
VIEW REPRFSENTATION IN LOGICAL DATABASE DESIGN

Shamkant B. Navathe

Graduate School of Business
New York University

Mario Schkolnick

IBM Research Laboratory
San Jose, California 95193

ABSTRACT: The process of logical database design consists of four phases: view modeling, view
integration, schema optimization and schema mapping, View modeling is defined as the modeling
of the usage and information structure perspectives of the real world from the point of view of
different usera and/or applications. The view integration phase combines these views into a
single community view which is subjected to further optimization and mapping. As a result,
instances of users’ model may be altered and application programs transformed.

This paper proposes a scheme for view representation which will facilitate the process of view
integration. This is done by enhancing the data abstraction framework proposed by Smith and
Smith. It takes into account the instance-level interrelationships among data and the
identification of instances via these interrelationships. The usage perspective is incorporated
as rules and assertions about schema- and instance-level Insertion and deletion.

The problem of view Integration is briefly addressed% Valid transformations of views are
indicated as a part of the integration process.

1 LOGICAL DATABASE DESIGN

1.1 Background

For any Information system it is generally
accepted that there are two levels of design,
logical and physical. If an information system
uses a database, the procees of designing the
database can be again divided into two stages:
logical and physical database design.

i) Logical database design - It consists
of integrating the requirements of a
number of applications/users to arrive
at a centrally controlled and maintained
logical database structure. The central
structure must support individual user
views of the data and support their
processing needs. In order to store
the database in a particular database
environment, the structure should be
defined in terms of the facilities,
features or constraints existing under
that environment.

ii) Physical database design - Definition
of a logical database still leaves a
number of possibilities for its
implementation in a certain database
environment. Physical database deelgn
involves the evaluation of such
alternatives and a choice of storage
structure, -placement strategies, and
searching mechanisms, etc. This paper
is concerned only with logical database
design.

1.2 Current State of the Art

At the current state of the art the problem
of logical databaae design is being tackled in
practice by the database designers in an ad-hoc
manner with little discipline. It leada to
logical designs which de not.fully meet the
requirements and may either call for a redesign
or require continual changes at a substantial
cost. Much of the existing research in the area
has been presented as independent data models
(e.g., [l]), discussions of different perspectives
of the problem (e.g., [lo]), or individual
analyses (e.g., [10,12]). An IBM program product
[51 addresses the logical design problem for a
particular database management system. Other
syntheses leading to authomatlc schema generation
in particular systems based ou a priori knowledge
of access statistics and queries have also been
proposed (e.g., [4,91).

1.3 A Conceptual Freme.work

Since actual large databases in business,
gwerment and industry involve thousands of data
elements and interrelationships, the solution
space is not easy to deal with manually; hence
it is imperative that comprehensive computer-aided
approaches be developed to logical database
design. It is necessary to integrate existing
research in the area into a well-founded design
discipline. The schematic below represents a
proposed conceptual franksw0rk.l

144

http://crossmark.crossref.org/dialog/?doi=10.1145%2F509252.509286&domain=pdf&date_stamp=1978-05-31

, Specification of users data and
/

/
processing requirements

1’

Abstract representations (models)
of user views of the real world

.- --- +

+

View Integration

Abstract representations (models)
of a community view
supporting all users

1

./ l---y Model (S;;;maai$nization 1

I !

I
Database definition

in a particular database system environment

Conceptual Framework for Logical Database Design

NOTE

1. The framework has been proposed and ia being
investigated jointly with Bing Yao and
Jay-Louise Weldon at New York University
1131. A similar framework was also formulated
at an inforxal seminar on database design
which took place at the IBM Reeearch
Laboratory, San Jose in late 1976.
Participants in this seminar were
Janis Bubenko, David Rsiao, Vincent Lux, Alan
Merten, Mario Schkolnick, Arnie Solverg, Bob
Taylor and Bing Yao.

Requirement analysis provides the input to
all phasea of the logical database design process.
The input conaista of a specification of the data
requirements and the processing requirements of
the potential usera of a system. This activity
has been investigated in great detail for
information systems generally (e.g., 161). and
is alao addreaaed by some researchers in the
specific context of database systems (e.g., 131).
The main four phases of logical database design
are the following:

i)

ii)

iii)

iv)

View Modeling: Using requirement
specifications as input, each user’s
view of the real world must be extracted
and repreeented’as explicitly as
posaible. In doing so, user’s knowledge
about the data and relationships at both
schema and instance levels must be
incorporated and the effects of
proceasing of data upon these two levels
must be considered.

View Integration: The several and
possibly conflicting user view muat be
integrated into one data model that
represents a global or community view
of the required data. The global model
must support all user views. In case
of conflicts,original users should be
consulted to arrive at compromises. The
integration therefore entaila merging
individual views as well as
transformations.

Model (schema) Optimization and Analysie:
Since alternative global models can
exist for the same data base, the model
produced in step 2 must be analyzed and
refined into an “optimal” structure.

Model (Schema) Mapping: The model must
finally be matched against the logical
structures available in an existing
database system environment and a
database schema defined. Certain
alternatives which are
implementation-dependent are either
analyzed in this phase or carried over
into physical database design.

