
UC Davis
IDAV Publications

Title
Hardware-Accelerated Parallel Non-Photorealistic Volume Rendering

Permalink
https://escholarship.org/uc/item/20j9c13z

Authors
Lum, Eric
Ma, Kwan-Liu

Publication Date
2002
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/20j9c13z
https://escholarship.org
http://www.cdlib.org/


Hardware-Accelerated Parallel Non-Photorealistic Volume Rendering

Eric B. Lum � Kwan-Liu Ma �

University of California at Davis

Abstract

Non-photorealistic rendering can be used to illustrate subtle spa-
tial relationships that might not be visible with more realistic ren-
dering techniques. We present a parallel hardware-accelerated
rendering technique, making extensive use of multi-texturing and
paletted textures, for the interactive non-photorealistic visualiza-
tion of scalar volume data. With this technique, we can render a
512�512�512 volume using non-photorealistic techniques that in-
clude tone-shading, silhouettes, gradient-based enhancement, and
color depth cueing, as shown in the images on the color plate,
at multiple frames second. The interactivity we achieve with our
method allows for the exploration of a large visualization parame-
ter space for the creation of effective illustrations.
Keywords: interactive visualization, non-photorealistic rendering,
scientific visualization, silhouette, texture graphics hardware, vi-
sual perception, volume rendering, parallel rendering

1 Introduction

Using a brush or pen, skilled artists are able to apply pigments in a
manner that create meaningful abstractions of reality. Using a wide
range of techniques, an artist can emphasize features that might
not otherwise be visible, while de-emphasizing those features of
less importance. In the field of non-photorealistic rendering, meth-
ods have been developed that attempt to mimic some of the tech-
niques an artist might utilize. Surface rendering techniques include
methods for creating illustrations that mimic the use of pen-and-
ink [7, 23, 26], including work that uses multi-texturing capability
of PC graphics cards for rendering illustrations interactively [22].
Additional research has been performed on paint and brush inspired
rendering [1, 20, 15] and visualization [12]. A technique has also
been developed for the use of non-photorealistic tone shaded light-
ing [5]. In addition there has been research on the interactive ren-
dering of surfaces using an efficient set of lines [18].

Non-photorealistic rendering for volumetric data visualization
has recently become an area of active research. Treavett and Chen
show how pen-and-ink rendering can be applied to volume visual-
ization [24]. Ebert and Rheigans describe how a number of non-
photorealistic rendering techniques can be applied to volume ren-
dering [2]. They demonstrate that non-photorealistic methods can
enhance features and improve depth perception.

Interactive volume rendering methods give scientists the ability
to quickly explore a data set. These methods are often associated
with the real time exploration of a volume in the spatial domain,
where parameters such as camera position and zoom are varied in
the visualization process. However, for volume rendering appli-
cations, equally important is the ability to interactively change the
transfer function which maps the scalar data in the volume to color
and opacity values. The ad hoc nature of transfer function spec-
ification makes it an iterative process, where a scientist changes
the opacity and color map, renders and examines the volume with
these changes, and then repeats the process as necessary. Transfer

�Department of Computer Science, University of California, One
Shields Avenue, Davis 95616, {lume,ma}@cs.ucdavis.edu

function specification requires a great deal of fine tuning, making
interactivity extremely important.

When non-photorealistic rendering methods are utilized interac-
tivity becomes even more critical. Each non-photorealistic render-
ing technique adds its own set of addition parameters that must be
specified. For example, if tone shading is utilized, for best results
the variation in color should be carefully specified with respect to
both hue, saturation and value until the result desired by the user
is met. Much like transfer function specification there is no "cor-
rect" set of parameters that can be utilized for all data sets since
these parameters vary widely depending on what type of features
the user would like to accentuate or deemphasize. In fact, often the
user does not know what type of rendering style is desired, only
through experience and experimentation can parameters be found
suited for their particular application. In addition, it might be de-
sired to mix both photorealistic as well as non-photorealistic render-
ing styles when rendering a single volume. This requires multiple
sets of transfer functions and lighting parameters, multiplying the
number of parameters that must be set and as well as the need for
interactivity. Thus, when non-photorealistic rendering is used in a
volume rendering context, interactively with respect to viewpoint,
transfer function and non-photorealistic rendering parameter space
is essential.

