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ABSTRACT 
Coordinat ion axnongst an arbi t rary number  of entities has 
become an impor t an t  issue in recent years m fields such as e-- 
commerce,  web-based  applications and so on. Traditionally, 
classical c l ient /server  primit ives have been used to imple- 
ment  synchronisat ion and communicat ion.  But.  when more 
than  two entities need to coordinate  hy means of those prim- 
itives, the  coordinat ion must  be decomposed into a number  
of c l ient /server  hipaxty interactions, leading the program- 
mer to the need of thinking in te rms  of the protocols needed 
to achieve propert ies like livenes, a tomici ty  and so on. In 
this paper ,  we present  an algori thm to perform enablement  
detect ion to implement  open mul t ipar ty  interactions. This  
pr imi t ive  provides a high level of abstract ion since the pro- 
g rammar  can implement  mul t ipar ty  coordinat ion wi thout  
the need of thinking in terms of protocols. 

K e y w o r d s :  Mul t ipar ty  interactions,  coordinat ion algo- 
rithJns. 

1. I N T R O D U C T I O N  
In recent years, the development  of dis t r ibuted applica- 

tions has been paid much attention~ mainly  due to the Inter-  
ne t  boom. Traditionally,  most  services provided by means of  
the  network involved only two entities, a provider enti ty and 
a client entity. For example,  a purchase t rough the web in- 
volved just  two entities: a seller and a purchaser. Recently, 
more complicated scenarios have emerged, since fxequently 
several entities collaborate to  provide a service. For exam- 
ple, in a purchase through the web, the purchaser may  order 
his or her bank to transfer the sale remount to the seller bank 
account. And both seller and purchaser may require each 
other to certificate their identity, involving then certification 
entities in the scenario. 

When more than two entities need to collaborate to achieve 
a common goal, coordination becomes an important issue. 
Traditionally, coordination has been achieved by means of 
client/server primitives (remote procedure call, message pass- 
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ing, and so on). Those  pr imit ives  axe bipaxty because they  
only involve two entities thett need to synchronise before ex- 
changing data,  but  this concept  cam be easily ex tended  to 
an arbitrary number of entities that need to agree and co- 
operate to achieve a common goal. These interactions axe 
usually stud to be multiparty, and they provide a higher level 
of abstraction because they allow to express complex coop- 
orations as atomic units. A taxonomy of languages offering 
linguistic support for multiparty interactions can be found 
in [6]. We think that those interaction models axe interest- 
ing because they allow to express coordination regaxdleas of 
the protocols needed to achieve it. 

Most interact ion models proposed in the  l i tera ture  axe 
aimed at coordinat ing a set of entities t h a t  mus t  be known 
in advance, i.e., they axe ~tst ic  models.  Those  models axe 
not  adequate  for open scenarios such as e -~ommerce  where 
frequently entities need to collaborate without knowing one 
another. For example, in the purchase through the web, nor 
the purchaser knows the account of the seller, neither vice 
versa. Furthermore, the seller do not need to know the client 
in advance. 

In [2], the CAL l~mguage is presented. The CAL lan- 
guage is a~med at increasing the level of abstraction of a 
programme by considering the concurrent behaviour of com- 
ponents as an aspect where multiparty interactions axe the 
sole mesons for synchronisation and communication. CAL 
relies on an open interaction model that allows to express 
coordination amongst entities that do not know one another 
in advance. 

Although several authors have proposed algorithms to im- 
plement multiparty interactions as a coordination primitive 
[9, 1, 5, 4, ill, they have focused on finding solutions to 
achieve exclusion in the scope of static interaction models. 
To implement an open, dynamic interaction model we must 
deal not only with the exclusion problem, but also with the 
enahlement detection problem. The enablement detection 
consists on finding sets of entities that agree to coordinate 
through a given interaction. In an open context, this is an 
importemt problem since in generA1, it  has a high computa-  
tional cost. 

In this paper  we present the algori thms we have devised 
to implement  enablement  detect ion in the  CAL interact ion 
model.  The  problem of finding enablements  in this model  
has a computa t ional  combinator ia l  complexity.  But,  by 
means of the adequate  da ta  s t ructures ,  the edgorithms we 
propose behave qui te  efficiently in most  practical  si tuations.  
Fur thermore ,  they  can be customized with  a selection algo- 
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Figure 1: E x a m p l e  o f  C A L  i n t e r a c t i o n  m o d e l .  

r i thm to solve the exclusion problem. 
The  rest of this paper  is organised as follows: section 2 

sketches the  CAL interact ion model;  section 3 outlines oar 
s t ra tegy to implement  this model;  section 4 focuses on the 
algori thms we have developed to perform enablement  de- 
tection, and section 5 glances at the problem of enablement 
selection. Next, we show some performance results from our 
implementation in section 6, and finally, section 7 shows our 
conclusions. 