With respect to the above description. of the
logical database design process, the following
observations are pertinent:

i) Each design step produces not a unique
eolution but a set of solutions
aaeociated with a vector of measures
which represent varioua properties of
the particular solution.

ii) The designer should interact with the
design process to eelect an appropriate
solution as the input to the next design
step. A selection criterion must be
defined and documented by the designer.

iii) Since the design requirements collected
by the requirement analysis may be
incomplete and inconsistent. the designer
must be consulted to reaolve ambiguities.

145

iv) The design is usually not a single-pass
process. Various conditions discovered
by the designer may force a re-design
and iterate to an earlier design step,

The present paper addresses mainly the view
modeling phase and to some extent the view
integration phase of logical database design from
the above framework. It proposes a technique
for representing user and application views
explicitly in terms of schema and instance level
relationships. Particular attention Is paid to
the problem of identification of instances, The
properties of different constructs with respect
to Instance insertion and deletion are discussed.
Accurate and complete view modeling is extremely
important to the logical design process described
above. The introduction of one more data model
per se should not be viewed as the final result
of our research effort. Our long term goal is
to develop techniques to facilitate the view
integration process. The model described in this
paper is just the first step in that direction.

When a number of views are subjected to view
Integration, the components of a view undergo
merging, insertion, deletion, etc. at the schema
level. These schema operations are briefly
addressed In Section 3. During these phases of
modeling and Integration of views, additional
inputs from designers/users to resolve conflicts
are assumed.

2. VIEW REPRESENTATION

2.1 Background

The phase of logical database design called
view modeling results in a representation of
views of the real world which are pertinent to
independent categories of users and/or
applications. The process of view modeling
involves at least the following two components
(In addition to requirement specification):

i) Extracting from the user or from a person
in charge of application development
the relevant parts of real-world
information;

ii) Abstracting this Information into a form
which completely represents the user
view so that it can be subsequently used
in the design.

In the rest of this paper the term user view will --
imply both application and user views,

The final outcome of the above two components
is view representation individually by users.
The present paper addresses view representation
in the above context.

The problem of view representation has been
addressed more as a by-product of a data model
development. The most pertinent among these is
the work of Chen [ll and Smith and Smith [12].
Chen’s entity-relationship model is simple and
easy to conceptualize, and allows a user view to
be represented by means of entities, relationships

and their respective attributues. Although the
E-R diagrams are a good vehicle.for view
representation, the semantics of the E-R model
fall short in the following areas:

i> defining relationships either among two
other relationships or among an entity
and a relationship:

ii) distinguishing among different types of
relationships.

The work of Smith and Smith on data
abstraction is very useful for view modeling.
Their Ideas on aggregation and generalistion
hierarchies are conceptually elegant and result
in a homogeneous representation of a user view
without any implementation camstraints. As
proposed, their approach is supposed to apply to
the community view of data and as such it demands
a lot of skill on the part of the designer using
it If the scale of the problem is large. However,
if suitably modified it can be used to advantage
for view representation. We have done this, by
redefining some of its constructs, adding new
ones, and introducing semantic information along
these contructs.

2.2 Objective

Kahn [7] pointed out that there are two
aspects of user view which must be modeled in
order to adequately represent it. These are:
the information structure perspective (Le., the
non-process-oriented view), and the usage
perspective (i.e., the process-oriented view).
Both the E-R model of Chen end the data
abstraction approach of Smith and Smith are biased
toward the former.

Navathe [lo] has proposed a technique for
analyzing schema of existing databases. He
distinguishes the associations among groups of
data into two types: Identifying associations
and non-identifying associations. This concept
is tied to the identifiabilitv of individual
instances of data and duplicaiion of Instances
occurring in the database. Previously the data
modeling-approaches have tended to address
relationships only at schema level, and have
failed to incorporate the interrelationships
among data et the instance level. Typically, a
user has a lot of knowledge about instance
relationships which does not surface in the
conventional data models.

In the present paper we draw from the date
abstraction model of Smith and Smith and propose
a technique for view representation to achieve
a better modeling of the usage perspective and
to incorporate the relationships among data
instances, especially those which are used for
identification purposes. The objective is to
obtain a vehicle which represents a user view as
explicitly as possible in the following sense:

Information Structure Perspective

-.distinction among different kinds of
associations between entities;

- allowing associations in which entities
or associations or a combination of the
two can participate;

- incorporation of the dependence of
entities on one another for the sake of
identification.

Usage Perspective

- effect of insertion and deletion of
entities and associations on one another
at schema and instance levels;

- incorporation of user-defined rules
about instances of data.

2.3 Definitions and Notation

A user view is represented in terms of
entities, associations, attributes and connectors
in a & diagram.