Unfortunately, many factors make interactive non-photorealistic
rendering extremely difficult. First, the addition of non-
photorealistic rendering techniques only adds to the number of cal-
culations required in the rendering process. As a simple example,
silhouette rendering requires the additional calculations associated
with silhouette detection. Furthermore, the standard technique of
rendering lower resolution data or rendering to a lower resolution
window to achieve interactivity is often not suited to the needs of
the user when selecting non-photorealistic rendering parameters.
Non-photorealistic rendering can be used effectively to clarify fine
structures in a volume. In order to specify rendering parameters op-
timized for viewing these structures, the volume must be rendered
at high resolutions. For example if a user is trying to accentuate
blood vessels in a data set by manipulating the parameters associ-
ated with silhouette and gradient, it is necessary that the volume be
rendered at its full resolution to a screen resolution high enough to
view the vessels clearly.

In this paper we present a method for interactive non-
photorealistic volume rendering using hardware accelerated ren-
dering techniques with a PC cluster. We demonostate that using
a number of newer features found in modern consumer graphics
cards, including 3-D textures, multi-texturing, and paletted textures,
it is possible to implement several NPR techniques in hardware
such as tone shading, silhouette illustration and depth based color
cues. By using multiple graphics cards spread across a PC cluster,
we are able to render high resolution volumes at frame-rates inter-
active enough for the tuning of view, transfer function, and non-
photorealistic rendering parameters. The interactivity we achieve
makes possible the creation of highly effective non-photorealistic
visualizations which would not be possible with less interactive
methods.

1



Texture

Palette

Scalar data values

Color & opacity maps

Texture

Palette

Gradient directions

Tone shading

Texture

Palette

Gradient magnitude

Surface enhancement

Texture Distance modulation

Texture
Unit 1

Texture
Unit 2

Texture
Unit 3

Texture
Unit 4

Pass I

Scalar data values

Opacity map

Gradient directions

Silhouettes & specular

Gradient magnitude

Surface enhancement

Distance modulation

Pass II

Figure 1: Rendering requires two passes each with 4 texture units.

2 Non-Photorealistic Volume Rendering in
Hardware

Direct volume rendering can be accomplished by drawing a set of
view-aligned polygon slices that sample a 3-D texture containing
the volumetric data [25]. Using pixel textures allows a texel value to
store coordinates into a second texture. Because scalar and lighting
information can be encoded into a texel, transfer function and shad-
ing can be changed through the variation of a single texture [21].
Kniss et al. [10], describe how multi-dimensional transfer functions
can be interactively specified and rendered with traditional lighting
by using multi-textured/multi-pass rendering. Engel et al. [3] use
a technique they call pre-integated volume rendering, which also
uses multi-textured/multi-pass techniques for improved rendering
accuracy with fewer polygon slices.

Our hardware-based volume renderer methods also makes ex-
tensive use of the multi-texturing capabilities of modern graphics
cards but with the goal of producing non-photorealistic volume ren-
derings. Multi-texturing allows several textures to be combined on
a single polygon during the rendering process. By utilizing sev-
eral separate volumetric textures that store scalar data value, gra-
dient magnitude, and gradient direction, and combining them with
properly adjusted color palettes, several different non-photorealistic
rendering techniques can be rendered in hardware.

Paletted textures store indices into a color palette that samples
the RGBA color space. Through the manipulation of the palette
over time, the textures can be varied based of the viewing parame-
ters without changing the data stored in the textures themselves. It
is important to use a representation that avoids any manipulation of
data that is stored for every voxel since volumetric data sets tend to
be large, and traversing the entire volume in software can severely
hamper interactivity. Unlike pixel textures that are filtered prior to
their texel lookup, paletted texture are filtered after color lookup
in RGBA space, permitting non-linear palette mappings to be used
with trilinear interpolation in hardware.

We utilize four texture units for each rendering pass, with two
passes for every view aligned polygon, as shown in Figure 1. The
first pass renders the tone shaded volume, while the second pass
contains silhouette and specular contributions. For both rendering
passes the four texture units are assigned to the same paletted tex-
ture data. The difference between the two passes occurs in the ad-
justment of the palettes used for each texture.

Each of the four texture units are assigned a different texture.
The first texture consists of the original scalar values stored in a

paletted texture with 8-bit precision. If the original data set is of
higher precision, it is quantized to minimize mean square error us-
ing Lloyd-Max quantization [14, 19]. The second stores the nor-
malized gradient direction of each voxel. These directions are en-
coded in an 8-bit paletted texture, with each direction quantized to
one of 240 vectors obtained from the faces of a subdivided version
of a combined dodecahedron and icosahedron [25]. The gradient
direction information is used for lighting and silhouette operations.
A third texture contains gradient magnitudes and will be used for
enhancing surfaces. The fourth is a 1-D texture for manipulating
color and opacity based on the spatial properties of voxels.

