
An Enablement Detection Algorithm
for Open Multiparty Interactions

J.A. Pdrez, R. Corchue[o, D. Ruiz, and M. Toro
Dept. Lenguajes y Sistemas Inrorm~ticos

Universidad de Sevilla
{jperez,corchu,druiz,mtoro}@lsi.us.es

ABSTRACT
Coordinat ion axnongst an arbi t rary number of entities has
become an impor t an t issue in recent years m fields such as e--
commerce, web-based applications and so on. Traditionally,
classical c l ient /server primit ives have been used to imple-
ment synchronisat ion and communicat ion. But. when more
than two entities need to coordinate hy means of those prim-
itives, the coordinat ion must be decomposed into a number
of c l ient /server hipaxty interactions, leading the program-
mer to the need of thinking in te rms of the protocols needed
to achieve propert ies like livenes, a tomici ty and so on. In
this paper , we present an algori thm to perform enablement
detect ion to implement open mul t ipar ty interactions. This
pr imi t ive provides a high level of abstract ion since the pro-
g rammar can implement mul t ipar ty coordinat ion wi thout
the need of thinking in terms of protocols.

K e y w o r d s : Mul t ipar ty interactions, coordinat ion algo-
rithJns.

1. I N T R O D U C T I O N
In recent years, the development of dis t r ibuted applica-

tions has been paid much attention~ mainly due to the Inter-
ne t boom. Traditionally, most services provided by means of
the network involved only two entities, a provider enti ty and
a client entity. For example, a purchase t rough the web in-
volved just two entities: a seller and a purchaser. Recently,
more complicated scenarios have emerged, since fxequently
several entities collaborate to provide a service. For exam-
ple, in a purchase through the web, the purchaser may order
his or her bank to transfer the sale remount to the seller bank
account. And both seller and purchaser may require each
other to certificate their identity, involving then certification
entities in the scenario.

When more than two entities need to collaborate to achieve
a common goal, coordination becomes an important issue.
Traditionally, coordination has been achieved by means of
client/server primitives (remote procedure call, message pass-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
hear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires.prior specific
permission and/or a f¢¢.
SAC 2002, Madrid, SPAIN
Copyright 2002 ACM 1-581 ! 3-445-2/02/03 ...aS.00.

ing, and so on). Those pr imit ives axe bipaxty because they
only involve two entities thett need to synchronise before ex-
changing data, but this concept cam be easily ex tended to
an arbitrary number of entities that need to agree and co-
operate to achieve a common goal. These interactions axe
usually stud to be multiparty, and they provide a higher level
of abstraction because they allow to express complex coop-
orations as atomic units. A taxonomy of languages offering
linguistic support for multiparty interactions can be found
in [6]. We think that those interaction models axe interest-
ing because they allow to express coordination regaxdleas of
the protocols needed to achieve it.

Most interact ion models proposed in the l i tera ture axe
aimed at coordinat ing a set of entities t h a t mus t be known
in advance, i.e., they axe ~tst ic models. Those models axe
not adequate for open scenarios such as e -~ommerce where
frequently entities need to collaborate without knowing one
another. For example, in the purchase through the web, nor
the purchaser knows the account of the seller, neither vice
versa. Furthermore, the seller do not need to know the client
in advance.

In [2], the CAL l~mguage is presented. The CAL lan-
guage is a~med at increasing the level of abstraction of a
programme by considering the concurrent behaviour of com-
ponents as an aspect where multiparty interactions axe the
sole mesons for synchronisation and communication. CAL
relies on an open interaction model that allows to express
coordination amongst entities that do not know one another
in advance.

Although several authors have proposed algorithms to im-
plement multiparty interactions as a coordination primitive
[9, 1, 5, 4, ill, they have focused on finding solutions to
achieve exclusion in the scope of static interaction models.
To implement an open, dynamic interaction model we must
deal not only with the exclusion problem, but also with the
enahlement detection problem. The enablement detection
consists on finding sets of entities that agree to coordinate
through a given interaction. In an open context, this is an
importemt problem since in generA1, it has a high computa-
tional cost.