An entity models anything that exists as a
physical thing, e.g.‘, an object, an event, a
person, and whose existence is of interest to
US. An association is an n-ary relationship
among entities, among entities and associations,
or among associations. It represents a fact, an
idea or a specific aspect of a relationship
between its components. Examples: “Advisor-of”
is the name of an association between the entities
Professor and Student.
“Enrolled-as-teaching-assistant” is an association
between two other associations, “Enrollment” and
“Teaching-assignment.” An association ehould
not correspond to a physical thing which is of
interest to some user; if it does, i.e., if a
user is interested in the association as an object
in itself, It must be represented as an entity.
For example, “Has-supervisor” is allowed to be
an association between Employee and Project so
long as it stands for the concept of an employee
being supervised on a project (by some person
whose name is an attribute of “Ras-supervisor”
but whose existence is of no concern to us).
However, if Supervisor per se is of interest to
the user as a physical thing, Supervisor must be
represented as an entity and “Ras-supervisor”
must be modeled as an association among three
entities--Supervisor, Employee and Project.

An entity of an association is described by
a descriptor set. Syntactically, a descriptor
set can be described as a finite set of elements
which are either elementary (or atomic)
descriptors, called attributes or other descriptor
sets. We intend that this definition not be a
recursive one, i.e., a descriptor set will not
contain itelf as an element. In fact, it appears
that -the deepest level of nesting that is needed
to model real applications is two. Also, our
use of the term set is an abbreviation for
multiset [8], since duplicate attributes may
exist. An example is given in 2.4.2.2. A
descriutor which is an element of another is .
sometimes called 5 repeating-. Semantically,
a descriptor set is a list of attribute values
(or groups of attribute values in the case of
repeating groups) that can be associated with an

instance of an object (entity or association) in
the database. Figure 1 shows two entities and
one association with their respective descriptor
sets. The entity Employee has two repeating
groups, one being {Year, Grade), the other
{School, {Degree)).

Employee = (Ed, Dep#, (Year, Grade}, (Stool,{ Degree}}]

Asgnmt ={ Asgnmt#, Assignment-name}

Works = (Emp#, Asgnmt$ Supervisor-name, Start-data}

Figure 1

With the above definitions, a view is
represented by a graph having entities and
associations as the objects at its nodes. The
edges linking the nodes are either directed or
undirected and are termed connectors. A connector
is a two-tuple which Is ordered only if the
connector is directed. In this case, an arrow
is placed on the first member. For example,
Figure 1 has two connectors: (m, Works)
and (Worka; Asgnmt) . The meaning of the directed
connectors will be explained later.

An association can also be described by an
n-tuple containing the names of participating
entities and associations. For example, Works
in Figure 1 can be described as Works (Employee,
Asgnmt) . An instance of an entity or association
is described as an n-tuple of component instances.

2.4 Rules for View Repreeentation

The following eubsections present a scheme
for representing user views of data. A set of
definitions and conventions are proposed. For
each component of the view, the usage perepective
is considered in terms of insertion and deletion
at the instance level.

2.4.1 Entities

One or more elements of the descriptor set
of an entity may be used to identify an instance
of the entity. They constitute an internal
identifier for the entity. There may be multiple
candidates for the internal identifier of an
entity. A user generally selects one of them to
actually identify an Instance of the entity. As
per the discussion in Navathe [lo], internal
identifiers are of two types: total and partial.

147

A total internal identifier provides full
identification so that for a given value(s) of
the identifier, there is a unique instance of
the entity. Contrary to this, a partial internal
identifier implies that further external
identification ie necessary before a unique
instance of the entity can be determined.
Following Navathe’s [lOI notation, internal
identifiers will be underlined in the descriptor
notation of entities, e.g., Emp# for Fmployee
and Asgnmt# for Asgnmt are underlined in Figure 1.
If an entity has a total internal Identifier
present in it, it is called self-identified, and
indicated be a # sign. Since there is a l-l
correspondence between the values of a total
identifier for a given entity and the set of
instances of that entity, in the sequel we will
not make a distinction between these two concepts,

Discussion on entities with respect to
insertion and deletion is deferred to later
subsections.

2.4.2 Associations

Associations are divided into two types,
identifier associations and simple associations.

2.4.2.1 Identifier Associations

An identifier association arleee when an
entity is provided external Identification from
other entities and/or identifier aesociations.
External identification has been defined by
Navathe 1101 as the orocess of obtaininn a total
identifier for an entity by augmenting its partial
internal identifier with total identifiers of
other entities and/or associations.

The need for external identification arises
on two grounds:

1) A genuine need to distinguish between
instances having the same value for an
internal identifier which stand for
different real-world objects. For
example, two inetancee of Cities with
the same City-name may etand for
different cities and need external
identification from State.

-ii> A need to distinguish between duplicate
instances of the same object used while
realizing m:n relationships. For
example, two instances of the Student
which,occur in relation to two different
Course Instances.

Let Xl, 9, Xn-1 be objects (entities
or associations), Xn be an entity and A(X1, X2,
. . . . Xn> an identifier association. Then there
is an identifying function IA which maps inetances
of Xl, x2, Xn-1 and a partial identifier
for X, into an instance of Xn having that partial
identifier. Formally,let &i denote a partial
internal identifier for Xi, g(Xi) the set of all
instances of Xi andy@) the set of all inetencee
of the Internal identifier&i.