2. AN OPEN MULTIPARTY INTERACTION 
MODEL 

This section presents the CAL [2] interact ion model.  To 
the best of our knowledge, this is the  only open, dynamic  
interact ion mode l  proposed so far. I t  improves stat ic  models 
in tha t  i t  can coordinate  entities that  do not  need to know 
one another.  This  is very impor tan t  because it makes it 
feasible as a coordinat ion primit ive for open systems. As 
we describe in this section, interactions in CAL work as 
templa tes  of s ta t ic  interactions.  

In CAL, each interact ion is given a name, a number  of 
roles and a number  of  slots associated with it. The  name 
of the in teract ion is a str ing which unambiguously  identifies 
an interact ion in the  system. W h e n  an object  is ready to 
coordinate  with o ther  objects,  it offers to par t ic ipate  in one 
or more interact ions by means  of their  names. 

So, every object  can offer part icipat ion in one or more 
interactions simultaneously.  In every offer, a par t ic ipant  
states which role it plays in the interaction,  and may estab- 
lish constraints  on what  objects should play the o ther  roles. 
An interact ion may  be  executed  as long as a set of objects 
satisfying the  following constraints  is found: (i) there is an 
object per  role willing to par t ic ipate  in tha t  interact ion and 
play that  role; (ii) those objects agree in interact ing with  
each other,  i.e., the constraints  they establish are satisfied. 
A set of objects which can execute an interaction is what we 
call an ena~lement.  

Figure 1 shows an example  with an interact ion called [ 
amongst  three  objects  that  must  play roles P ,  Q and R. 
Objects  px and p2 make offers to play role P .  objects ql and 
q2 make offers to play role Q, and object  rx makes an offer to 
play role R. The  objects p l  and p2 require tha t  role Q must  
be played by ql and q2 respectively, and vice versa. Nei ther  
p l ,  qz. p2 nor  q2 establish constraints  on what  object  should 
play role R. On the  o ther  hand, the  object  r l  accepts tha t  
roles P and Q can be  played by any object.  

Since exclusion must  be  guaranteed,  an object  cannot  
commi t  to more than  one interact ion at a time. But,  since an 
object  can offer par t ic ipa t ion  s imultaneously in more than  
one interact ion,  it can be in more  than one enablement.  So, 

when two or more enablements  share  objects,  they  cannot  
be executed simultaneously. The  set of enablements  that  
cannot  be executed are re~sed.  

When  an enablement  of an interact ion is executed,  the 
objects in it can communica te  by means  of the interact ion 
slots. A slot is a shared variable amongst  the objects  in the  
enablement  which is c rea ted  when the enablement  is exe- 
cuted. These slots make  up a local s ta te  t h a t  simulates the 
t empora ry  global combined s ta te  in IP  [3], being the  most  
impor tan t  difference that  an object  does not  need to have 
access to the local s ta te  of o ther  objects  in order  to get the 
information it needs. Obviously, a mul t ipa r ty  interact ion 
delays an object  tha t  tries to read a slot t ha t  has not  been 
initialized yet  by another  object .  

3. STRATEGY TO IMPLEMENT THE CAL 
INTERACTION MODEL 

In this section, we describe the  s t ra tegy  we have used 
to implement  the  CAL mul t ipar ty  in teract ion model.  We 
follow a "d iv ide-and-conquer"  strategy,  since we split  the  
execution of an interact ion into two steps: 

S y n c h r o n i s a t i o n :  The  execution of an interact ion begins 
when a set of entities get synchronised and commi t  
to the interaction.  This  synchronisat ion can also be 
divided into two steps: 

E n a b l e m e n t  d e t e c t i o n :  The  par t ic ipat ion  offers are 
analysed to find sets of objects  that  agree in par- 
t ic ipat ing in an interact ion,  i.e, enablements .  

E n a b l e m e n t  s e l e c t i o n :  W h e n  one or more enable- 
ments  have been detected,  as many  as possible of 
t h e m  should be  executed simultaneously, ensur- 
ing exclusion. Thus,  an election under  conflicting 
enablements  needs to be held. 

