Certificates for Mobile Code Security

Hock Kim Tan
Department of Electronics and Computer
Science
University of Southampton
Southampton SO17 1BJ, UK

hkvt99r@ecs.soton.ac.uk

Keywords
Mobile agent security, mobile agent certificates, mobile agent
security framework

ABSTRACT

The problem of protecting mobile code from malicious hosts
is an important security issue, for which many solutions
have been proposed. We describe a method to adapt an
existing technique, execution tracing, to enhance its flexi-
bility in deployment for a large scale mobile agent system.
This is achieved through the introduction of a trusted third
party, the verification server, which undertakes the verifica-
tion of execution traces on behalf of the platform launching
the agent. The server constructs a certificate that testifies
to the capability of a particular host platform to undertake
the correct execution of a mobile agent. In this sense, the
server assumes a role analogous of a Certificate Authority
(CA) in a PKI. We briefly discuss the issues associated with
such a framework.

1. INTRODUCTION

Mobile agents have become popular in recent years, be-
ing viewed as a new paradigm for distributed computa-
tion that offers a more flexible alternative to traditional
client-server computing environments. Several advantages
have been identified [15] for utilizing mobile agents in a dis-
tributed environment. There has also been several applica-
tion areas proposed for the wide scale deployment of mobile
agents, the most notable being electronic commerce [9], [6].
In such an area, security becomes a paramount issue as fi-
nancial contracts may be negotiated by the mobile agent
without direct user intervention.

A conceptual discussion of the security concerns of mobile
code is provided in [4]. In general, the two main areas of con-
sideration are host security and code security. Host security
involves protecting the host platform from malicious agents
that may attempt to gain unauthorized access to local re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation of the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2002, Madrid, Spain
@2002 ACM 1-58113-445-2/02/03 ... $5.00

Luc Moreau
Department of Electronics and Computer
Science
University of Southampton
Southampton SO17 1BJ, UK

L.Moreau@ecs.soton.ac.uk

sources or initiate malicious actions on the platform. Code
security is the exact reverse and aims to protect the mobile
agent from a malicious host platform that may attempt to
subvert its correct operation or manipulate sensitive data
contained within.

Host security is a reasonably well researched issue, and many
viable mechanisms have been developed to address it. Ex-
amples of such mechanisms include sandbox security (used
in Java to provide access control) [8], safe-typed languages
[20] and proof-carrying code [16]. Code security is how-
ever more problematic, since this aspect has only come into
prominence recently as a security problem unique to mo-
bile code. Some of the more well known mechanisms used
to overcome this problem include code obfuscation [10], en-
crypted functions [17], execution tracing [19] and tamper
resistant hardware [21], [23]. It is likely this area will be
crucial in determining the future viability of mobile agent
application in e-commerce scenarios. An overview of the
current techniques available to address both host and code
security is provided in [12] and [22]; the reader is referred to
them for a summary of these techniques as well as a discus-
sion of their corresponding advantages and drawbacks.

The majority of these techniques were designed as stand-
alone solutions to be deployed independently of existing se-
curity infrastructures for large scale environments, such as a
Public Key Infrastructure (PKI) [1]. Integration of a tech-
nique within a PKI would greatly ease its incorporation into
a security framework for a real-world mobile agent applica-
tion scenario (such as e-commerce). The main reason under-
lying the lack of attempts at such an integration is because a
PKI is primarily designed to address the issue of distributed
authentication. This may be useful for host security by ver-
ifying the identity of an agent or its deployer, but it is not
immediately obvious how authentication can aid in the pro-
tection of mobile code.

