. Section 3 described how combining these
paradigms provide flexibility in the sequencing and control
over security critical operations. Sections 4 and 5 draw on
these techniques and develop novel protection mechanisms.
A Tenaciously protected node (operation or data) can be
repeatedly probed, and passed around, but may omnly be
unwrapped in the appropriate domain. Referential trans-
parency in the Condensed Graphs model means that this
tenacity may be further applied to the results generated by
an operation which emerge protected by a mechanism cre-
ated on the fly.

Triple Managers transparently schedule graph operations
to appropriate security domains. This allows protection re-
quirements to be coded as part of the graph program, inde-
pendently of the underlying architecture. Graph-based pro-
tection operators such as tenacious protection can be viewed
as a protection wrapper that may be unwrapped only in an
authorized security domain. Scheduling a tenaciously pro-
tected node to an authorized domain is completely trans-
parent, even though it may have been necessary to migrate
the protected node through a number of Triple Managers
before it could be successfully scheduled.

Secure WebCom [5] provides one possible implementa-
tion of the protection model described in this paper. We-
bCom [10] Masters schedule Condensed Graph applications
over remote WebCom clients (ancillary processors). Web-
Com Masters use KeyNote credentials [2] to determine the
operations that the client is authorized to execute; Web-
Com master credentials are used by clients to determine if
the master had the authorization to schedule the (trusted)
mobile-computation that the client is about execute. This
implementation can be interpreted in terms of the protec-
tion mechanisms described in this paper. Client and Master
public keys provide security domains, while credentials de-
fine their associated permissions. The authorization check
is similar to a fragile mediation on every node in the graph.

Much work remains to be done investigating how the pro-
tection model described in this paper might be used in prac-
tice. The protection model might also be used as part of a
conventional secure system. A Condensed Graph can be re-
garded as a sophisticated job-control language used to sched-
ule operations, such as multilevel transactions, to the pro-
tection domains of a separation kernel {14].



Acknowledgments

Thanks to the anonymous referees and the Workshop audi-
ence for their useful comments on this paper. This research
was supported in part by Enterprise Ireland National Soft-
ware Directorate.

References

1]

(2]
(3]

[4]

[5]

(€]

ARVIND, AND GosTELOW, K. P. A computer capable
of exchanging processors for time. Information Process-
ing 77 Proceedings of IFIP Congress 77 Pages 849-853,
Toronto, Canada, August 1977.

BLAZE, M., ET AL. The keynote trust-management sys-
tem version 2. Internet Request For Comments 2704.
BREWER, D., AND NaAsH, M. The Chinese Wall secu- -
ity policy. In Proceedings of the 1989 IEEE Symposium
on Security and Privacy (May 1989), IEEE Computer
Society Press, pp. 206-214.

FoLEY, S. The specification and implementation of
commercial security requirements including dynamic
segregation of duties. In Jth ACM Conference on
Computer and Communications Security (1997), ACM
Press.

FoLeEy, S., QuILLINAN, T., MORRISON, J., POWER,
D., AND KENNEDY, J. Exploiting KeyNote in Web-
Com: Architecture neutral glue for trust management.
In Fifith Nordic Workshop on Secure IT Systems (Reyk-
javik, Iceland, Oct 2001).

HApaRry, F., NorMAN, R., AND CARTWRIGHT, D.
Structural models: An introduction to the theory of
directed graphs. John Wiley and Sons,1969.

11

[7]
(8]

[9]

(10]

[11]

(12]

(13]

14]

LAMPION, B. Protection. ACM Operating Systerns Re-
view 8 (1974).

MORRISON, J. Condensed Graphs: Unifying
Availability-Driven, Coercion-Driven and Control-
Driven Computing. PhD thesis, Eindhoven, 1996.
Monnison, J., AND CoNNoOLLY, R. Facilitating Par-
allel Programming in PVM using Condensed Graphs.
Proceedings of EuroPVM’99: Universitat Autonoma de
Barcelona, Spain. 26-29 Sept 1999.

MonnisoN, J., Power, D., AND KENNEDY, J. A
Condensed Graphs Engine to Drive Metacomputing.
Proceedings of the international conference on parallel
and distributed processing techniques and applications
(PDPTA '99), Las Vagas, Nevada, June 28 - Julyl,
1999.

MOoRRISON, J., AND REM, M. Managing and exploit-
ing speculative computations in a flow driven, graph
reduction machine. proceedings of PDPTA’99: Las Ve-
gas, USA. June 28-July 1, 1999.

NasH, M., aAnD PorLanD, K. Some conundrums con-
cerning separation of duty. In Proceedings of the Sym-
posium on Security and Privacy (Oakland, CA, May
1990), IEEE Computer Society Press, pp. 201-207.
R.D. BLuMOFE, P. L. Adaptive and reliable parallel
computing on networks of workstations. Proceedings of
the USENIX 1997 Annual Technical Sympasium (Jan-
uary 1997).

RusHBY, J. M. The design and verification of secure
systems. In Proceedings 8th ACM Symposiuvm on Oper-
ating System Principles (Dec. 1981). Available as ACM
Operating Systems Review 15 5.