Aside from our emphasis on non-photorealistic rendering, our
work differs from previous hardware accelerated volume render-
ing techniques in our extensive use of paletted textures. Paletted
textures permit an arbitrary mapping of gradient direction to color
while using only a single texture unit (unlike pixel textures which
require two). Arbitrary palette lookups gives flexibility in how gra-
dient direction vectors are used, permitting a wide variety of NPR
techniques to be applied, while the use of a single texture unit al-
lows more of these techniques to be combines simultaneously in the
limited number of available texture units.

2.1 Tone Shading

Lighting can be extremely effective in conveying the shape and
structure of an object. Tone shading involves the variation of color
temperature or tone to indicate an objects illumination. It is based
on the manner that artists often convey lighting through not only
the varying of pigment value (intensity) but also through the varia-
tion of color temperature or tone [17]. Directly illuminated objects
are represented with warmer colors which include yellow, orange
and red. This type of lighting is associated with light that comes
directly from natural light sources which tend to emit warm light,
like candles or the sun. Ambient lighting is typically shown using
cooler colors like blue or purple. This is motivated by the fact that
reflected light tends to be cooler in nature, like the light received
from a blue sky rather than directly from the sun. When consid-
ering color temperature it is important to consider relative temper-
ature rather than absolute. For example there can be warm blues
and cool reds. Tone shading is accomplished through the variation
of relative color tone over an object. Thus ambient lighting is not
required to be blue or purple, but instead should simply be cooler
than the diffuse lighting.

Gooch et al. [5] use tone shading for the illumination of sur-
faces. They present a shading model for tone based illumination
which allows extreme color values to be reserved for outlines and
highlights.

We compute tone based lighting using the gradient direction tex-
ture in the second texture unit. As described in the previous sec-
tion, each index in this texture contains an index into a sampling
of a normalized vector space. Each time a spatial viewing parame-
ter is changed, the gradient direction palette is modified. For each
index the dot product is calculated between the transformed vector
represented by each index, and the light direction. Once the dot
product is calculated, the color tone for that product is looked up in
a tone shading colormap. The entry found in the colormap is finally
stored in that palette for that texture index. The second texture unit
is setup to modulate the color from the scalar data in the first tex-
ture unit. The second texture unit does not affect the alpha channel,
since lighting does not influence opacity.

The user is able to interactively specify the colors used in tone
shading by selecting a set of key color entries that are linearly in-
terpolated across the colormap. By manipulating and shifting these
key colors across the colormap, lighting parameters can be selected
suited for the data set being visualized.

For example, artists typically do not paint smooth Phong shad-

2



Figure 2: Left: Vessel with abrupt tone shading. Right: smooth tone shading.

ing, but rather use more abrupt lighting transitions. An extreme
example of this type of lighting is found in animation cell paint-
ing, where painted cells often have two discrete lighting levels, one
for ambient lighting and one for diffuse. By making the transition
between cool and warm colors relatively short, it is possible to pro-
duce this kind of abrupt lighting transition as seen in the image of
blood vessels shown in the left image of Figure 2. This can be con-
trasted with the relatively smooth lighting found in the right image
of Figure 2.

The manipulation of the saturation of the colors used in the tone
colormap controls the degree tone shading is visible. By making
the colors more saturated, the effects of tone shading becomes more
subtle permitting more of an objects original color (as specified in
the transfer function) to be seen. Manipulation of the saturation and
value of the tone colormap, can also be used to control the degree
color intensity varies with lighting. For example by using a highly
saturated tone colormap with a transition between dark and bright
intensities, more traditional lighting can be produced.

2.2 Silhouette Illustration

Silhouettes have been utilized for the illustration of surfaces [23,
8, 9] since dark lines drawn around an object can be effective in
showing an objects structure. These lines can also be used to help
indicate an objects spatial relationship with other objects that con-
sist of similar material. For example, dark silhouettes drawn around
overlapping objects can provide depth cues with respect to those ob-
jects. This is particularly valuable in volume rendering applications
where transfer functions are often set such that objects are semi-
transparent sometimes making inner-spatial relationship difficult to
determine.