In this paper, we make an argument for the inclusion of
trust as an explicit component of a security framework for
mobile code. In the context of our work, we adopt the pop-
ular definition of trust [3] as a necessary counterpart to the
delegation of tasks and/or responsibilities in an agent sys-
tem. A system involving the use of trust (such as a PKI)
usually includes a trust model that formally describes how
trust is manipulated and propagated in that system. In-
corporating trust in a code security technique permits the
development of such a trust model, which will be useful for



indepth analysis on the integration process with a PKI. We
present execution tracing as a code security technique suit-
able for establishing trust levels (i.e. quantitative measure
of trust) in such a framework. We then show how this tech-
nique can be extended so that it incorporates a trusted third
party that utilizes certificates that are distributed and man-
aged within the context of a PKI. Our main contributions
are thus:

e Arguing for trust as a necessary component in a frame-
work to address mobile code security and the use of the
execution tracing technique to establish levels of trust
in such a framework.

e Describing an approach for extending the execution
tracing technique so that it can be integrated into PKI
via the supplemental use of certificates.

In Section 2, we explain how utilizing trust in a code se-
curity framework is useful in certain situations. Execution
tracing is then described briefly and its use in establishing
trust levels in such a framework is justified. Section 3 out-
lines the main entities involved in a security framework that
involves an extended version of the original execution trac-
ing technique. The operations of the various entities in this
framework is traced in Section 4. Section 5 discusses re-
lated work involving certificate use with agents, and Section
6 concludes with a summary and a discussion of future work.

2. TRUST IN A CODE SECURITY FRAME-
WORK

In a previous paper [18], we proposed the use of trust as an
important component in the development of a framework for
mobile agent code security. We briefly summarize the two
original propositions for employing trust in a mobile agent
security framework:

Trust provides a basis for selecting a combination of
code security techniques. A large portion of the tech-
niques developed so far have been found to be deficient in
one or more aspects upon closer scrutiny. It is likely that a
future security infrastructure that addresses the code secu-
rity issue comprehensively will need to incorporate a combi-
nation of techniques. The level of trust in a particular execu-
tion environment can be used as a basis for the appropriate
combination of techniques to apply in that environment.

Trust permits more flexible deployment of a code se-
curity technique. Another important consideration in the
deployment of a security technique is the overhead incurred
when using it. For example, executing obfuscated code could
result in a performance lag (as contrasted to normal code)
that might become intolerable in certain applications. For
an agent with a predefined itinerary running on a trusted
platform, we could apply obfuscation to selected portions of
its code and state that are critical to its correct functioning,
while an agent running on an untrusted platform would have
its entire code obfuscated.

2.1 Using execution tracing to establish trust
In general, literature surveys [12], [14], [22] on the variety
of code security techniques available have classified them

into techniques that prevent meaningful tampering and tech-
niques that detect such tampering. Techniques such as code
obfuscation and encrypted functions are designed to prevent
meaningful manipulation of the agent code (i.e. manipu-
lation in a manner where the effects of the manipulation
are known or predictable to the manipulator and which will
eventually lead to the procurement of some advantage to the
manipulator) and are correspondingly more complicated in
their deployment. However should such manipulation oc-
cur, there is no provision to detect it and undertake puni-
tive measures on the trespassing host platform. In effect,
the trust model is very simplistic here; no entity is trusted
at all and maximal measures are undertaken to prevent any
possible security breach.

Techniques that detect tampering, such as execution trac-
ing, allow the development of a more complex trust model.
By allowing a host platform to execute an agent and then
checking the results of the execution, it becomes possible to
identify the different levels of trust that can be established
in that host platform through suitable mathematical or in-
tuitive analysis of the results (for example, considering the
amount of correct executions as contrasted against incorrect
ones). These different levels of trust can then be used to se-
lect a combination of code security techniques (in addition
to execution tracing) that need to be applied on that par-
ticular host platform, in line with the original motivations
for the use of trust in a code security framework.

With regards to this, we will employ execution tracing as
our core code security technique in the framework that we
are about to develop and we describe how some of the orig-
inal drawbacks of execution tracing can be overcome in our
approach. There are other detection mechanisms available
such as forward integrity [23] and state appraisal [7]; ex-
ecution tracing however offers the important advantage of
being able to detect tampering of any part of the agent that
is actually executed as opposed to only specific portions, as
is the case with the former two mechanisms [22].