Then
1,*x1> x 9(X,) x . . , x P(xn-1) x fldn) V(Xn)

such that if 1A(X1sX2t~-l.y)~ for some
value y of the internal identifaer .&, then
@n(G)..Y*
i=l,

In the preceeding equation, xi-Xi),
n and &$.n(xn)e&Q is the value of the

internal identifier Sn for the instance xn of
entity X,.

If ~1, ~2, ~~-1 are total identifiers
for Xl, X2, Xn-1, then ~1, r2, *~n,.&l,
4, is termed the augmented total identifier for
xn*

An example of an identifier association is
shown in Figure 2. School-name ia a total
identifier for the entity Nursery-school while
Childname is a partial identifier for the
attribute Child. This means that there may be
two or more instances of the entity child in the
database with the .same value of Childname.
However, the existance of the identifier
association A defines a function IA such that
given a value sn of School-name and a value cn
of Childname, an instance of a Child is uniquely
identified in the database by IA(sn,cn). Thus,
{School-name, Childname} is an augmented total
identifier for the entity Child.

,

Nursery-school = (School-name, Address}

Child ={ Childname)

Parent =(Soc-sec.nq, Last-name, First-name)

Figure 2

Every entity in a diagram must have either
a total Internal identifier or an augmented total
ident if ier .

Insertion and Deletion of Entity
and Identifier Association Instances

The existence of identifier aeeociatione
permits establishing explicit rules for insertion
and deletion of inetance of entities and of
identifier aesociations. This fact Increasea
the semantics associated with our model. It also
helps in the validation of changes in v.Q.wrs one
may wish to do during a view merging operation.

The rules for insertion and deletion of
instances of entities and identifier aseociation
follow. These are natural rules BO no further
ilIustration is given.

An inetance of an entity with a partial
identifier can be inserted, provided

148

i> the instance Is supplied external
identification; and

ii) instances of entities and associations
required in I) are supplied.

An instance of an entity with a total
identifier can be freely inserted,

Insertion and deletion of an instance of an
identifier association implies a corresponding
insertion and deletion of instances of the
identified entity. Insertion of an identifier
association without a corresponding insertion of
the identified entity is not possible except in
the case of multiply-identified entities. (See
2.4.3.)

Figure 3

2.4.2.2 Simple Associations Figure 4

Identifying associations are used to provide
identification to instances of entities which
are not self-identified. Sometimes we wish to
define associations which do not have an
identification purpose but rather to relate
instancee of objects. In general, if we have an
association A(X,Y) between two objects X and Y
and three instances XEX, ysY, (x,y)sA, i.e., x
and y are related via A, the deletion of one of
x or y clearly implies that the instance (x,y)
of A has to be deleted from the database. In
the previous section we discussed other deletion
rules that might apply if A were an identifier
association. In this section we discuss
non-identifier associations and their
insertion/deletion properties. An association
B, defined for n objects Yi, 1=1,2,...,n, where
each object is an entity or an association, is
termed a simple association if B is not an
Identifier association. It is denoted as
B(YlrY2,***,Yn)* A unary simple association has
only one component.

Some associations have an owner/member
characteristic. Member instances cannot exist
without owners. We introduce this dependency in
our model as follows: One of the components of
B, say Yj, j-1,2,m. may be defined as an
owner of the association B, and the rest as
members of B, provided the semantics of B Implies
the following. Whenever an instance y h
Is deleted, all instances of B in whit d

of Yj
yjh

appears are deleted; furthermore, all instances
of Yf, 161,2,. . . ,j-l,j+l, . . . ,m assocl$ed with
y h via B with a directed connector (B,Yf) are
a 5. so deleted. When Yj Is an+owner of B, the
corresponding conuector is (Y ,B). Example: In
Figure 3, association SIJPPLIE 4 (Supplier, Part,
Project) is defined with Supplier as owner and
Part as a member (nothing is specified for
Project). It implies that whenever an instance
of Supplier is deleted, corresponding Pert
instances are deleted owing to the directed nature
of the connector (Supplies, Part); however,
Project instances are not deleted since the
connector (Supplies, Project) is undirected.

A number of simple associations may exist
with the same components, e.g., Supplier and
Can-Supply in Figure 3.

The owner/member description in an association
can be extended. For example, for simple
associations without an owner, connectors directed
outward from the association can be given the
following meaning. Consider the view diagram
with associations A and B in Figure 4. Whenever
an instance of W 0’: of X is deleted, all instances
of A $n which the instance of W (or X) exist must
be deleted. This Is just the nornal deletion
property described earlier, However, if in doing
so there are no more instances of some Y (or 2)
in A then those instances of Y (or Z) must be
deleted provided they have no other directed
connector incident from any other association.
For those objects (entities or associations)
having multiple incident directed connectors,
the instance deletion occurs only if it is
mandated by all connectors incident on it. For
example, Z has two incident connectors; therefore
the rule for instance deletion of Z is:

Delete an appropriate instance z of Z whenever

(w OR x) AND (p OR q)

are deleted, where w, x, p, and q are
Instances of corresponding objects such that

(w,x,y,z)EQA, the set of instances of A,
and (z,p,q)@, the set of instances of
B.