In this paper we present the algori thms we have devised
to implement enablement detect ion in the CAL interact ion
model. The problem of finding enablements in this model
has a computa t ional combinator ia l complexity. But, by
means of the adequate da ta s t ructures , the edgorithms we
propose behave qui te efficiently in most practical si tuations.
Fur thermore , they can be customized with a selection algo-

378

r/ ',~ , . . . ,

Figure 1: E x a m p l e o f C A L i n t e r a c t i o n m o d e l .

r i thm to solve the exclusion problem.
The rest of this paper is organised as follows: section 2

sketches the CAL interact ion model; section 3 outlines oar
s t ra tegy to implement this model; section 4 focuses on the
algori thms we have developed to perform enablement de-
tection, and section 5 glances at the problem of enablement
selection. Next, we show some performance results from our
implementation in section 6, and finally, section 7 shows our
conclusions.

2. AN OPEN MULTIPARTY INTERACTION
MODEL

This section presents the CAL [2] interact ion model. To
the best of our knowledge, this is the only open, dynamic
interact ion mode l proposed so far. I t improves stat ic models
in tha t i t can coordinate entities that do not need to know
one another. This is very impor tan t because it makes it
feasible as a coordinat ion primit ive for open systems. As
we describe in this section, interactions in CAL work as
templa tes of s ta t ic interactions.

In CAL, each interact ion is given a name, a number of
roles and a number of slots associated with it. The name
of the in teract ion is a str ing which unambiguously identifies
an interact ion in the system. W h e n an object is ready to
coordinate with o ther objects, it offers to par t ic ipate in one
or more interact ions by means of their names.

So, every object can offer part icipat ion in one or more
interactions simultaneously. In every offer, a par t ic ipant
states which role it plays in the interaction, and may estab-
lish constraints on what objects should play the o ther roles.
An interact ion may be executed as long as a set of objects
satisfying the following constraints is found: (i) there is an
object per role willing to par t ic ipate in tha t interact ion and
play that role; (ii) those objects agree in interact ing with
each other, i.e., the constraints they establish are satisfied.
A set of objects which can execute an interaction is what we
call an ena~lement.

Figure 1 shows an example with an interact ion called [
amongst three objects that must play roles P , Q and R.
Objects px and p2 make offers to play role P . objects ql and
q2 make offers to play role Q, and object rx makes an offer to
play role R. The objects p l and p2 require tha t role Q must
be played by ql and q2 respectively, and vice versa. Nei ther
p l , qz. p2 nor q2 establish constraints on what object should
play role R. On the o ther hand, the object r l accepts tha t
roles P and Q can be played by any object.

Since exclusion must be guaranteed, an object cannot
commi t to more than one interact ion at a time. But, since an
object can offer par t ic ipa t ion s imultaneously in more than
one interact ion, it can be in more than one enablement. So,

when two or more enablements share objects, they cannot
be executed simultaneously. The set of enablements that
cannot be executed are re~sed.

When an enablement of an interact ion is executed, the
objects in it can communica te by means of the interact ion
slots. A slot is a shared variable amongst the objects in the
enablement which is c rea ted when the enablement is exe-
cuted. These slots make up a local s ta te t h a t simulates the
t empora ry global combined s ta te in IP [3], being the most
impor tan t difference that an object does not need to have
access to the local s ta te of o ther objects in order to get the
information it needs. Obviously, a mul t ipa r ty interact ion
delays an object tha t tries to read a slot t ha t has not been
initialized yet by another object .

3. STRATEGY TO IMPLEMENT THE CAL
INTERACTION MODEL

In this section, we describe the s t ra tegy we have used
to implement the CAL mul t ipar ty in teract ion model. We
follow a "d iv ide-and-conquer" strategy, since we split the
execution of an interact ion into two steps:

S y n c h r o n i s a t i o n : The execution of an interact ion begins
when a set of entities get synchronised and commi t
to the interaction. This synchronisat ion can also be
divided into two steps:

E n a b l e m e n t d e t e c t i o n : The par t ic ipat ion offers are
analysed to find sets of objects that agree in par-
t ic ipat ing in an interact ion, i.e, enablements .

E n a b l e m e n t s e l e c t i o n : W h e n one or more enable-
ments have been detected, as many as possible of
t h e m should be executed simultaneously, ensur-
ing exclusion. Thus, an election under conflicting
enablements needs to be held.

C o m m u n i c a t i o n : Once an enablement of an interact ion
having slots has been selected to execute, a set of slots
must be ins ta t ia ted for it. The details concerning com-
municat ion fall beyond the scope of this paper.

The algori thm we have developed to implement synchro-
nisation is called c~. This a lgor i thm uses a special resource
per interact ion, called mteroc t ion coordinator. This is an
object which receives the offers of par t ic ipat ion in a given
interact ion issued by entit ies in the system.