We implement silhouette rendering using a second rendering
pass that applies the silhouette and specular contribution. For this
pass we once again use the scalar value texture in the first texture
unit, and the gradient direction texture in the second. The desired
combined texture has an opacity that depends on both the opacity
of the voxel from the transfer function as well as degree to which
that voxel’s gradient is perpendicular to the viewing direction. For
this pass, we therefore assign each palette entry in the gradient di-
rection texture with an opacity that is the highest when the trans-

formed gradient vector represented by that index is perpendicular
to the viewing direction. We then assign the color for each entry to
be the desired color of the silhouette, typically black. The image
on the left of Figure 3 shows fine blood vessels that are enhanced
using silhouettes. Notice that the spatial relationship between the
overlapping vessels near the top of the image are clearer than those
found in the image without tone shading at the bottom of Figure 3.

The user is able to vary to what extent the dot product between
the gradient and viewing direction influences opacity. For narrow
silhouettes the user can specify a rather narrow range of near zero
dot products that result in an opaque silhouette. For thicker sil-
houettes a fairly wide range of dot products can be specified. By
varying the opacity with dot product value the user can make the
silhouette fade as the objects gradient becomes aligned with the
viewing direction.

The same texture is also used simultaneously for specular light-
ing. For each encoded gradient direction the specular lighting con-
tribution is calculated and added to the red green and blue palette
entry. The alpha channel is not adjusted since specular lighting
should not affect the opacity of a rendered voxel.

2.3 Color Based on Position

Color can be manipulated based on distance to improve depth per-
ception [4]. Aerial perspective has been used by painters to con-
vey depth through the variation of color hue and value based on
depth. Typically warmer hues are used for the foreground and be-
come cooler in the background. In addition, color values tend to
become lighter and less intense with distance [11].

We implement this technique in hardware by assigning the tex-
tured polygons per vertex colors that are modulated with the tex-
tures. Each vertex is assigned a color that is varied based on the
distance between that vertex and the viewpoint. Colors are inter-
polated along each polygon using linear interpolation and is then
blended with the texturing stage. The depth clues provided by the
variation in tone are evident in the left image of Figure 4 where the
warmer colored foreground vessels correctly appear to be in front.
This can be contrasted with the right image of Figure 4 where the
spatial relationship between vessels is less clear. If mipmapped tex-
tures are used, the level-of-detail bias of each slice can be varied to

3



Figure 3: The silhouettes shown on the left image help clarify the spatial relationship between vessels.

Figure 4: Left: Depth based tone manipulation Right: Without depth based tone manipulation .

4



manipulate focus for a depth of field effect.
As an extension to depth based color manipulation, we allow

the user to perform non-linear color variations along arbitrary di-
rections in the volume. This is accomplished by assigning a 1-D
texture to the fourth texture unit that controls how color is varied
based on position. The user can specify how color is modulated
across this direction in an arbitrary manner, with axis rotation im-
plemented using matrix transformations of the texture coordinates.
This technique is particularly effective in manipulating the alpha
channel, permitting opacity to be reduced in certain regions that
might obscure or detract from the feature the user would like to
visualize. Through non-linear fading of the alpha channel along
the view direction, closer material can be made more transparent
making underlying features more visible, with foreground material
still slightly visible to provide context for the features of interest as
shown in the bottom right image on the color plate.

2.4 Gradient Based Enhancement

Gradients have been used for the enhancement of surfaces in vol-
ume rendering applications [13]. Since the transition between fea-
tures in a volume tend to have the highest gradient magnitude, the
enhancement of the opacity in these regions can help to clarify sur-
faces. The skin surface shown on the left side of Figure 5 is made
visible through gradient enhancement, allowing the underlying ma-
terial to be made visible using a technique described in the next
section.

We implement surface enhancement with the third texture unit
that is assigned to a gradient magnitude texture. The user has the
ability of specifying an arbitrary gradient opacity map that mod-
ulates the rendered texel. In cases where one wants to visualize
structures that exist between two materials of similar scalar value,
enhancing regions with the highest gradient would emphasize the
wrong features. By specifying an arbitrary gradient map, one can
reduce opacity in these high gradient regions.

The user is able to specify separate gradient enhancing functions
for the specular and silhouette rendering pass. Specular lighting and
silhouettes are usually associated with surfaces and are less mean-
ingful when applied to the solid semi-transparent regions often as-
sociated with direct volume rendering. Thus a map can be set such
that specular and silhouette rendering only occurs on the surfaces.