The above illustration indicates just One Of
the many possible ways in which a rule of
instance-level insertion or deletion can be
defined in the present model of view
representation. Rules for which no graphic
counterpart exists must be defined by means of
separate assertions. (See 2.5.)

An identifier of a simple association is
defined as the concat’;;nation of the total
identifiers of its components. In the deecriptor
notation a simple association B(Yl,Y2, a . . ,Ym) is
described as

B - (tid(Yl) ,tid(Y2),. . .tld(Ym), bl,b2,. l .,bn)

where tld(Yj) is the total identifier of Yj, and

149

bi, i=1,2,...,n are attributes of B. The
identifier of B is tid(Yi), tid(Y2),.,.,tid(Ym).
Duplicate descriptors are eliminated when they
stand for external identifiers of the same
ina tance . An example of the above concepts is
given in Figure 5. It chows a database schema to
keep information about countries, statea and
cities. Country is the only entity that hae
internal identification. State derives its
identification from Country, i.e., Its total
augmented identifier is {Country-name,
State-name.] Likewise, City derives its
identification via the identifier association B.
Its total augmented identifier should be
{Country-name, Country-namb, State-name,
City-name), the second and third attributes being
the total identifier of State. However, both
occurences of Country-name stand for the same
instance of a country so it is not needed in the
total augmented identifier. Thus, City has
{Country-name, State-name, City-name) as its
total identifier. A similar situation occurs
for the identifier of the association
Largest-state, which associates countries with
the largest state in that country. -- The duplicate
occurrence of Country-name is dropped from the
descriptor set of Largest-state since it denotes
the same instance of country. A different
situation occurs with the association
Major-export-port which associates every exporting
country with that city (in the world) on which
the port receiving the largest volume of traffic
is located. Thus the association
Major-export-port has two country names, one of
the country which exports and the other of the
importing country where the port is located.

Country ={ ~ountrv-name, C-POP}

State =(State-name, S-pop)

City = (Citv-name, T-POP]

A = (Countrvname, State-name)

S =(Countnvnme. State-name, City-name)

Largest-state -(Countrv-name State-nam)

Historic-capitals =(poo;;;m;;f;,:Wame, CitWame}

Major-export-port = Countrv-name, Countwname, State-name, City-name,
(No-of-docks, Sea-name 1

Figure 5

2.4.2.3 Placement of Entities and Associations
in a View Diagram

As a general rule entities will be placed at
a lower level with respect to all a&eociations
in a view diagram. To avoid confusion a dotted
line is used to separate entities from
associations whenever necessary (e.g., Figure 5).

2.4.3 Multiple Identification of Entities

In our model for view representation, every
entity has actual and potential internal
identifiers. The following cases can arise:

i> An entity has several potential internal
identifiers, all of which are total.
In this case the entity ie not dependent
on any identifier aeeociation and any
one of its total identifiers suffices
to identify its instances.

ii> An entity hae several potential internal
identifiers, all of which are partial.
In thle case external identification
may be provided to the entity via one
or more distinct identifier asaociatione.
As a result there will be different
augmented total Identifiers for the same
entity. Example: In Figure 2 Child hae
an internal identifier Child-name, It
is identified via two identifier
relatione A and B. The resultant
augmented total Identifiers are

(School-name, Child-name) and
(Sot-eec-no, Child-name). In such a
case any one of the internal identifiers
which gets augmented may be underlined
In the descriptor notation for the
entity.

iii) An entity has several potential Internal
identifiers, some of which are partial
and 8ome of which are total. If one of
the total internal identifier6 is
actually used, then the entity can be
declared a8 self-identified.
Nevertheless a number of identifier
associations can exist to provide
external identification for it aa in
ii) above. Example: in Figure 6 the
entity Book has a total internal
identifier viz. Lib-congr-no; hence it
is shown as a self-identified entity.
Title is a partial internal identifier
for it. Identifier associations A and
B result In the augmented total
identifiers: (Publ-name, City, Year,
Title) and (Author-name, Title) for
Book.

2.4.4 Special Types of Simple Associations

Three special types of simple associationa
called categorization, aelection and eubeetting
are defined below. They are necessary to model
explicitly a epeclflc nature of the relationship
among data instances. By dietinguiahing these
types from the remaining eimple associations it

Publisher -{ Publ-name, City)

Publ-date -(m)

Book -(Libcana-no, Title, Price)

Author =(Author-name)

Figure 6

is possible to define rules of schema and Instance
level insertion and deletion which are
semantically appropriate for each individual type
but which are not generally applicable to all
simple aaeociations.

2.4.4.1 Categorization

A categorization is an association between
an owner entity and member entities called
categories. Consider a categorization A of an
entity X into entity types Xl, X2, . . ., X,. It
is denoted by the association A(X,Xl,X2,...,Xn).
It implies there exists a mapping fA which maps
every instance of X into a subset of categories
Xl, X2, a*** Xn*

Given XI%, fA(x) identifies all those
categories Xii, Xi
(X,XiltXi2 f

I a-.,
EA

Xim such that
,..., xb with xij~ij, j=l,..., m.

A number of categorization functions fA, fB...
may be defined for a given X.

In the view diagram a categorization
association is marked as “cat.” The entity being
categorized is connected to the categorization
association by a directed connector (Figure 7).