Enablement detect ion may be performed in a local man-
ner in the interact ion coordinator. In other words, a coor-
dinator can compute the enablements originated by a set of
offers made to it disregarding the offers made to o ther co-
ordinators of potent ia l ly conflicting interactions. W h e n the
enablement detect ion a lgor i thm finds out one enahlement ,
this enablement is dealt with as if it was an ent i ty which
must compete to achieve exclusion over every par t ic ipant
in it. This task is performed by an ennblement selection
algorithm.

4. ENABLEMENT DETECTION
In this section we describe a - s o l , or, which is the algo-

r i t hm we have devised to implement enablement detection in
the scope of ~,. r~-solver builds a da ta s t ruc ture which holds
the information about every offer being processed. This da t a

379

structure is updated (i) every time ~n offer is received by
the coordinator and (ii) every time that an offer is given up
because the participant that made it is executing am interac-
tion. The latest may happen either because an enablement
of the interaction has been selected for execution, or be-
cause an enablement of another confiicting interaction has
been selected for execution,

4.1 Data structures
Consider for example a system like the one in Figure 1

with an interact ion called I amongst three objects tha t must
play roles P , Q and R. Assume that objects pl and p2 make
offers to play role P , objects ql and q3 make offers to play
role Q and that object r l makes an offer to play role R.

~-8ol,ler uses an acyclic directed groph to store the in-
formation about the offers being processed. Every node in
the graph holds a data s t ructure tha t we call ~upip., such
as {Pl, (ql), 0]. This tuple represents the offer made by pl
and it means that it wants to play role P in interaction jr
requires ql to play role Q, ~ud does not care about which
object should play role R. We say tha t role P is consoli-
dated in this tuple, whereas role Q requires object q, and
role R accepts any object. So, when an offer is received~ a
tuple with its information is created for it, and the graph
is updated with this tuple and probably with other tuples
calculated [Tom it. Some of this calculated tuples may s tand
for an enablement. Furthermore, when the par t ic ipant tha t
made the offer commits to an interaction, the tuple which
holds the information related to such oi~ers is removed from
the graph, and the tuples calculated from it are removed or
upda ted to take this change into account.

Figure 2 shows the graph buil t by our algorithm as the
offers made by the objects in our example arrive at the coor-
dinator responsible for interaction l . Assume that the offer
made by px arrives first so tha t u-solver constructs a graph
with only one node [pl, (ql), 0]. If the second offer is made
by object p , , a new node of the form [,P2, (q~), O] is added to
the graph, mad no connecting node is constructed because
the tuples so fax processed are net compatible, i.e., objects
p~ and p~ cannot interact together. If the offer made by qt
is then received, a node of the form [~),q~, O] is added.
Since it is compatible with ~1, (ql), 0], a connecting node
of the form [p~, q~, 0] is added. It indicates that both pl and
~ want to part icipate in interact ion [and s~ree in commit-
ring to it together with any object playing role R. Notice
tha t no enablement is found unti l object r~ makes its offer.
When this happens, two enablements are found simultane-
ously, but they are conflicting because they share r~.

F i g u r e 2: C o n s o l i d a t i o n g r a p h for t h e s y s t e m in F ig -
u r e 1.

In order to formalise the concept of compatibili~ amongst
tuples, we define a consolidation operator tha t is defined
on both the tuples of the graph and its elements. We re-
fer to this operator as (D and it is defined on tuples as

• . " = ,e~Oe~]. [e~ ,e , , . . . ,e , lO[4,e~, . ,e ,] Ce,ee~,e, Oe~,- - . '
I t is defined on the elements of a tuple by means of the fol-
lowing axioms:

1. pl (D (p~) = (p~) Qpx = p , , as long as pl = pz

2. (p~) e ~. ,) = (p~) o (m) = (p~), as long ~ p~ = p~

:~. p e () = () ® ~ , = p

4. ~) e 0 = 0 o (p) = (~)