C o m m u n i c a t i o n :  Once an enablement  of an interact ion 
having slots has been selected to execute,  a set of slots 
must  be ins ta t ia ted  for it. The  details concerning com- 
municat ion fall beyond  the scope of this paper.  

The  algori thm we have developed to implement  synchro- 
nisation is called c~. This a lgor i thm uses a special resource 
per  interact ion,  called mteroc t ion  coordinator. This  is an 
object  which receives the offers of  par t ic ipat ion in a given 
interact ion issued by entit ies in the system. 

Enablement  detect ion may  be performed in a local man-  
ner in the interact ion coordinator.  In  other  words, a coor- 
dinator  can compute  the enablements  originated by a set of 
offers made  to it disregarding the  offers made  to o ther  co- 
ordinators  of potent ia l ly  conflicting interactions.  W h e n  the 
enablement  detect ion a lgor i thm finds out  one enahlement ,  
this enablement  is dealt  with as if it was an ent i ty  which 
must  compete  to achieve exclusion over every  par t ic ipant  
in it. This task is performed by an ennblement  selection 
algorithm. 

4. ENABLEMENT DETECTION 
In this section we describe a - s o l ,  or, which is the algo- 

r i t hm we have devised to implement  enablement  detection in 
the scope of ~,. r~-solver builds a da ta  s t ruc ture  which holds 
the information about  every offer being processed. This  da t a  

379 



structure is updated (i) every time ~n offer is received by 
the coordinator and (ii) every time that an offer is given up 
because the participant that made it is executing am interac- 
tion. The latest may happen either because an enablement  
of the interaction has been selected for execution, or be- 
cause an enablement of another confiicting interaction has 
been selected for execution, 

4.1 Data  structures 
Consider for example a system like the one in Figure 1 

with an interact ion called I amongst three objects tha t  must  
play roles P ,  Q and R. Assume that  objects pl  and p2 make 
offers to play role P ,  objects ql and q3 make offers to play 
role Q and that  object r l  makes an offer to play role R. 

~-8ol,ler uses an acyclic directed groph to store the in- 
formation about  the offers being processed. Every node in 
the graph holds a data  s t ructure  tha t  we call ~upip., such 
as {Pl, (ql), 0]. This  tuple represents the offer made by pl  
and it means that  it wants to play role P in interaction jr  
requires ql to play role Q, ~ud does not  care about  which 
object should play role R. We say tha t  role P is consoli- 
dated in this tuple, whereas role Q requires object q, and 
role R accepts any object. So, when an offer is received~ a 
tuple with its information is created for it, and the graph 
is updated  with this tuple and probably with other tuples 
calculated [Tom it. Some of this calculated tuples may s tand 
for an enablement.  Furthermore,  when the par t ic ipant  tha t  
made the offer commits to an interaction, the tuple which 
holds the information related to such oi~ers is removed from 
the graph, and the tuples calculated from it are removed or 
upda ted  to take this change into account. 

Figure 2 shows the graph buil t  by our algorithm as the 
offers made by the objects in our example arrive at the coor- 
dinator responsible for interaction l .  Assume that  the offer 
made by px arrives first so tha t  u-solver constructs a graph 
with only one node [pl, (ql), 0]. If the second offer is made 
by object p , ,  a new node of the form [,P2, (q~), O] is added to 
the graph, mad no connecting node is constructed because 
the tuples so fax processed are net compatible, i.e., objects 
p~ and p~ cannot interact together. If the offer made by qt 
is then received, a node of the form [~),q~, O] is added. 
Since it  is compatible with ~1, (ql), 0], a connecting node 
of the form [p~, q~, 0] is added. It  indicates that  both  pl  and 
~ want to part icipate in interact ion [ and s~ree in commit-  
ring to it together with any object playing role R. Notice 
tha t  no enablement  is found unti l  object r~ makes its offer. 
When  this happens,  two enablements  are found simultane- 
ously, but  they are conflicting because they share r~. 

F i g u r e  2: C o n s o l i d a t i o n  g r a p h  for t h e  s y s t e m  in  F ig -  
u r e  1. 