2.2 Execution tracing

In execution tracing, a host platform executing an agent cre-
ates a trace of an agent’s execution that contains precisely
the lines of code that were executed by the mobile agent as
well as all the external values that were read by the mobile
agent. When the mobile agent requests to move, a hash of
this trace and of the agent’s intermediate state are signed by
the host platform. This guarantees non-repudiation by pro-
viding evidence that a specific state of execution (along with
its corresponding results) was achieved on the host platform
prior to migration. The trace is then forwarded together
with the actual mobile agent to the next host platform on
the mobile agent’s itinerary. The new host platform will
store this trace together with the new trace it creates when
executing the mobile agent.

Upon return of the mobile agent, the agent owner may (if
she/he suspects that the mobile agent was not correctly ex-
ecuted) request the complete trace of the agent’s execution
commencing from the first host platform. The agent owner
will then simulate the execution of the mobile agent based
on the information contained in the trace. This simulation
will result in an intermediate state and identify the next host



platform to which the mobile agent migrated to. The agent
owner requests from this platform the hash of the trace and
of the agent’s intermediate result, both signed by the first
host platform. If these hashes correspond with the trace
received from the first host platform and the intermediate
state of the simulated execution, the agent owner knows that
the first host platform undertook a correct execution of the
agent. This process is repeated until the last host platform
that the agent migrated to. If at some point a discrepancy
is found during the verification of the trace provided by a
particular host platform, then a malicious host has been de-
tected.

There have been some criticisms of this approach. The main
drawbacks are the size and number of logs to be retained,
and the fact that the detection process is triggered only on
suspicion that an agent has been manipulated. Other prob-
lems include the difficulty of tracing the execution results of
multi-threaded agents.

3. COMPONENTSOFTHE MOBILE CODE
SECURITY FRAMEWORK

In this section, we describe the various entities in our code
security framework, including the certificates that will be
used to facilitate the integration of the framework with a
PKI. The PKI is currently the most widely adopted method
for deploying public key cryptography techniques to achieve
scalable security (particularly authentication) in a distri/-
buted environment. Integration of the framework within
a PKI would thus simplify its actual implementation for a
real-world mobile agent application scenario.

3.1 Agent templates

Aridor and Lange [2] have suggested the use of agent design
patterns to simplify the process of constructing a mobile
agent for specific applications. An agent developer can thus
select from a ‘standard library’ implementations of these
patterns and combine multiple patterns to compose a com-
plete mobile agent. A possible further development of mo-
bile agent templates would involve refining these standard
implementations to fit the specific requirements of a mobile
agent application, such as typical e-commerce scenarios de-
scribed in [9]. In such an instance, the template need only
be instantiated with the necessary parameters (such as the
identity of the agent, its travel itinerary, the product to be
purchased or inquired after, etc) and it could then be de-
ployed immediately.

3.2 Entities in the framework
In our framework, the following entities can be defined and
are described below.

3.2.1 Certificate authority (CA)

The CA in our environment corresponds to the CA in a
PKI, with similar roles and responsibilities. It will issue the
necessary certificates to the other entities in the framework
and undertake other necessary key management activities.

3.2.2 Agent owner platform

The agent owner platform is the originating platform from
which a mobile agent is initially launched from into a net-
work of platforms. This agent could have been composed

here or alternatively, assembled by a code producer (a third
party that assembles a working mobile agent from templates
that can be instantiated later by the agent owner platform)
elsewhere and then transported to the owner platform in a
secure manner. In any case, the agent owner platform is as-
sumed to be a representative of the human/organizational
deployer of the agent.

3.2.3 Host platform

This refers to the execution environment that the mobile
agent operates in once it migrates away from its owner plat-
form. Each host platform will be capable of hosting more
than an agent and will be capable of providing the neces-
sary resources for safe interaction between multiple execut-
ing agents. An agent owner platform can also be a host plat-
form for other agents launched from different agent owner
platforms, if this is required.