s. 0 e 0 = 0

Note tha t this operation is defined on two tuples if and
only if both tuples represent offers tha t c~n lead to an en-
ablement. Furthermore, if the (D operat ion is defined be-
tween two tuples, the resulting tuple holds the combined
information of the consolidated tuples. For example, this is
the case of [(pt), ql, 0] and [pl, (ql), 0] in Figure 2. The con-
solidation of those tuples is a tuple [Pl, ql, 0], which means
that px wants to play role P in the interaction, that ql wants
to play role Q, and that bo th of them accept tha t role R can
be played by any object. Furthermore, the consolidation op-
eration is not defined on tuples [pt, (ql), ()] and [p~, (q2), 0],
because they are incompatible since bo th pl and q~ are will-
ing to play role P, and p, requires that role Q be played
by ql and p2 requires the smme role to he played by q~.
Since the ~ a p h is buil t with consolidation amongst the tu-
pies which represent the offers, we usually refer to it as the
consolidation graph. In this graph, we refer to the top-most
tuples (having no outgoing edge) as roots, and we refer to
the bo t tom-mos t tuples (with no incoming edge) as le4~es.

4.2 Processing offers
Figure 3 shows a rout ine called ProcessOr]or(T, G). This

rout ine is the en t ry-poin t to Q-.qol~er. Parameters T and
G represent the offer being processed and the current con-
solidation graph, respectively. It simply iterates over the
set of roots of graph G and calls rout ine Search(T, R) (pre-
sented in the same figure) on each one. Its parameters T
and R represent the current offer and the root where search
begins, respectively. This rout ine first tries to consolidate
tuples T and R, ~nd if it is possible, the consolidated tuple
is re turned and inserted in the graph as a parent of both
T and R. Otherwise~ a recursive search is performed in the
subgraph whose root is the left child of R. If a consolidation
left is found there, it recursively tries to find out a new con-
solidation of left with a tuple in the subgraph whose root
is the right child of R. If such a consolidation if found, then
it is returned because it is the most consolidated tuple that
has been found; else, left is returned. If no consolidation
is found while examining the left subgraph of R, then the
right subgraph is also explored. If no consolidation is found,
then null is returned.

4.3 Offer cancellation processing
As we s tated before, when an object commits to an in-

teraction, the offers it made give up being valid. So, the
information related to them must be removed from the con-
solidation graph.

380

For example, assume tha t par t ic ipant p l in Figure 1 com-
mi ts to another interact ion. Then, the tuple [px, (ql), 0]
must be removed from the consolidation graph in Figure 2.
If this tuple was jus t r emoved from the graph, it would result
in an inconsistent s ta te since the tuple [pl, ql, 0] would have
one only descendant. Eve ry tuple in the consolidation graph
has ei ther two or zero descendants, since the G operator is
a binary operator .

Figure 4 shows a rout ine called ProceseCancel(P, G). This
rout ine is the en t ry -po in t to the ct-solver offer cancellation
algori thm. Parameters P emd G are the par t ic ipant whose
offers are canceled and the current consolidation graph, re-
spectively. The ProcesaCancei routine i terates over the set
of leaves of graph G having object P in consolidated s ta te
(in other words, the offers made by P) , and calls rout ine
Delete(T, R) on each one. Its parameter T represents the
offer being deleted. The deletion algori thm consists of (i) re-
placing every paten[of the tuple being deleted by the other
descendant of the parent (we assume that Brother(T,p) re-
turns the o ther descendant tha t p of tuple T) and (ii) calling
a recursive rout ine Rebuild(T) (Figure 5) which recttrsively
re-consol idates the ancestors of tuple T.

The full cancellat ion process for the offers of p~ is sketched
in Figure 6. The only leaf having pl in consolidated state is
[ps, (ql), 0], so this tuple is pa~sed to routine Dele te as argu-
ment T. This a lgori thm first (1) replaces tuple [Pl, qx, 0] by
its o ther descendant, the tuple [(px), ql, 0]- Since this would
left the graph into an inconsistent s tate, the Rebuild rou-
t ine reconsolidates (2) the tuple [0, 0 , r l] with [(Px), ql, 0],
giving a tuple [(Pt), qx, r l] which replaces [pt, ql, rl]. FinalJy
(3), the tuple [Pl, (ql), 0] is deleted.

I t i~ worth not ing tha t the new root [(pl),ql,rl] which
replaces [p~, qx, r t] i t is not an enablement. In other words,
the consolidation graph has lost an enablement as a con-
sequence of the cancellation. This is what we expected to
happen, because pl has cancelled its offers because it com-
mi t t ed to another interaction. When one enablement of a~
interact ion executes, every conflicting enablement of other
or eve,, the same interact ion must be refused. In our exam-
ple, the enablement [pt, ql, r l] has been refused.