2.5 Multiple Transfer Functions

Hauser et al. describe how multiple rendering techniques can be
combined when visualizing a single volume to better illustrate dif-
ferent types of objects in a volumes [6]. We provide a similar capa-
bility by permitting the user to specify multiple transfer functions,
each with its own set of non-photorealistic rendering parameters.
Each transfer function can be set to render a different type of object
in the volume. By varying the non-photorealistic rendering param-
eters, and rendering the volume with the multiple transfer functions
simultaneously, it is possible to emphasize or deemphasize the dif-
ferent types of objects in a volume.

One result of using multiple sets of rendering parameters is that
the parameter space is multiplied in complexity, making interactiv-
ity all the more important. Rendering is accomplished by simply
applying an extra set of rendering passes for each additional trans-
fer function.

The bottom right image on the color plate shows the use of this
technique, where the internals of the Microsoft mouse have been
rendered in a non-photorealistic style, while the external plastic
parts are rendered more photorealistically. The right image in Fig-
ure 5 shows bones rendered non-photorealistically using tone shad-
ing and silhouettes. The skin on the other hand is rendered in a more
photorealistic style, with a vertical fade that allows the bones in the

Figure 6: Non-photorealistic and photorealistic rendering styles are
mixed in this image of coral.

feet to be completely unobstructed by the flesh and skin. In Figure 6
a piece of coral is shown using non-photorealistic and photorealistic
rendering parameters. The smooth transition between parameters
sets is accomplished using position-based opacity modulation.

2.6 Combining Techniques

The techniques described in the previous sections can all be com-
bined for hardware assisted non-photorealistic volume rendering.
The rendering process requires two passes for every view aligned
polygon used to render the volume. For each polygon, the first ren-
dering pass deposits the voxel color looked up from the transfer
function, modulated by the tone shading color in the second tex-
ture unit, followed by opacity modulation by the gradient enhanc-
ing texture in the third unit, with distance based color modulation
finally occurring in the fourth unit. Followed by this pass, palettes
are reset for specular and silhouette contributions. With this second
pass, opacity from the transfer function is utilized in the first tex-
ture unit, silhouette and specular contributions are modulate in the
second texture unit with gradient based manipulation occurring in
the third unit. Finally, distance based opacity modulation occurs in
the fourth texture unit.

3 A Complete Example

To summarize the process, we use a CT scan of a Microsoft mouse
to illustrate the effect of each non-photorealistic rendering tech-
nique. As shown in Figure 7(a), when the data set is rendered using
only the transfer function without lighting or NPR enhancements
it is very difficult to acquire intuition about the spatial structure of
each object, particularly with respect to depth.

With addition of tone shading, shown in Figure 7(b), it becomes
easier to determine the surface orientations as seen in Figure 7(c).
The addition of warmth and coolness to the volumes does not yield
distinctly warm or cool colors, but rather results in a variation in
relative tone to indicate shape information. Notice however, that
there is little variation in color intensity across each volume making
it still difficult to gain depth clues as to the spatial interactions of
the rendered structures. With the addition of the silhouettes seen in
Figure 7(d) the individual structures become much clearer as seen in
Figure 7(e). For example, the separation between the two capacitors
near the center of the mouse is much more distinct that when only
tone shading is used. Next, Figure 7(f) displays depth color cues
for the volume, and Figure 7(g) shows the result after the volume
is modulated by these cues. This has the subtle effect of adding
warmth to the nearer portion of the mouse. Finally in Figure 7(h)
we see the result when a second set of rendering parameters is used
to render the outer shell of the mouse with a more photorealistic
rendering style. Using depth based variation in opacity the closer

5



Figure 5: Left: Using gradient based feature enhancement the skin surface is made visible. Right: The skin and flesh are rendered in a more
photorealistic style, while the bones are rendered with tone shading and silhouettes.

portions of the mouse are more transparent allowing the inside to
be seen.

4 Parallel Rendering

One significant limitation of volume rendering using consumer PC
graphics hardware is the limited amount of video memory. For ex-
ample, the Nvidia Geforce 3 has 64 megabytes of video memory
that is shared between the frame buffer and texture memory. It is
very desirable to fit the volume being rendered entirely in texture
memory to avoid having to swap data into the graphics card from
main memory over the relatively slow graphics bus. By subdivid-
ing the volume spatially and distributing it across a cluster of PCs
equipped with graphics cards it is possible to fit significantly larger
volumes into the aggregated video memory of the entire cluster. In
addition to the larger amounts of texture memory provided by a PC
cluster, performance improvements also result from the combined
fill-rate of multiple graphics cards.