3.2.4 \Verification server

The verification server is a trusted third party that under-
takes the verification of execution traces submitted by host
platforms on behalf of the agent owner platform. It func-
tions as a second level CA by issuing capability certificates
to host platforms that indicate the capability of a particular
host platform in executing specific mobile agent templates
correctly.

3.2.5 Capability certificates

These are certificates that associate the identity of a host
platform with its capability of correctly executing (i.e. exe-
cuting in a non-malicious manner) specific agent templates,
as represented by their identifiers. The primary difference
between a capability certificate and a normal certificate is
that the public key normally present is replaced in the ca-
pability certificate by a template identifier, which identifies
the specific instantiated mobile agent template that can be
executed safely by the host platform concerned. The cer-
tificates are signed with the private key of the respective
verification server and can be verified using the public key
of the server, which is distributed separately in a normal
certificate (issued by the CA) to interested parties.

Although a verification server is capable of tracing the exe-
cution of any agent template, identifiers serve two important
purposes:

e It allows verification to be matched to resources avail-
able. Different agent templates (as specified by their
template identifiers) possess different sizes and levels of
complexity in the implementation of their functional-
ity. The amount of time and resources to verify their
execution will correspond closely to these factors as
well. Operators of the verification servers can thus
make decisions on which agent types they are willing
to verify on the basis of resources allocation policies at
their respective servers.

e It permits specific allocation of accountability. A ver-
ification server will have to assume some portion of li-
ability within a legal framework in the event it fails to
detect the corruption of an agent by a malicious plat-
form. The consequences of such liabilities would differ



according to agent type; higher penalties would be in-
curred if the agent in question was meant to engage
in a financial transaction then if it were not. Opera-
tors can again select which liabilities they are willing
to risk on their respective verification servers.

3.2.6 Execution certificates

In addition to capability certificates, execution certificates
are used to identify the success of such a validation process
and are prepared and submitted by a verification server to a
host platform upon successful completion of the validation
process. Each execution certificate contains a hash of the
agent code and state, a timestamp, the identity of the ver-
ification server that examined the trace, the identity of the
host platform that undertook the execution of the mobile
agent as well as the results of validating that trace. Each
execution certificate is signed with the private key of the
verification server and is validated in the same manner as
the capability certificates.

3.2.7 Capability certificate revocation list

This list is analogous to the standard certificate revocation
list (CRL) found in a PKI, and is used to invalidate previ-
ously issued capability certificates in the instance of an in-
valid execution trace being detected by a verification server.
Each entry in this list is submitted by a verification server
and will include the identity of the server and the host plat-
form, the fault detected in the trace and a timestamp. An
agent can choose to inspect this list prior to migrating to a
new platform.

3.3 Changes in the execution tracing protocol
The primary difference between the original execution trac-
ing protocol and the way it is employed in this framework
is that the agent owner platform is no longer responsible
for verifying the traces submitted by host platforms. In-
stead a new entity, the verification server undertakes this
activity on behalf of the agent owner. Based on the results
of this trace verification, the verification server will issue
certificates to host platforms to indicate their capability of
executing mobile agents in a valid manner. These certifi-
cates are then distributed onwards to owner platforms with
mobile agents that wish to migrate to these host platforms.
The agents will then decide on the basis of the information
in the certificates, whether it is safe or not to migrate to the
respective host platforms on their given itinerary. There will
be a large number of verification servers distributed through-
out the system, capable of verifying the traces of every single
agent executing on all the host platforms in the system.

4. OPERATION OF THE FRAMEWORK

In this section, we describe the operations of the framework
with reference to Fig. 1 by following the trail of a mobile
agent as it migrates through the network.