The ProceasOffer and the CartcelOffer algori thms are
formally proven to be correct in [8]. The correctness proof
for the Proce~Offer algori thm relie~ on proving that the
Search algori thm always finds the most consolidated tupl~s
for the input tuple T. We can easily prove that if the input
tuple T can consolidate with a root of the graph, the result
is the most consolidabed tuple for tha t root. And if the con-
solidation with the root is not possible, it can be recursively
proven tha t the Search algori thm finds the most consoli-
da ted tuple under that root. Then, since a tuple having
every role consolidated is an enablement , and since every
root in the graph is processed, we can prove tha t the al-
gor i thm finds out every enablement originated by an offer.
The correctness proo[for the CancelOffer algori thm relies
on proving tha t i t only affects the tuples containing infor-
mat ion about the cancelled offer.

4.4 Optimizing ProcessOr/or
Figure 3 shows the basic enablement detection algorithm.

The basic Senrch algor i thm shown in this figure can be op-
t imized in three ways, wi thout loss of correctness.

I t is worth not ing the costs that those optimizat ions im-
ply. The first opt imizat ion is jus t an algori thmic criterion,

Process0ffer CT: Tuple; G: Graph): Set of Tuple
enablements: Set of Tuple
roo t s : Set of Tuple
C: Tuple

enablements t -
roots ~- Loots(G)
add T to C as an unconnected l e a f

fo r every R in roots do
f t - Search (T. R)
i f (C is not nul l) and

(every ro le in C is consol idated then
enablements ~- enablsments U (C]

end i f
end for

re turn enabluments
end ProceesOffer

Search (T: Tuple; K: Tuple): Tuple
r e s u l t : Tuple;
l e f t , r i g h t : Tuple;

i f T and R can consol idate then
r e s u l t ~- T 0 R
l e t r e s u l t be the paren~ tuple of both T mad K

e lse
i f T is not a lsa~ then

l e f t ~- Search (Tj le f tChi ld(R))
i f l e f t is not nu l l then

r i gh t e- Search (l e f t . r ightChild(K))
r e s u l t ~- (r l gh t ls not n u l l ? r l g h t : l e f t)

e lse
riKht ~ Seazch (T, riKhtChild(K))
r e s u l t t-- (r igh t is no~ nu l l ? r igh t ; nu l l)

end i f
e l se

r e s u l t ~- nu l l
end i f

end i f

re turn reeul~
and Search

F i g u r e 3: t~ -so l~er e n a b l e m e n t d e t e c t i o n a l g o r i t h m .

ProcessCancel (P: Object, G:Graph)

fo r every l ea f p in griph G having P consol idated do
Delete (p)

end for

end ProceesCancal

Delete(T: Tuple)
brother: Tuple

for every p in Parents(T) do
brother 4-- Brother (T, p)
Replace (p, bro ther)
for every gremdpLrent in Parents(p) do

Rebuild (grandparent)
end for

end fo r
de le te T from G

end D e l e t e

F i g u r e 4: g-solver c a n c e l l a t i o n f u n c t i o n .

381

Rebuild (~: Tuple)
parents : Set 0£ Tuple
le~t . r i gh t : Tupla

l o f t t - l e f tCh i ld (T)
r£1ht ~- rightCh£ld (T)
Replace (T, lef~ (D r igh t)
~ o r avery p in Parents(T) do

l~bui ld (p)
end fo r

and Kebuild

F i g u r e 5: R e c u r s i v e r e b u i l d a f t e r d e l e t i o n .

F i g u r e 6: C a x t e e l l a t i o n o f o f fe r s f r o m px in t h e g r a p h
i n F i g u r e 2.

having no cost on memory usage. The second optimizat ious
require two boolean and one integer a t t r ibutes for every tu-
pie, and one offer counter. The th i rd opt imizat ion requires
the use of indexing functions, tha t are usually implemented
by means of hash tables or similar data structures- Since
in some theoret ical scenarios this can amount to an impor-
tant memory consumption, we have implemented it as an
optional feature, allowing the operator to decide when it
should he performed or when it should not.

4.4. I Search Stop
The first opt imisat ion we can apply relies on the fact that

in the Search algorithm, when it tries to consolidate the
input tuple T with a R tuple in the graph, and every role in
consolidated state in R fails to consolidate wi th its par tner
in T, there is no tuple R ' descendant of R that could be
consolidated with T. Then, no more recursion is needed to
process the descendants of T.