Figure 7

If the same target categories apply to two
different entities, e.g., Students and Staff are
both to be distinguished into Male and Female,
two separate categorizations must be defined
(Figure 8). Smith and Smith’s [12] concept of
generalization clusters Is vary similar to
categorization; however, they allow for only
mutually exclusive categories, which 3.0 a severe
constraint in dealing with real-life data. For
example, students in a university may be
categorized ipto undergraduate, graduate, special,
professional, resident, conguter, aid-recipient,
etc., so that one student could belong to mulfiple
categories. It is unnatural to have to define
a number of categorizations to satisfy mutual
exclus ivenese . Note that the associated mapping

gives, for every student, the proper subset of
categories.

Cat

Figure 8

Whereas the owner of a categorization i6
externally identified or self-identified, each
of the member entities (categories) may either
depend for external identification on the owner
or be self-identified. Transmission of external
identifiers from the owner to the categories is
modeled by a separate identifier aesociation;
e.g., note the (Student, Male) and (Student,
Female) identifier associations in Figure 8.

Categorizations enforce an additional semantic
notion related to insertion/deletion activities.
Let C be a categorization of entity X with mapping
fC* Insertion of an instance x of X implies the
insertion of instances of all categories included
in f c (x1 . Convarely, insertion of an instance

iFinstance
of Xj implies a corresponding insertion of an

. For example, if Students are
categorized into Medical, Engineering, Law,
Science, Arta and Business Students, inserting
a student with a joint-major In Law and Businers
implies inserting two new instances under those
categories; alternatively, insertion in Arts
implies an insertion in Student.

2.4.4.2 Selection

A selection association is a binary
association among entities. Consider a selection
association A(X,Y). It provides an aeoociation
by which an instance of X is associated with a
subset of the instances of Y. The eubeets
represent a partitioning of instances of Y which
are non-overlapping such that a different instance
of X is associated via A with each partition.

151

LetgY be the set of instances of Y. 2%
denotes the power set ofgY, i.e., the set of all
its subsets.

Then there is a function GA associated with
A:

GA:% * 3 2 , such that

9;r- : G(x)
i-1 A i

and GA(Xi)nGA(Xj)“!d for l#j, where xl, x2,
. . . . xm are all the Instances of X.

In the view diagram a selection association
is marked as “Sel.” X is represented as the
cyner of A(X,Y) by means of the directed connector
&A) (e.g., see Figure 9).

another association, Consider a subsetting
association A(B), It provides a means of
associating the name A with a subset of instances
of B. Attributes of the subset as a whole are
represented as attributes of A. -For each subset
of B a different subsetting association is
required. There is no mutual exclusiveness
contralnt among the subsets so defined.

In the view diagram a subsetting association
is marked “sub ” B Is marked as the owneg of
A(B) by means Af the directed connector (B,A).
In Figure 10 Advisor-of is an association between
Professors and Students. Phd-advisors,
Project-advisors, Curriculum-advisors are
subsetting associations defined with Advisors-of
as a component. The set of instances of
Advieor-of which belong to these three subsets
need not be mutually exclusive.

Figure 9

If the instances of a given ent%ty are to be
partitioned In various ways, a number of
selections may be defined for it; e.g., in
Figure 9, A and B select Student instances by
Country and by Major.

The main difference between selection and
categorization is at the instance level. For
example, association A in Figure 9 associates
countries (e.g., U.S., Canada, India and Taiwan)
with the instances of students who are from the
respective countries. If the same information
were to be modeled using categorization, for each
student instance an additional instance would be
required under each of the categories such as
U.S.-students, Canadian-students, etc. The mutual
exclusivity constraint is easier to enforce on
selection association than on categorization.

As was the case for categorizations,
selections also enforce an additional semantic
notion. Insertion of an owner instance x for
selection A(X,Y) implies that the corresponding
selection function GA must be modified, instances
of Y must be repartitioned, and new instances of
A must be created if necessary. For example, if
an instance of Country Is inserted in Figure 9
for Nepal, the set of Student Instances belonging
to the Indian subcontinent previously may now be
further partitioned.

2.4.4.3 Subsetting

A eubsettlng association is a unary
association in which the component object is

(Advisor-of)

Figure 10

Selection and subaetting are parallel concepts
which have been defined for entities and
associations respectively. The former allows a
subset of entity instances to be aggregated and
associated with a foreign Instance of an entity,
whereas the latter allows a subset of association
instances to be aggregated and named.

Insertion or deletion of an instance b of B
Implies a modification of the Instance of each
subsetting association for which B is an owner
of the association and b is a member of the
subset.

2.5 Assertions

When a user view ia modeled according to the
rules of Section 2.4, a part of the usage
perspective associated with the view is Inherent
in terms of the rules of instance insertion and
deletion which have been described for each object
type. Some of the rules contribute to the meaning
of a particular object type whereas some stand
for a convention in view representation (e.g.,
see 2.4.2.2). These conventions can be modified
and additional conventions may be defined to make
the instance level interaction among data as
explicit as possible. However, the farther the
exercise ie carried out the more cumbersome view
representation becomes.