4.1 Before migrating to a new host platform

Mobile agents will need to engage in a preliminary interac-
tion with their intended target host platform prior to mi-
grating there from their current host platform (or owner
platform). Each agent will have a list of template iden-
tifier(s) representing the actual template(s) that they are

f) Execution
certificate

\ Venﬂcatlon ser\h

e) Execution trace

Mobile
agent

Host Platform

Host Platform

Host Platform

b) Capability
certificates

Figure 1: Operation of framework

composed from. This, along with the immutable code por-
tion of the agent, is signed by the agent owner platform to
prevent tampering at other host platforms. The identifiers
are submitted to the host platform that the mobile agent
intends to migrate to (Fig. 1 a).

The host platform receiving the identifiers then checks to
see whether it possesses any capability certificates that con-
tain some or all of the identifiers specified. These are then
submitted back to the mobile agent, who can then make the
decision to migrate or not (Fig. 1 b). As a safety check,
the agent may in addition consult the capability certificate
revocation list to ascertain whether any of the capability
certificates received have been invalidated. If the agent is
not satisfied regarding the safety of its intended destina-
tion, it will select another host platform either dynamically
or proceed to the next destination on a predefined itinerary.

4.2 Migration to and execution on the new
host platform

Once a decision is made, the mobile agent migrates over to
its intended destination (Fig. 1 d), where execution com-
mences and an execution trace is prepared by the host plat-
form. This trace is submitted to the same verification server
(Fig. 1 e), who can validate it accordingly. If this trace ver-
ifies properly, an execution certificate is prepared and sub-
mitted back to the host platform (Fig. 1 f). A copy of this
certificate is stored locally at the host platform and the orig-
inal is dispatched along with the mobile agent to the next
platform (Fig. 1 g). The execution certificate is necessary to
ensure acceptance of the mobile agent by the next platform.

If there is a deviation in the trace, which suggests the pos-
sibility of malicious tampering, no certificate is issued and
instead an entry is updated by the verification server in the
capability certificate revocation list to invalidate any previ-
ously issued capability certificates. This entry is only appli-
cable for certificates issued by that verification server; it may
not invalidate capability certificates issued by other verifi-
cation servers.



4.3 Periodical checking of traces

Although execution traces are submitted to a specific veri-
fication server from a host platform every time an agent is
executed on that platform, these traces need not be checked
all the time. The idea is to rely on the established trust be-
tween the host platform and the verification server as well
as the implicit understanding on part of the host platform
that violation of this trust relationship, if detected, will en-
tail a greater economic loss (through appropriate sanctions)
as contrasted to the possible gain that might be obtained
through an undetected violation. In this way, the overhead
on each verification server involved in checking every single
execution trace can be reduced.

4.4 Necessity of execution certificate at receiv-

ing host platform

The reception of the execution certificate is compulsory for
the new host platform to accept and execute the mobile
agent. If such a certificate is not forthcoming within a prede-
fined time limit, a communication failure or malicious tam-
pering is assumed and the mobile agent is discarded from
the new platform it has just migrated to. This provides an
important aspect of safeguarding the host platform from mo-
bile agents that may have now become potentially dangerous
due to possible subversion from the previous platform.

4.5 Safeguarding against malicious verifica-

tion servers

To safeguard against the possibility of a malicious verifi-
cation server (i.e. a verification server that intentionally
maligns the host platform by adding invalid entries into the
capability certificate revocation list) as well as to provide
safety redundancy (in the event of the failure of a verifica-
tion server that a host platform depends on), a host plat-
form can request capability certificates for the same tem-
plate from several different verification servers. It can then
select to alternate between these verification servers when
submitting certificates in response to requests from mobile
agents that are about to migrate to it. Copies of execution
certificates retained at the host platform from different ver-
ification servers can serve as evidence in helping to clarify
the possible situation where a malicious verification server
attempts to malign the host platform.

4.6 Advantages achieved over original tech-
nigue

The modification of the original execution tracing protocol

to the form that is being utilized in the framework lends

several important advantages :

1. Execution tracing can now be performed by any veri-
fication server on a host platform once a mobile agent
on that platform completes executing. In the origi-
nal protocol, execution tracing was only possible at
the agent owner’s site after the mobile agent had com-
pleted a tour of its itinerary. In addition, tracing is
now compulsory for each host platform and not an op-
tional activity triggered by a suspicious agent owner,
as is the case with the original protocol. This allows
the detection of malicious tampering as soon as it oc-
curs at any point on the agent’s itinerary.