In  order to formalise the concept of compatibili~ amongst  
tuples, we define a consolidation operator tha t  is defined 
on both the tuples of the graph and its elements. We re- 
fer to this operator as (D and it is defined on tuples as 

• . " = ,e~Oe~]. [e~ ,e , , . . . ,e ,  lO[4,e~, .  ,e , ]  Ce,ee~,e, Oe~,- - .  ' 
I t  is defined on the elements of a tuple by means of the fol- 
lowing axioms: 

1. pl (D (p~) = (p~) Qpx = p , ,  as long as pl  = pz 

2. (p~) e ~. , )  = (p~) o (m)  = (p~), as long ~ p~ = p~ 

:~. p e ( )  = ( ) ® ~ , = p  

4. ~ )  e 0 = 0 o (p) = (~) 

s. 0 e 0 = 0 

Note tha t  this operation is defined on two tuples if and 
only if both tuples represent offers tha t  c~n lead to an en- 
ablement. Furthermore,  if the (D operat ion is defined be- 
tween two tuples, the resulting tuple holds the combined 
information of the consolidated tuples. For example, this is 
the case of [(pt), ql, 0] and [pl, (ql), 0] in  Figure 2. The  con- 
solidation of those tuples is a tuple [Pl, ql, 0], which means 
that  px wants to play role P in the interaction, that  ql wants 
to play role Q, and that  bo th  of them accept tha t  role R can 
be played by any object. Furthermore,  the consolidation op- 
eration is not defined on tuples [pt, (ql), ()] and [p~, (q2), 0], 
because they are incompatible since bo th  pl and q~ are will- 
ing to play role P,  and p,  requires that  role Q be played 
by ql and p2 requires the smme role to he played by q~. 
Since the ~ a p h  is buil t  with consolidation amongst  the tu-  
pies which represent the offers, we usually refer to it as the 
consolidation graph. In  this graph, we refer to the top-most  
tuples (having no outgoing edge) as roots, and we refer to 
the bo t tom-mos t  tuples (with no incoming edge) as le4~es. 

4.2 Processing offers 
Figure 3 shows a rout ine called ProcessOr]or(T,  G). This 

rout ine is the en t ry-poin t  to Q-.qol~er. Parameters  T and 
G represent the offer being processed and the current  con- 
solidation graph, respectively. It simply iterates over the 
set of roots of graph G and calls rout ine Search(T, R) (pre- 
sented in the same figure) on each one. Its parameters T 
and R represent the current  offer and  the root where search 
begins, respectively. This rout ine first tries to consolidate 
tuples T and R, ~nd if it is possible, the consolidated tuple 
is re turned and inserted in the graph as a parent  of both 
T and R. Otherwise~ a recursive search is performed in the 
subgraph whose root is the left child of R. If a consolidation 
left is found there, it recursively tries to find out a new con- 
solidation of left with a tuple in the subgraph whose root 
is the right child of R. If such a consolidation if found, then 
it is returned because it is the most consolidated tuple that 
has been found; else, left is returned. If no consolidation 
is found while examining the left subgraph of R, then  the 
right subgraph is also explored. If no consolidation is found, 
then null is returned.  

4.3 Offer cancellation processing 
As we s tated before, when an object commits  to an in- 

teraction, the offers it made give up being valid. So, the 
information related to them must  be removed from the con- 
solidation graph. 
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For example,  assume tha t  par t ic ipant  p l  in Figure 1 com- 
mi ts  to another  interact ion.  Then,  the  tuple [px, (ql),  0]  
must  be removed from the  consolidation graph in Figure 2. 
If  this tuple was jus t  r emoved  from the graph, it would result  
in an inconsistent s ta te  since the tuple [pl, ql, 0]  would have 
one only descendant.  Eve ry  tuple in the consolidation graph 
has ei ther two or zero descendants,  since the  G operator  is 
a binary operator .  

Figure  4 shows a rout ine  called ProceseCancel(P, G). This 
rout ine  is the  en t ry -po in t  to the  ct-solver offer cancellation 
algori thm. Parameters  P emd G are the  par t ic ipant  whose 
offers are canceled and the current  consolidation graph, re- 
spectively. The  ProcesaCancei routine i terates over the  set 
of leaves of graph G having object  P in consolidated s ta te  
(in other  words, the  offers made  by P) ,  and calls rout ine 
Delete(T, R) on each one. Its parameter  T represents the 
offer being deleted. The  deletion algori thm consists of (i) re- 
placing every paten[  of the tuple being deleted by the other  
descendant of the parent  (we assume that  Brother(T,p) re- 
turns  the o ther  descendant  tha t  p of tuple T )  and (ii) calling 
a recursive rout ine  Rebuild(T) (Figure 5) which recttrsively 
re-consol idates  the ancestors of tuple T.  