To state complicated interdependence of
instances in a user view, it can be supplemented
by a set of assertions; e.g., an assertion for
the view in Figure 11 is the following:

The assertions can be alternatively regarded
as a statement of the validity constraints which
a user makes to maintain consistency among the
data expressed in his view (see [2]).

Let $i3 denote the set of instances of
object J. 2.6 Summary

Let 6c,y> denote.an instance of an
association (X,Y) which associates
instances x and 9.

Then if asa, SET and cEgC are Instances of
Assistantship-slot, Student, and Class
respectively and %Enrollment,
T-Teaching-assignment, W=Award, then
<a,c>sgT and (a,s>EB~<s,c>E+, i.e., a
atudent who is given an assistantship slot for
a particular class muat be enrolled in it as a
student. Another way of stating the same
assertion would be:

Figure 11

Subsections 2.3 through 2.5 have proposed a
scheme for representation of user views, A view
is represented in terms of entities, associations
(together referred to as objects) and connectors
connecting them. Entities are of two types--
self-identified and externally identified,
Associations are divided into identifier
associations and simple associations. Three
special types of simple associations termed
categorization, selection and subsetting have
been defined, Connectors are divided into
directed and undirected connectors.

The overall model of view representation was
described in terms of the definitions and notation
of the various types of objects and connectors
stated above and conventions pertaining to their
representation in view diagrams. The rules of
instance insertion and deletion for each object
type express the semantics associated with their
use in different contexts. Use of assertiona to
atate additional rules waa exhibited.

3 VIEW INTEGRATION

View integration IS the second phase of
logical database design where ueer views are
merged to obtain a community view. In addition
to merging, it alao involves schema
transformationa necessary to arrive at “compromise
views” possibly under consultation with
userafdesignera. A detailed treatment of view
integration using schema transformations proposed
earlier for database restructuring [ll] will be
presented in a separate paper.

In performing any schema level operations on
views, schema objects (viz. entities and
associations) need to be inserted and deleted.
The semantics of the view representation scheme
presented in Section 2 will be further augmented
with the schema insertion and deletion rules in
Section 3.1 below. Some pointers to view merging
are presented in Section 3.2.

Figure 12 3.1 Schema Inaertion end Deletion

Consider another example view in Figure 12.
It represents information on employees who have
certain jobe and posseaa certain types of
licenses. With the abbreviations for the objects
aa shown in the diagram, the assertion “an
employee can be hired for a job provided he
possesses the licenses required for the job” can
be written aa:

for at least one L

3.1.1 Entities

When an entity with a partial identifier ia
to be schema inserted in a view, one or more
identifier associations must be inserted to
provide total identification for that entity.
An entity with a total identifier can, however,
be freely Inserted.

When an entity with a partial identifier
which depends upon external identification is
schema deleted from a view, identifier
association(e) for which it wae a receiving

153

component must be deleted. For example, in
Figure 5 If City is deleted, B must be deleted;
if State is deleted, A must be deleted. For
every identifier association so deleted, the
identifier associations for which It Is a sending
component and those receiving entities which are
not at the receiving end of any other identifier
associations and which are not self-identified
must be deleted. For example, in Figure 5 if A
Is deleted, B is deleted and City is deleted.
Note, however, that in Figure 13 City has been
alternatively identified from Mayor, Hence If
State is deleted in Figure 13, it results in
deletion of A’ and B’ but not of City.

6’

A’ E’

I \

COUNJY state City # Mayor

Figure 13

3.1.2 Identifier Associations

Schema insertion of an identifier association
amounts to defining a new identifying function.

Schema deletion of an identifier association
A has the following implications:

i> Upward propagation rule: associations
in which A is a component mu8t be schema
deleted (e.g., B in Figure 5);

ii) AND rule: if all the identifier
associations providing external
identification to an entity are schema
deleted and the entity has no total
internalidentifier then such an entity
must be schema deleted. (For example,
schema deletion of A results in schema
deletion of State in Figure 5.)

3.1.3 Simple Associations

Schema insertion of simple associations is
limited only by the fact that insertion of
equivalent associations is redundant.

Schema deletion of a simple association also
satisfies the upward propagation rule, namely,
that all associations in which it is a component
are scheme deleted.

3.1.4 Categorization

By the definition of categorization, schema
insertion of one or more additional owners for
a given categorization is not allowed,

Schema insertion or deletion of a member
entity (category) in a particular categorization

C implies that the definition of associated
function fC be modified to include the new member
entity. The effect of redefinition of fC extends
to instances of all categories, and may require
some category instances to be inserted and/or
deleted.

For a given entity X, if a categorization C
associates it with categories Xl, X
another categorization C’ can be

(’ Xm,
SC B ema inserted

which associates X with the same categories.

Schema deletion of a category from
categorization C also results in a redefinition
of fC and a corresponding insertion and/or
deletion of instances of other categories,

Schema deletion of a categorization C per ae
has no effect on its components. When the owner
of a categorization is schema deleted, the
categorization must also be scheme deleted.