For example, let us assume tha t the input t u p h T -----
[Pl ,(ql) , (r l) , (el)] is being checked for consolidation with
a tuple R = [0,q2~r2,a2]- Tuple R has consolidated q2, r2
and s2 in roles Q, R and S respectively. But those three fail
to consolidate wi th (ql), (r t) and (sl) . So, it can be proven
tha t there is no tuple among the descendants of R that can
be consolidated with T-

4.4.2 Avo id ing r e - p r o c e s s i n g o f nodes
The second opt imizat ion we propose relies on the fact that

the consolidation graph consists of a number of binary trees
sharing nodes. Since a node can be reached from more than
one root, it may be processed more than once- But, note
that in algorithm Search a tuple in the graph can be checked
for consolidation (i) with the input tuple R or (ii) with a

consolidation of the input tuple T with another tuple in the
graph. This happens when a consolidation is found in the
graph while processing the left subtree of a tuple, and then a
consolidation for it is searched in the right subtree of the tu-
pie. So, we can label every tuple in the graph with a boolean
T - c h e c k e d flag that is set to t rue when the tuple is checked
with the T input tuple. The Search algori thm, when is
searching a consolidation fez the T input tuple, checks the
T - c h e c k e d flag of every tuple about to be processed, ig-
noring the tuples (and its descendants) having this flag set
to true. ~ t h e r m o r e , it can be proven tha t if no consol-
idat ion was found under a tuple when processing an offer,
regardless of tuple being processed (T or a consolidation
of T with other tuple), no consolidation can be found in a
subsequent processing. So, we can label every tuple wi th
a empty boolean flag tha t is set to t rue when the tupie is
processed and no consolidation is found under it. W h e n a
tuple with emptll ~ true is about to be processed, i t can be
ignored since no consolidation can he found.

Labeling every tuple wi th a t t r ibutes has an impor tan t
drawback, because they must be init ial ized before every of-
fer is processed. This requires that the whole graph must
be traversed, and that is precisely wha t we need to avoid.
A solution to this problem is to label every tuple wi th an
age integer a t t r ibute , and using an offer counter tha t is up-
dated with every offer processed. W h e n a tuple is going to
be processed by the Search algorithm, its aye a t t r ibu te is
compared with the offer counter. If its aye value is sma l l e r
t han the offer counter, t ha t is the first t ime t h a t the tu-
pie is being processed for the current offer, so its a t t r ibutes
T - c h e c k e d and empty must init ially be set to f a l s e . If
its age a t t r ibu te equals the offer counter, that means that
the tuple has already been visi ted along the current offer
processing, so its T - c h e c k e d and empty at t r ibutes must
be t~ken into account. Note tha t when the offer counter
is about to overflow, it must be reset to zero, and the full
graph must be t raversed to reset every tuple aye at t r ibute .
But, if we use 32 or 64 bits for t he counters, this is not a
problem in practice.

4.4.3 S tar t ing Search on advan tageous nodes
Finally, the Search algori thm can be opt imized making

that the search process begin in nodes ms close as possible
to tuples in the g~raph that consolidates wi th the input tuple
T, instead of beginning the search f rom the roots of the
graph. This opt imizat ion relies on the principle that i f a
T input tuple is like [p l , . . ,] any tuple tha t consolidates
with it must be like [(Pl) , . - .] or [0 , - - . I . We can prove
that when a process of a p par t ic ipant under role P is being
processed, if the search begins (i) in the tuples tha t require
the par t ic ipant p under role P and (ii) in the tuples tha t
accept any par t ic ipant under role P , such tha t there is no
other tuple above it in the graph tha t requires or accepts the
p par t ic ipant under role P , the correctness of the S e a r c h
algori thm is preserved.

5. S E L E C T I O N A L G O R I T H M S
Once au enablement has been found by the enahlemeut

detect ion algori thm, it must have a chance to be executed.
A selection algori thm must ensure exclusion, deciding thus
whether e~h enablement must be selected or refused. An
enablement that does not conflict with others should be se-
lected immediately. On the other hand, if an enablement is

382

rejected, that is because it conflicts with another one that
has already been selected.

Note that since an enablement is determined by a fixed set
of participants, the enablement selection problem is analo-
gous to the problem of interaction selection in a static in-
teraction model, since ~-sotver is well-encapsulated into
both routines ProcessCancel and ProcessOffer , i t could
work together with any selection algorithm that fulfills the
following requirements:

• Coordinators of interactions do not need to be aware
one another.