The  full cancellat ion process for the  offers of p~ is sketched 
in Figure 6. The  only leaf having pl  in consolidated state is 
[ps, (ql), 0],  so this tuple is pa~sed to routine Dele te  as argu- 
ment  T.  This a lgori thm first (1) replaces tuple [Pl, qx, 0] by 
its o ther  descendant,  the  tuple [(px), ql, 0]- Since this would 
left the  graph into an inconsistent s tate,  the Rebuild rou- 
t ine reconsolidates (2) the  tuple [0, 0 ,  r l]  with [(Px), ql, 0], 
giving a tuple [(Pt ), qx, r l ]  which replaces [pt, ql, rl]. FinalJy 
(3), the tuple  [Pl, (ql),  0]  is deleted. 

I t  i~ worth  not ing tha t  the  new root [(pl),ql,rl] which 
replaces [p~, qx, r t]  i t  is not  an enablement.  In other  words, 
the consolidation graph has lost an enablement  as a con- 
sequence of the cancellation. This  is what  we expected to 
happen,  because pl  has cancelled its offers because it com- 
mi t t ed  to another  interaction.  When  one enablement  of a~ 
interact ion executes, every conflicting enablement  of other  
or eve,, the  same interact ion must  be refused. In our exam- 
ple, the enablement  [pt, ql, r l ]  has been refused. 

The  ProceasOffer and the CartcelOffer algori thms are 
formally proven to be correct in [8]. The  correctness proof  
for the Proce~Offer algori thm relie~ on proving that  the 
Search algori thm always finds the most consolidated tupl~s 
for the input  tuple T. We can easily prove that  if the input  
tuple T can consolidate with a root  of the  graph, the result  
is the  most  consolidabed tuple for tha t  root.  And  if the con- 
solidation with the  root  is not  possible, it can be recursively 
proven tha t  the  Search algori thm finds the most  consoli- 
da ted  tuple under  that  root.  Then, since a tuple having 
every role consolidated is an enablement ,  and since every 
root  in the  graph is processed, we can prove tha t  the al- 
gor i thm finds out  every enablement  originated by an offer. 
The  correctness proo[ for the CancelOffer algori thm relies 
on proving tha t  i t  only affects the  tuples containing infor- 
mat ion about  the cancelled offer. 

4.4 Optimizing ProcessOr/or 
Figure 3 shows the basic enablement  detection algorithm. 

The  basic Senrch algor i thm shown in this figure can be op- 
t imized in three ways, wi thout  loss of correctness. 

I t  is worth not ing the  costs that  those optimizat ions im- 
ply. The  first opt imizat ion  is jus t  an algori thmic criterion, 

Process0ffer  CT: Tuple; G: Graph): Set of Tuple 
enablements: Set of Tuple 
roo t s :  Set of Tuple 
C: Tuple 

enablements t -  
roots  ~- Loots(G) 
add T to C as an unconnected l e a f  

fo r  every R in roots  do 
f t -  Search (T.  R) 
i f  (C is  not nul l )  and 

(every ro le  in C is  consol idated then 
enablements ~- enablsments U (C] 

end i f  
end for  

re turn  enabluments 
end ProceesOffer 

Search (T: Tuple; K: Tuple): Tuple 
r e s u l t :  Tuple; 
l e f t ,  r i g h t :  Tuple; 

i f  T and R can consol idate  then 
r e s u l t  ~- T 0 R 
l e t  r e s u l t  be the paren~ tuple  of both T mad K 

e lse  
i f  T is  not a lsa~ then 

l e f t  ~- Search (Tj le f tChi ld(R))  
i f  l e f t  is  not nu l l  then 

r i gh t  e- Search ( l e f t .  r ightChild(K))  
r e s u l t  ~- ( r l gh t  ls  not n u l l  ? r l g h t  : l e f t )  

e lse  
riKht ~ Seazch (T, riKhtChild(K)) 
r e s u l t  t-- ( r igh t  is no~ nu l l  ? r igh t  ; nu l l )  

end i f  
e l se  

r e s u l t  ~- nu l l  
end i f  

end i f  

re turn  reeul~ 
and Search 

F i g u r e  3: t~ -so l~er  e n a b l e m e n t  d e t e c t i o n  a l g o r i t h m .  