In our implementation we subdivide and distribute the volume
using k-d tree subdivision. Each node resamples it’s subvolume to
a size of 256�256�256 regardless of the dimensions of the actual
volume. For smaller volumes this permits higher order resampling
to be done in software prior to the tri-linear interpolation done in
hardware. During rendering, for each frame, every node on the
cluster renders its subvolume and composites the resulting subim-
age using binary-swap [16] with the final image being sent to the
host for display.

We implemented our technique using a PC cluster with nine
computers, each with an AMD Athlon 1.3 Ghz processor, one gi-
gabyte of PC133 SDRAM and a Geforce 3 with 64 megs of video
memory. Eight of the computers use 100-Base-T fast Ethernet. The
ninth host computer, used for final display and user interface con-
trol, has a gigabit Ethernet connection to the cluster’s switch.

With this low cost cluster we are able to render to a 512�512
window, a 512�512�512 volume at about 2.0 frame per second us-

ing two rendering passes. If four rendering passes are used to render
the volume using two sets of rendering parameters, the frame rates
drops to about 1.2 frame per second. Our experimentation showed
this framerate is sufficiently high to make possible interactive ex-
ploration of rendering parameter space, in particular the variation
of transfer function, viewing direction and non-photorealistic ren-
dering parameters. This permits the tuning of parameters for the
creation of meaningful images that illustrates specific structures in
a volumetric data set. If higher frame rates are desired higher per-
formance can be achieved by rendering to either a lower resolution
window and by rendering fewer axis aligned polygons.

5 Future Work and Conclusions

In this paper, we show how a suite of perceptually effective ren-
dering techniques can be efficiently implemented in hardware. We
also show how a PC cluster can be used with these techniques for
the interactive visualization of large data sets. The interactivity we
achieve makes possible fine turning of rendering parameters for the
creation of visualizations far more effective than those that would
be made with slower software-based methods. Consequently, we
foresee increasing use of non-photorealistic rendering in scientific
data visualization.

A skilled illustrator uses artistic techniques to produce images
with a level of abstraction from the complexities of photorealism.
These abstractions tend to be much simpler than reality. Non-
photorealistic rendering techniques, however, are often more com-
plex and less efficient than their photorealistic counter-parts despite
the level of abstraction in the resulting image. A future area of
research is therefore to add the level of abstraction inherent in non-
photorealistic rendering into the rendering pipeline for more effi-
cient rendering.

Other future work includes trying to extract and convey even
more information from a data set, perhaps using newer hardware
features found in the next generation of graphics cards. In addition,

6



(a) Volume without lighting (b) Tone shading contribution

(c) Volume with tone shading (d) Silhouette contribution

(e) Volume with silhouette (f) Depth color cue contribution

(g) Volume with depth color cue (h) Final volume visualization

Figure 7: A complete example of combined techniques using the mouse data set.

7



we would like to use a wider variety of rendering styles for volume
visualization.

Acknowledgments

This work has been sponsored by the National Science Foundation
under contract ACI 9983641 (PECASE Award) and through the
Large Scientific and Software Data Set Visualization (LSSDSV)
program under contract ACI 9982251. The Los Alamos National
Laboratory released the CT mouse data set, which was generated
with FlashCT, a software product of Hytec. The authors are also
grateful to the University of Utah Medical School, Philips Research
at Hamburg, Germany, and the Visible Human Project for providing
other test data sets.

References

[1] CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEIS-
CHER, K. W., AND SALESIN, D. H. Computer-generated
watercolor. In SIGGRAPH ’97 Conference Proceedings (Au-
gust 1997), pp. 421–430.

[2] EBERT, D., AND RHEINGANS, P. Volume illustration: Non-
photorealistic rendering of volume models. In Proceed-
ings of IEEE Visualization 2000 Conference (October 2000),
pp. 195–202.

[3] ENGEL, K., KRAUS, M., AND ERTL, T. High-quality pre-
integrated volume rendering using hardware-accelerated pixel
shading. In Eurographics / SIGGRAPH Workshop on Graph-
ics Hardware ’01 (2001), pp. 9–16.