• Participants in an interactions do not need to be aware
one another

If coordinators of interactions do not need to be aware
one another, there is no problem in that new interactions
(enablements) do appear at run-time, since there is no need
nor possibility of communication among them. On the other
hand, since participants do not necessarily know at compile-
time the other participants that are going to participate with
them, it is very important that the algorithm do not need
the participants to be aware one another.

We have developed a~a algorithm with fulfills those re-
quirements, an that have been successfully integrated with
r~-solver. This algorithm is called r~-coee, and constitutes
together with c~-solver the implementation of c~ that we de-
veloped for the framework that provides CAL run-t ime sup-
port, A sketch of alCOtt can be found at [7], and the full
description and proofs of correctness can be found at [8].

6. P E R F O M A N C E
We have implemented the algorithms ProcessOf fer and

ProcessCancel described at section 4, and have perform
some tests in order to measure their performance. The sce-
nario we have used in our tests is depicted in Figure 7.

F i g u r e 7: S c e n a r i o for t e s t i ng rr-solvcr.

This scenario consists of an interaction I with five roles
P, Q, R, S and T, and 25 participants, offering five of them
to participate under each role in the interaction: partici-
pants P] , . . . , P s offer to participate under rol P, partici-
pants Q1 , . . . , Q~ offer to participate under rol Q, and sc on.
We have used a five-party interaction because is accepted
that greater cardinality interactions have little practical ap-
plications [3].

As a measure of our algorithms performance, we have
measured the average number of times that the consolida-

tion operation 0 is computed amongst two tuples, every
time that aa offer or a cancellation is processed.

6 l l P e r f o m a n c e o f ProcessOf fer
To measuxe how the algorithm ProeessOf fer performs,

we have run five tests T1,. . .T~. Test Tx is the worst case
for the algorithms, since every participant accepts that ev-
ery role in the interaction can be played by a ,y other par-
ticipant. So, 5 e :- 3, 125 enablements are found. In tests
Ta, Ta,. . • participants make their offers more and more re-
strictive, imposing a restriction on the participant that must
play role P, Q , . . . and so on, being Ts the best case since ev-
ery participant restricts that every role in the interaction
must be played by another concrete participant. So, the
number of enablements found in test T~. . . T5 are respec-
tively 54 , 5 a, 52 mad 51 .

Since the third optimization proposed on ProcessOf fer
proposed in section 4.4 algorithm has been implemented as
optional, we have run twice every test T1 . . . Ts: once with
the optimization enabled, and once with this optimization
disabled. This permits to compare how good the optimiza-
tion is. The increase of memory usage due to the optimiza-
tion has never been greater than 15%.

P e R m ~" m .

I
~Lq IS ;

_ ~
21

3

11 12 T3 I !

I s

l a

A v ~ r m p Ngml~r of C e e m S d n l l m Fmr
EIU b]hem:ll

F i g u r e 8: ProcessOf fer a l g o r i t h m p e r f o r m a n c e .

The first plot in Figure 8 shows the average number of
consolidation operations computed per offer in each run.
We can appreciate that the number of operations computed
decreases dramatically when the test is run with the opti-
mization enabled. The second plot shows the relationship
amongst the number of operations computed with and with-
out the optional optimization. The improvement due to the
optimization increases as the restrictions imposed by the
participants are more res~.rictive, since they provide more
information useful to determine where the search process
should begin.

Nevertheless, the results of test T1 in first plot may seem
poor. Is executing an average of 470 or 156 consolidation
operations per offer a good performance? Yes, indeed it is,
because we should also take into account the average number
of enablements found per offer. The third plot in Figure 8
shows the average number of consolidation operations com-
puted per enablement found, as much in the test with and

383

without the optional optimization. This gives us the cost
of finding an enablement. So, in test Tt the average cost of
finding an enablement is less than four consolidation oper-
ations if the optional optimization is not enabled, and less
than two otherwise. It is very impor tant noting that the
cost of finding an enablement decreases as the number of
enablements that can be found inerea-~es.

6.2 P e r f o m a n c e o f CancelOffer
To measure how the Mgorithm CancelOffer performs, we

have run again the same five tests Tz,.-. T.~ from previous
section, cancelling every offer after each run.

| |

A ~ m | ! N l | l l l " ml C ~ m l l l l l l l W l l i i i i1 | m[Nllall ~ ~ m ~ ' ~
[mmlmbn |n le p r [n n e h l f m n lUt,=l l l , . , Iml lJ l t , l m l I

- t -- A~pl, [~idum m a i m ~ I ~ . ~ n N ~ IgnOre I

T "

fl
'11 ~ "1~ W 11

F i g u r e 9: C a n c e l O f f e r a l g o r i t h m p e r f o r m a n c e .