2. Trace logs no longer need be retained at the host plat-
form; maintenance of all tracing evidence is delegated
to the verification server. This information will be en-
capsulated in the form of capability and execution cer-
tificates and will be more succinct; being a summary
of the results of a trace rather than a log of the entire
trace itself.

3. By offloading the verification activity to another en-
tity (the verification server), the agent owner is no
longer inflicted with tedious trace checking activities
that may become insurmountable when the number of
mobile agents launched from it increases or the com-
munication between distant host platforms are unreli-
able. This increases the scalability of the protocol.

5. RELATED WORK

The integration of a mobile agent system within some form
of certificate infrastructure has been the subject of recent
work on mobile agent security. In his work on privilege man-
agement for mobile agents, Jansen [13] introduces attribute
certificates as a flexible manner to express the privileges
associated with a mobile agent. Attribute certificates are
combined with a mechanism that permits the instantiation
of a policy engine in order to provide a framework that can
be tailored to meet the security policy of individual appli-
cations. Hu [11] in turn proposes several mechanisms for
building up an agent-oriented PKI from SPKI/SDSI [5] and
X.509 certificate standards. This include the use of trust
delegation mechanisms such as chain-ruled, threshold and
conditional delegation. Certificates are employed in these
approaches as a means to address the first aspect of mo-
bile agent security: host security. In general, a certificate is
dispatched along with the mobile agent and is evaluated by
the receiving host platform to determine the authorization
rights to various system resources that should be accorded
to the agent.

Our work is the first to address the use of certificates within
a PKI to tackle the alternative aspect of mobile agent se-
curity: code security. This is achieved primarily through
the use of capability certificates that are submitted by a
potential host platform to a mobile agent to indicate the
safety of its execution environment for the agent concerned.
Execution certificates are also issued at the end of a suc-
cessful trace verification to indicate to the next platform in
the agent’s itinerary that a valid execution of the agent was
achieved on the current platform.

6. CONCLUSION

In this paper, we have discussed a security framework for
mobile agents that extends the execution tracing technique
to make it appropriate for large scale environments. The
key entity in this framework is the verification server that
undertakes the execution tracing activity on behalf of the
agent owner platform and issues capability and execution
certificates (in a manner analogous to a CA) to the vari-
ous host platforms in the system. Capability certificates are
produced to verify the safety (or otherwise) of the execution
environments of various host platforms, while execution cer-
tificates are used to provide an indication of the validity of
agent execution on a particular host platform.



There remains much work that needs to be done in extending
the conceptual framework that we have just described. In
particular, a practical implementation of execution tracing
has yet to be realized in any major mobile agent system. The
interactions between the different entities in the framework
needs to be formalized so that specific security properties
can be identified and maintained, if possible. Investigation
needs to be carried out with regards to the other types of se-
curity techniques that can be employed in conjunction with
execution tracing and the manner in which they can be in-
tegrated into the framework. The detailed format of the
capability and execution certificates needs to be examined
to see how they might be successfully integrated into the cer-
tificate management activities of a standard PKI. Last but
not least, the implications of issuing and employing certifi-
cates in the manner described here needs to be investigated
in greater detail to determine its viability for actual appli-
cation.

7. ACKNOWLEDGMENTS
This research is funded in part by QinetiQQ and EPSRC Mag-
nitude project (reference GR/N35816).

8. REFERENCES
[1] C. Adams and S. Lyold. Understanding Public Key
Infrastructure : Concepts, Standards and Deployment
Considerations. Macmillan Technical Publishing, 1999.

[2] Y. Aridor and D. B. Lange. Agent Design Patterns :
Elements of Agent Applications Design. In Proceedings
of the 2nd International Conference on Autonomous
Agents, May 1998.