ProcessCancel (P: Object,  G:Graph) 

fo r  every l ea f  p in griph G having P consol idated do 
Delete (p) 

end for  

end ProceesCancal 

Delete(T: Tuple) 
brother:  Tuple 

for  every p in Parents(T) do 
brother  4-- Brother (T, p) 
Replace (p, bro ther )  
for  every gremdpLrent in Parents(p) do 

Rebuild (grandparent) 
end for  

end fo r  
de le te  T from G 

end D e l e t e  

F i g u r e  4: g-solver c a n c e l l a t i o n  f u n c t i o n .  
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Rebuild (~: Tuple) 
parents :  Set 0£ Tuple 
le~t .  r i gh t :  Tupla 

l o f t  t -  l e f tCh i ld  (T) 
r£1ht ~- rightCh£ld (T) 
Replace (T, lef~ (D r igh t )  
~ o r  avery p in Parents(T) do 

l~bui ld  (p) 
end fo r  

and Kebuild 

F i g u r e  5: R e c u r s i v e  r e b u i l d  a f t e r  d e l e t i o n .  

F i g u r e  6: C a x t e e l l a t i o n  o f  o f fe r s  f r o m  px in  t h e  g r a p h  
i n  F i g u r e  2. 

having no cost on memory  usage. The  second optimizat ious 
require two boolean and one integer a t t r ibutes  for every tu- 
pie, and one offer counter.  The  th i rd  opt imizat ion requires 
the use of indexing functions, tha t  are usually implemented  
by means of hash tables or similar data structures- Since 
in some theoret ical  scenarios this can amount  to an impor-  
tant memory  consumption,  we have implemented  it  as an 
optional feature, allowing the operator  to decide when it 
should he performed or when it should not.  

4.4. I Search Stop 
The  first opt imisat ion we can apply relies on the fact that  

in the Search algorithm, when it tries to consolidate the 
input  tuple T with a R tuple in the graph, and every role in 
consolidated state  in R fails to consolidate wi th  its par tner  
in T, there is no tuple R '  descendant  of R that  could be 
consolidated with T.  Then,  no more recursion is needed to 
process the descendants  of T. 

For example,  let us assume tha t  the input  t u p h  T ----- 
[Pl ,(ql) ,  ( r l ) ,  (el)] is being checked for consolidation with 
a tuple R = [0,q2~r2,a2]- Tuple R has consolidated q2, r2 
and s2 in roles Q, R and S respectively. But  those three fail 
to consolidate wi th  (ql), ( r t )  and (sl) .  So, it can be proven 
tha t  there is no tuple  among the  descendants of R that  can 
be consolidated with  T- 

4.4.2 Avo id ing  r e - p r o c e s s i n g  o f  nodes  
The  second opt imizat ion  we propose relies on the fact that  

the consolidation graph consists of a number  of binary trees 
sharing nodes. Since a node can be reached from more than 
one root, it may be processed more than once- But, note 
that in algorithm Search a tuple in the graph can be checked 
for consolidation (i) with the input tuple R or (ii) with a 

consolidation of the input  tuple T with  another  tuple in the  
graph. This  happens  when a consolidation is found in the  
graph while processing the left subtree of a tuple, and then a 
consolidation for it is searched in the right subtree  of the  tu-  
pie. So, we can label every tuple  in the  graph with  a boolean 
T - c h e c k e d  flag that  is set to t rue  when the tuple  is checked 
with  the  T input  tuple. The  Search algori thm, when is 
searching a consolidation fez the T input  tuple, checks the  
T - c h e c k e d  flag of every tuple  about  to be processed, ig- 
noring the  tuples (and its descendants)  having this flag set 
to true. ~ t h e r m o r e ,  it can be proven tha t  if no consol- 
idat ion was found under  a tuple when processing an offer, 
regardless of tuple being processed (T or a consolidation 
of T with other  tuple), no consolidation can be  found in a 
subsequent processing. So, we can label every tuple wi th  
a empty  boolean flag tha t  is set to t rue  when the  tupie is 
processed and no consolidation is found under  it. W h e n  a 
tuple with emptll ~ true is about to be processed, i t  can be 
ignored since no consolidation can he found. 