3.1.5 Selection

A given selection association A(X,Y) has only
one owner and one member entity, Hence schema
insertion of an entity either as owner,or as
member into an already defined selection is ruled
out. However, any number of new selection
associations may be schema inserted for a given
pair of entitles.

Schema deletion of a selection A by itself
has no effect on its components. Since selections
are binary, when the owner or member of a
selection is schema deleted the selection must
also be schema deleted.

3.1.6 Subsetting

Any number of subsetting associations can be
schema Inserted for a given component association.
Similarly subsetting associations can be freely
schema deleted without affecting their component,

3.2 View Merging

As was mentioned in the introduction, our
goal in formulating the above model for view
modeling was to facilitate the process of view
integration. Such a study will be done in the
near future. Some of the problems of view merging
are illustrated in the following paragraphs, The
operations discussed are all schema operations.

3.2.1Merging of Simple Associations

In general, merging of simple associations
would be feasible only for associations of the
same type.

While operating on binary associations which
are functional in nature, the following strategy
can be employed. Suppose G(A,B) and H(B,C) are
two simple associations for which there exist
functions

154

Then there exiats a function FJ:YA-+P~ which ia a
composition of the two functions FG and FD, i.e.,
FJ~FD*FG. During merging if all three of the
above functions are encountered, FJ can be
eliminated, This action should be approved by
the user(s) since it may imply losing direct
access from A to C.

3.2.2 Merging of Identifier Associations

Figure 14 shows examples of merging identifier
associations in cases where the same entities
play sending or receiving roles under different
associations. In general the rule that the
sending components in an identifier association
must have total internal identifiers must be
observed. Figure 15 shows possible valid and
invalid structures in the context of this rule,

+Jg-pg&

Prof course Text

(8)

4+&&g
(b)

n

Figure 14

3.2.3 Merging of Entities

Identical entities can always be merged.
Otherwise, suppose E and E’ era two entities for
which

E$‘, (~t:~rms of their descriptor

id(E) = id@‘), for every internal id
of E and E’

tid(E) - tid(E’), i.e., the total
identifiers are the same

then the result of merging E and E’ may be
regarded as E’. It however implies that
descriptors in the set E’-E receive null values
in the instances of E after merging.

Valid

Figure 15

4 CONCLUSIONS

This paper has described a scheme for
representing user/application views during the
first phase of logical database design. The
proposed scheme differs from conventional data
models mainly In two ways, First, both
schema-level and instance-level data relationships
are incorporated in the view representation.
Second, as a consequence, a part of the usage
perspective in terms of insertion and deletion
of instances is also impl,icit in the view
representation. The resulting view
representations are therefore more explicit than
the representations in some of the indicated
models.

The problem of view integration was only
briefly addreeaed in this paper. It involves
schema modifications in addition to the schema
insertion and deletion and simple cases of merging
discussed in the paper. The authors are currently
working on this problem based on their earlier

work on schema transformations for database
restructuring.

REPERBNCES

t11

r21

t31

[4

t5

[61

Chen, P. P. S., "The Entity-Relationship
Model - Toward a Unified View of Data,"
ACM Transactions on Database Systems,
Vol. 1, No. 1 (March 1976).

Eswaran, K. P., and Chamberlin, D. D.,
"Functional Specifications of a Subsystem
for Data Base Integrity," Proc. VLDB 1975,
pp. 48-68.

Everest, G. C., Bray Olin, and Valtera Indulis,
"Developing a Data Perspective on the
Specification of Information System
Requirements," Report No. MIS C-TR-770-05,
Management Information Systems Research
Center, University of Minnesota.

Gerritsen, R., "A Preliminary System for the
Design of DBTG Data Structures," Come. ACM,
vol. la, No. 10 (October 1975).

IBM, Database Design Aid General Information
Manual and Designer's Guide, Publ. nos.
GH20-1626-O and GH20-1627-0, 1975.

IEEE Transactions on Software Engineering,
Vol. SE-3, No. 1 (January 1977).

r7] Kahn, B. R., "A Method for Describing
Information Required by the Database Design
Process," Proc. 1976 ACM-SIGMOD International
Conf. on Management of Data, June 1976, ACM,
New York.

[S] Rnuth, D., "The Art of Computer Programming,"
Vol. 2., Addison-Wesley, 1969.

[9] Mitoma, M. F., "Optimal Data Base Schema
Design," Ph.D; Dissertation, University of
Michigan, 1975.

[lo] Navathe, S. B., "Schema Analysis for Database
Restructuring," presented at the Third VLDB
Conference, Tokyo, Japan, October 1977; to
appear in ACM Transactions on Database
systems.

[ll] Navathe, S. B. and J. P. Fry, "Restructuring
for Large Data Bases: Three Levels of
Abstraction," ACM Transactions on Database
Systems, Vol. 1, No. 2 (June 1976).

[12] Smith, J. M. and Smith, D. C. P., "Database
Abstractions: Aggregation and
Generalization," ACM Transactions on
Database Systems, Vol. 2, No. 2 (June 1977).

[13] Yao, S. B., Navathe, S.B. and Weldon, J. L.,
"The Logical Database Design Process,"
Working Paper, New York University Graduate
School of Business (in preparation).