The first plot in Figure 9 shows the average number of
consolidation operations computed per cancellation, mad the
average number of enablements refused each time. As in
the P r o c e s s o r f o r algorithm, the numbers in test Tz may
seem excessively high. But once again, we should take into
account the number of enablements refused by every can-
cellation. The second plot in the Figure shows the average
number of consolidation operations computed per enable-
ment refused. This is the cost of refusing an enablement.
As for ProcessOr f o r algorithm, we can see how the cost
of refusing an enetblement decreases as the number of en-
ablements increases. We can find the explanation for this
effect in the cousolidRtien graph topology. When there are
many enablements in the graph, frequently many of those
enablements shaxe leaves nodes. When an offer having many
enablements e.s ancestors in the graph is canceled, the cost
of refusing those enablements is smaller tha t if the tuple had
one or none enablements as ancestors.

7. C O N C L U S I O N S
In this paper, we have described the algorithms we have

developed to implement the CAL interaction model, focus-
ing on the problem of enablement detection. This is an
open mul t ipar ty model useful for applications tha t require
eoordingtion amongst entities tha t axe not fixed beforehmad.
Although the problem of finding all the sets of entities that
agree to coordinate through an interaction has a high com-
puta t ional cost, our algorithms performs quite well since it
behaves more efficiently as the complexity increases.

Our enablement detection algorithm can cooperate with
any selection algorithm tha t fulfills some conditions. We
th ink that this is an impor tan t feature, because it leaves an
open door to deal with other problems related to selection,
such as fairness.

A P P E N D I X

A. R E F E R E N C E S

[1] 11. Bagrodia. Process synchronization: Design and
performance evaluation of dis t r ibuted algorithms. IEEE
2¥ansactions on Software Engineering,
15(9):1053-1065, Sept. 1989.

[2] 11. Corchuelo, J. P~rez, and M. Tore. A Mult ipar ty
Coordination Aspect Language. ACM SIGPLAN,
35(12)'24-32, Dec. 2000.

[3] N. Fr~ucez and I. Form~n. [nteractin 9 processes: A
multiparty approach to coordinated distributed
programmin 9. Addison-Wesley, 1996.

[4] Y. 3oung. A comprehensive s tudy of the complexity of
mul t ipar ty interaction. In Proceedings of the 19 ta
Annual A CM Symposium on Principles of
Programming Languages POPL'92, pages 142-153.
ACM Press, Jan. 1992.

[5] Y. Joung and S. Smolkax. A completely dis t r ibuted mad
message-efficient implementa t ion of synchxonous
multiprocess communicat ion. In P.-C. Yew, editor,
Proceedings of the 1~ ~ International Conference on
Parallel Processing. Volume 3: Algorithms and
Architectures, pages 311-318, Urbema-Champaign,
Illinois, Aug. 1990. Pennsylvania State University Press.

[6] Y. J. Joung and S. A. Smolka. Strong interaA:tion
fairness via randomizat ion. In Proceedings of the 16 th
International Conference on Distributed Computing
Systems, pages 475-483, Hong K e n t , May 1996. IEEE
Computer Society Press.

[7] J. Pdrez, R. Corchuelo b D. Ruiz, and M. Tore. A
fraxnewozk for ~pec t -o r i en t ed mul t ipar ty coordination.
In Ne~ Developments in Distributed Applications and
lntcroperabte Systems, pages 161-174. Kluwer
Academic Publishers, 2001.

[8] J. A. P~rez. fin Framelaor& Orientado a Aspectos pars
In Descripci6n del Comportamiento Coordinado.
Aplicacidn a los Sistemas Multiorganizacionales. PhD
thesis, Facultad de Inform~ttica y Esta~l/stica. Dpto. de
Lenguajes y Sistemas Inform~iticos. Universidad de
Sevilla, 2001.

[9] Y. Tsay and R. Bagrodia. A real-time algorithm for fair
interprocess synchronization. In Proceedings of the 12 th
International Conference on Distributed Computin9
Systems, pages 716-723, Washington, D.C., USA, June
1992. IEEE Computer Society Press.

384