Labeling every tuple  wi th  a t t r ibutes  has an impor tan t  
drawback, because they must  be init ial ized before every of- 
fer is processed. This  requires that  the whole graph must  
be traversed, and that  is precisely wha t  we need to avoid. 
A solution to this problem is to label every tuple  wi th  an 
age integer a t t r ibute ,  and using an offer counter tha t  is up- 
dated with every offer processed. W h e n  a tuple  is going to 
be processed by the Search algorithm, its aye a t t r ibu te  is 
compared  with  the offer counter.  If  its aye value is sma l l e r  
t han  the  offer counter,  t ha t  is the  first t ime t h a t  the tu- 
pie is being processed for the current  offer, so its a t t r ibutes  
T - c h e c k e d  and empty  must init ially be set to f a l s e .  If  
its age a t t r ibu te  equals the offer counter,  that  means that  
the tuple has already been visi ted along the current  offer 
processing, so its T - c h e c k e d  and empty  at t r ibutes  must  
be t~ken into account. Note tha t  when the offer counter 
is about  to overflow, it must  be reset  to zero, and the full 
graph must  be t raversed to  reset every tuple aye at t r ibute .  
But,  if we use 32 or 64 bits for t he  counters,  this is not  a 
problem in practice. 

4.4.3 S tar t ing  Search on advan tageous  nodes  
Finally, the  Search algori thm can be  opt imized making 

that  the search process begin in nodes ms close as possible 
to tuples in the g~raph that  consolidates wi th  the input  tuple  
T,  instead of beginning the search f rom the  roots  of  the  
graph. This  opt imizat ion relies on the  principle that  i f  a 
T input  tuple  is like [ p l , . . ,  ] any tuple tha t  consolidates 
with it  must  be like [ (Pl) , . - . ]  or [0 , - - . I .  We can prove 
that  when a process of a p par t ic ipant  under  role P is being 
processed, if the search begins (i) in the tuples tha t  require 
the par t ic ipant  p under  role P and (ii) in the tuples tha t  
accept any par t ic ipant  under  role P ,  such tha t  there is no 
other tuple above it in the graph tha t  requires or accepts the 
p par t ic ipant  under  role P ,  the  correctness of the S e a r c h  
algori thm is preserved. 

5. S E L E C T I O N  A L G O R I T H M S  
Once au enablement  has been found by the enahlemeut  

detect ion algori thm, it must  have a chance to be executed.  
A selection algori thm must  ensure exclusion, deciding thus 
whether e~h enablement must be selected or refused. An 
enablement that does not conflict with others should be se- 
lected immediately. On the other hand, if an enablement is 

382  



rejected, that is because it conflicts with another one that 
has already been selected. 

Note that since an enablement is determined by a fixed set 
of participants, the enablement selection problem is analo- 
gous to the problem of interaction selection in a static in- 
teraction model, since ~-sotver is well-encapsulated into 
both routines ProcessCancel and ProcessOffer ,  i t  could 
work together with any selection algorithm that fulfills the 
following requirements: 

• Coordinators of interactions do not need to be aware 
one another. 

• Participants in an interactions do not need to be aware 
one another 

If coordinators of interactions do not need to be aware 
one another, there is no problem in that  new interactions 
(enablements) do appear at run-time, since there is no need 
nor possibility of communication among them. On the other 
hand, since participants do not necessarily know at compile- 
time the other participants that  are going to participate with 
them, it is very important that  the algorithm do not need 
the participants to be aware one another. 

We have developed a~a algorithm with fulfills those re- 
quirements, an that have been successfully integrated with 
r~-solver. This algorithm is called r~-coee, and constitutes 
together with c~-solver the implementation of c~ that we de- 
veloped for the framework that  provides CAL run-t ime sup- 
port, A sketch of alCOtt can be found at [7], and the full 
description and proofs of correctness can be found at [8]. 

6. P E R F O M A N C E  
We have implemented the algorithms ProcessOf fer  and 

ProcessCancel described at section 4, and have perform 
some tests in order to measure their performance. The sce- 
nario we have used in our tests is depicted in Figure 7. 

F i g u r e  7: S c e n a r i o  for t e s t i ng  rr-solvcr. 

This scenario consists of an interaction I with five roles 
P, Q, R, S and T, and 25 participants, offering five of them 
to participate under each role in the interaction: partici- 
pants P ] , . . . , P s  offer to participate under rol P,  partici- 
pants Q1 , . . . ,  Q~ offer to participate under rol Q, and sc on. 
We have used a five-party interaction because is accepted 
that greater cardinality interactions have little practical ap- 
plications [3]. 

As a measure of our algorithms performance, we have 
measured the average number of times that the consolida- 

tion operation 0 is computed amongst two tuples, every 
time that aa offer or a cancellation is processed. 