[3] Cristiano Castelfranchi and Rino Falcone. Principles
of Trust for MAS : Cognitive Anatomy, Social
Importance, and Quantification. In Workshop on
Deception, Fraud and Trust in Agent Societies :
Proceedings of the 3rd International Conference on
Multiagent Systems, 1998.

[4] D. M. Chess. Security issues in mobile code systems.
In Mobile Agents and Security, number 1419 in LNCS.
Springer-Verlag, 1998.

[5] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. Spki certificate theory. In
RFC 2693, September 1999.

[6] H. S. Nwana et al. Agent-mediated electronic
commerce : issues, challenges and some viewpoints. In
Proceedings of the 2rd International Conference on
Autonomous Agents, 1998.

[7] W. Farmer, J. Guttman, and V. Swarup. Security for
mobile agents : Authentication and state appraisal. In
European Symposium on Research in Computer
Security, number 1146 in LNCS. Springer-Verlag,
1996.

[8] Li Gong. Java Security Architecture (JDK1.2).
Technical report, Sun Microsystems, March 1998.

[9] R. H. Guttman, A. G. Moukas, and P. Maes. Agents
as mediators in electronic commerce. Electronic
Markets, 8(1), May 1998.

[10] Fritz Hohl. Time limited blackbox security: Protecting
mobile agents from malicious hosts. In Mobile Agents
and Security, number 1419 in LNCS. Springer-Verlag,
1998.

[11] Yuh-Jong Hu. Some thoughts on agent trust and
delegation. In Proceedings of the 5th International
Conference on Autonomous Agents, Montreal, June
2001.

[12] Wayne Jansen. Countermeasures for mobile agent
security. In Computer Communications, Special Issue
on Advances in Research and Application of Network
Security, November 2000.

[13] Wayne Jansen. A privilege management scheme for
mobile agents. In Workshop on Security of Mobile
Multi-Agent Systems : Proceedings of the 5th
International Conference on Autonomous Agents,
June 2001.

[14] Neeran Karnik. Security in Mobile Agent Systems.
PhD thesis, Department of Computer Science and
Engineering, University of Minnesota, 1998.

[15] Danny B. Lange and Mitsuru Oshima. Seven good
reasons for mobile agents. Communications of the
ACM, 42(3), 1999.

[16] G. Necula and P. Lee. Safe kernel extensions without
run-time checking. In Proceedings of the 2nd
Symposium on Operating System Design and
Implementation (OSDI ’96), Washington, October
1996.

[17] T. Sander and C. F. Tschudin. Protecting mobile
agents against malicious hosts. In Mobile Agents and
Security, number 1419 in LNCS. Springer-Verlag,
1998.

[18] H. K. Tan and L. Moreau. Trust relationships in a
mobile agent system. In 5th IEEE International
Conference on Mobile Agents, Georgia, USA,
December 2001.

[19] Giovanni Vigna. Cryptographic traces for mobile
agents. In Mobile Agents and Security, number 1419 in
LNCS. Springer-Verlag, 1998.

[20] D. Volpano and G. Smith. Language issues in mobile
program security. In Mobile Agents and Security,
number 1419 in LNCS. Springer-Verlag, 1998.

[21] U. G. Wilhelm, S. Staamann, and L. Buttyan.
Introducing trusted third parties to the mobile agent
paradigm. In Secure Internet Programming : Security
Issues for Mobile and Distributed Objects, number
1603 in LNCS. Springer-Verlag, 1999.

[22] Uwe G. Wilhelm. A Technical Approach to Privacy
based on Mobile Agents Protected by Tamper-resistant
Hardware. PhD thesis, Ecole Polytechnique Federale
de Lausanne, 1999.

[23] Bennet S. Yee. A sanctuary for mobile agents. In
Secure Internet Programming : Security Issues for
Mobile and Distributed Objects, number 1603 in
LNCS. Springer-Verlag, 1999.