[4] FOLEY, D. J., VAN DAM, A., FEINER, S. K., AND HUGHES,
J. F. Computer Graphics: Principles and Practice. Addison
Wesley, 1996.

[5] GOOCH, A., GOOCH, B., SHIRLEY, P., AND COHEN, E.
A non-photorealistic lighting model for automatic technical
illustration. In SIGGRAPH ’98 Conference Proceedings (July
1998), pp. 447–452.

[6] HAUSER, H., MROZ, L., BISCHI, G.-I., AND GROLLER,
M. Two-level volume rendering- fusing mip and dvr. In IEEE
Visualization 2000 Conference Proceedings (2000), pp. 211–
218.

[7] HERTZMANN, A., AND ZORIN, D. Illustrating smooth sur-
faces. In SIGGRAPH 2000 Conference Proceedings (August
2000), pp. 517–526.

[8] INTERRANTE, V., FUCHS, H., AND PIZER, S. Enhanc-
ing transparent skin surfaces with ridge and valley lines. In
Proceedings of IEEE Visualization ’95 Conference (October
1995), pp. 52–59.

[9] INTERRANTE, V., AND GROSCH, C. Visualizing 3d
flow. IEEE Computer Graphics and Applications 18, 4
(July/August 1998), 49–53.

[10] KNISS, J., KINDLMANN, G., AND HANSEN, C. Interactive
volume rendering using multi-dimensional transfer functions
and direct manipulation widgets. In Proceedings of IEEE Vi-
sualization 2001 Conference (October 2001), pp. 255–262.

[11] KUNZ, J. Watercolor Basics: Color. North Light Books,
1999.

[12] LAIDLAW, D. H., KIRBY, R. M., AND MARMANIS, H.
Multivalue data from 2d incompressible flows using concepts
from painting. In Proceedings of IEEE Visualization ’99 Con-
ference (October 1999), pp. 333–340.

[13] LEVOY, M. Efficient ray tracing of volume data. ACM Trans-
actions on Graphics 9, 3 (July 1990), 245–261.

[14] LLOYD, S. P. Least squares quantization in PCM. IEEE
Transactions on Information Theory IT-28, 2 (March 1982),
129–137.

[15] LUM, E. B., AND MA, K.-L. Non-photorealistic rendering
using watercolor inspired textures and illumination. In Pacific
Graphics ’01 Conference Proceedings (October 2001).

[16] MA, K.-L., PAINTER, J., KROGH, M., AND HANSEN, C.
Parallel volume rendering using binary-swap compositing.
IEEE Computer Graphics & Applications 14, 4 (July 1994),
59–68.

[17] MACKENZIE, G. The Watercolorist’s Essential Notebook.
North Light Books, 1999.

[18] MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J.,
BOURDEV, L. D., GOLDSTEIN, D., AND HUGHES, J. F.
Real-time nonphotorealistic rendering. In SIGGRAPH ’97
Conference Proceedings (August 1997), pp. 415–420.

[19] MAX, J. Quantizing for minimum distortion. IEEE Transac-
tions on Information Theory IT-6, 1 (March 1960), 7–12.

[20] MEIER, B. J. Painterly rendering for animation. In SIG-
GRAPH ’96 Conference Proceedings (August 1996), pp. 477–
484.

[21] MEISSNER, M., HOFFMANN, U., AND STRASSER, W. En-
abling classication and shading for 3d texture mapping based
volume rending using opengl and extensions. In IEEE Visual-
ization ’99 Conference Proceedings (1999).

[22] PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A.
Real-time hatching. In SIGGRAPH ’01 Conference Proceed-
ings (2001).

[23] SALISBURY, M. P., ANDERSON, S. E., BARZEL, R., AND
SALESIN, D. H. Interactive pen-and-ink illustration. In SIG-
GRAPH ’94 Conference Proceedings (July 1994), pp. 101–
108.

[24] TREAVETT, S., AND CHEN, M. Pen-and-ink rendering in
volume visualisation. In Proceedings of IEEE Visualization
2000 Conference (October 2000), pp. 203–209.

[25] VAN GELDER, A., AND HOFFMAN, U. Direct volume ren-
dering with shading via three-dimension textures. In ACM
Symposium on Volume Visualizatrion ’96 Conference Pro-
ceedings (1996).

[26] WINKENBACH, G., AND SALESIN, D. H. Computer-
generated pen-and-ink illustration. In SIGGRAPH ’94 Con-
ference Proceedings (July 1994), pp. 91–100.

8