6 l l  P e r f o m a n c e  o f  ProcessOf fer  
To measuxe how the algorithm ProeessOf fer  performs, 

we have run five tests T1,. . .T~. Test Tx is the worst case 
for the algorithms, since every participant accepts that ev- 
ery role in the interaction can be played by a ,y  other par- 
ticipant. So, 5 e :- 3, 125 enablements are found. In tests 
Ta, Ta,. .  • participants make their offers more and more re- 
strictive, imposing a restriction on the participant that must 
play role P, Q , . . .  and so on, being Ts the best case since ev- 
ery participant restricts that every role in the interaction 
must be played by another concrete participant. So, the 
number of enablements found in test T~. . .  T5 are respec- 
tively 54 , 5 a, 52 mad 51 . 

Since the third optimization proposed on ProcessOf fer  
proposed in section 4.4 algorithm has been implemented as 
optional, we have run twice every test T1 . . .  Ts: once with 
the optimization enabled, and once with this optimization 
disabled. This permits to compare how good the optimiza- 
tion is. The increase of memory usage due to the optimiza- 
tion has never been greater than 15%. 
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F i g u r e  8: ProcessOf fer  a l g o r i t h m  p e r f o r m a n c e .  

The first plot in Figure 8 shows the average number of 
consolidation operations computed per offer in each run. 
We can appreciate that the number of operations computed 
decreases dramatically when the test is run with the opti- 
mization enabled. The second plot shows the relationship 
amongst the number of operations computed with and with- 
out the optional optimization. The improvement due to the 
optimization increases as the restrictions imposed by the 
participants are more res~.rictive, since they provide more 
information useful to determine where the search process 
should begin. 

Nevertheless, the results of test T1 in first plot may seem 
poor. Is executing an average of 470 or 156 consolidation 
operations per offer a good performance? Yes, indeed it is, 
because we should also take into account the average number 
of enablements found per offer. The third plot in Figure 8 
shows the average number of consolidation operations com- 
puted per enablement found, as much in the test with and 
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without the optional optimization. This gives us the cost 
of finding an enablement.  So, in test Tt the average cost of 
finding an enablement  is less than  four consolidation oper- 
ations if the optional optimization is not enabled, and less 
than two otherwise. It is very impor tant  noting that the 
cost of finding an enablement decreases as the number of 
enablements that can be found inerea-~es. 

6.2 P e r f o m a n c e  o f  CancelOffer 
To measure how the Mgorithm CancelOffer performs, we 

have run again the same five tests Tz,.-. T.~ from previous 
section, cancelling every offer after each run. 
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F i g u r e  9: C a n c e l O f f e r  a l g o r i t h m  p e r f o r m a n c e .  

The first plot in Figure 9 shows the average number  of 
consolidation operations computed per cancellation, mad the 
average number  of enablements  refused each time. As in  
the P r o c e s s o r  f o r  algorithm, the numbers  in test Tz may 
seem excessively high. But  once again, we should take into 
account the number  of enablements  refused by every can- 
cellation. The second plot in the Figure shows the average 
number of consolidation operations computed per enable- 
ment refused. This is the cost of refusing an enablement. 
As for ProcessOr  f o r  algorithm, we can see how the cost 
of refusing an enetblement decreases as the number  of en- 
ablements increases. We can find the explanation for this 
effect in the  cousolidRtien graph topology. When  there are 
many enablements  in  the graph, frequently many of those 
enablements  shaxe leaves nodes. When  an offer having many 
enablements  e.s ancestors in the graph is canceled, the cost 
of refusing those enablements  is smaller tha t  if the tuple had 
one or none enablements  as ancestors. 

7. C O N C L U S I O N S  
In this paper, we have described the algorithms we have 

developed to implement  the CAL interaction model, focus- 
ing on the problem of enablement  detection. This is an 
open mul t ipar ty  model useful for applications tha t  require 
eoordingtion amongst  entities tha t  axe not  fixed beforehmad. 
Although the problem of finding all the sets of entities that  
agree to coordinate through an interaction has a high com- 
puta t ional  cost, our algorithms performs quite well since it  
behaves more efficiently as the complexity increases. 

Our enablement  detection algorithm can cooperate with 
any selection algorithm tha t  fulfills some conditions. We 
th ink that  this is an impor tan t  feature, because it leaves an 
open door to deal with other problems related to selection, 
such as fairness. 
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