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ABSTRACT: The process of logical database design consists of four phases: view modeling, view 
integration, schema optimization and schema mapping, View modeling is defined as the modeling 
of the usage and information structure perspectives of the real world from the point of view of 
different usera and/or applications. The view integration phase combines these views into a 
single community view which is subjected to further optimization and mapping. As a result, 
instances of users’ model may be altered and application programs transformed. 

This paper proposes a scheme for view representation which will facilitate the process of view 
integration. This is done by enhancing the data abstraction framework proposed by Smith and 
Smith. It takes into account the instance-level interrelationships among data and the 
identification of instances via these interrelationships. The usage perspective is incorporated 
as rules and assertions about schema- and instance-level Insertion and deletion. 

The problem of view Integration is briefly addressed% Valid transformations of views are 
indicated as a part of the integration process. 

1 LOGICAL DATABASE DESIGN 

1.1 Background 

For any Information system it is generally 
accepted that there are two levels of design, 
logical and physical. If an information system 
uses a database, the procees of designing the 
database can be again divided into two stages: 
logical and physical database design. 

i) Logical database design - It consists 
of integrating the requirements of a 
number of applications/users to arrive 
at a centrally controlled and maintained 
logical database structure. The central 
structure must support individual user 
views of the data and support their 
processing needs. In order to store 
the database in a particular database 
environment, the structure should be 
defined in terms of the facilities, 
features or constraints existing under 
that environment. 

ii) Physical database design - Definition 
of a logical database still leaves a 
number of possibilities for its 
implementation in a certain database 
environment. Physical database deelgn 
involves the evaluation of such 
alternatives and a choice of storage 
structure, -placement strategies, and 
searching mechanisms, etc. This paper 
is concerned only with logical database 
design. 

1.2 Current State of the Art 

At the current state of the art the problem 
of logical databaae design is being tackled in 
practice by the database designers in an ad-hoc 
manner with little discipline. It leada to 
logical designs which de not.fully meet the 
requirements and may either call for a redesign 
or require continual changes at a substantial 
cost. Much of the existing research in the area 
has been presented as independent data models 
(e.g., [l]), discussions of different perspectives 
of the problem (e.g., [lo]), or individual 
analyses (e.g., [10,12]). An IBM program product 
[ 51 addresses the logical design problem for a 
particular database management system. Other 
syntheses leading to authomatlc schema generation 
in particular systems based ou a priori knowledge 
of access statistics and queries have also been 
proposed (e.g., [4,91). 

1.3 A Conceptual Freme.work 

Since actual large databases in business, 
gwerment and industry involve thousands of data 
elements and interrelationships, the solution 
space is not easy to deal with manually; hence 
it is imperative that comprehensive computer-aided 
approaches be developed to logical database 
design. It is necessary to integrate existing 
research in the area into a well-founded design 
discipline. The schematic below represents a 
proposed conceptual franksw0rk.l 
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1. The framework has been proposed and ia being 
investigated jointly with Bing Yao and 
Jay-Louise Weldon at New York University 
1131. A similar framework was also formulated 
at an inforxal seminar on database design 
which took place at the IBM Reeearch 
Laboratory, San Jose in late 1976. 
Participants in this seminar were 
Janis Bubenko, David Rsiao, Vincent Lux, Alan 
Merten, Mario Schkolnick, Arnie Solverg, Bob 
Taylor and Bing Yao. 

Requirement analysis provides the input to 
all phasea of the logical database design process. 
The input conaista of a specification of the data 
requirements and the processing requirements of 
the potential usera of a system. This activity 
has been investigated in great detail for 
information systems generally (e.g., 161). and 
is alao addreaaed by some researchers in the 
specific context of database systems (e.g., 131). 
The main four phases of logical database design 
are the following: 

i) 

ii) 

iii) 

iv) 

View Modeling: Using requirement 
specifications as input, each user’s 
view of the real world must be extracted 
and repreeented’as explicitly as 
posaible. In doing so, user’s knowledge 
about the data and relationships at both 
schema and instance levels must be 
incorporated and the effects of 
proceasing of data upon these two levels 
must be considered. 

View Integration: The several and 
possibly conflicting user view muat be 
integrated into one data model that 
represents a global or community view 
of the required data. The global model 
must support all user views. In case 
of conflicts,original users should be 
consulted to arrive at compromises. The 
integration therefore entaila merging 
individual views as well as 
transformations. 

Model (schema) Optimization and Analysie: 
Since alternative global models can 
exist for the same data base, the model 
produced in step 2 must be analyzed and 
refined into an “optimal” structure. 

Model (Schema) Mapping: The model must 
finally be matched against the logical 
structures available in an existing 
database system environment and a 
database schema defined. Certain 
alternatives which are 
implementation-dependent are either 
analyzed in this phase or carried over 
into physical database design. 

With respect to the above description. of the 
logical database design process, the following 
observations are pertinent: 

i) Each design step produces not a unique 
eolution but a set of solutions 
aaeociated with a vector of measures 
which represent varioua properties of 
the particular solution. 

ii) The designer should interact with the 
design process to eelect an appropriate 
solution as the input to the next design 
step. A selection criterion must be 
defined and documented by the designer. 

iii) Since the design requirements collected 
by the requirement analysis may be 
incomplete and inconsistent. the designer 
must be consulted to reaolve ambiguities. 
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iv) The design is usually not a single-pass 
process. Various conditions discovered 
by the designer may force a re-design 
and iterate to an earlier design step, 

The present paper addresses mainly the view 
modeling phase and to some extent the view 
integration phase of logical database design from 
the above framework. It proposes a technique 
for representing user and application views 
explicitly in terms of schema and instance level 
relationships. Particular attention Is paid to 
the problem of identification of instances, The 
properties of different constructs with respect 
to Instance insertion and deletion are discussed. 
Accurate and complete view modeling is extremely 
important to the logical design process described 
above. The introduction of one more data model 
per se should not be viewed as the final result 
of our research effort. Our long term goal is 
to develop techniques to facilitate the view 
integration process. The model described in this 
paper is just the first step in that direction. 

When a number of views are subjected to view 
Integration, the components of a view undergo 
merging, insertion, deletion, etc. at the schema 
level. These schema operations are briefly 
addressed In Section 3. During these phases of 
modeling and Integration of views, additional 
inputs from designers/users to resolve conflicts 
are assumed. 

2. VIEW REPRESENTATION 

2.1 Background 

The phase of logical database design called 
view modeling results in a representation of 
views of the real world which are pertinent to 
independent categories of users and/or 
applications. The process of view modeling 
involves at least the following two components 
(In addition to requirement specification): 

i) Extracting from the user or from a person 
in charge of application development 
the relevant parts of real-world 
information; 

ii) Abstracting this Information into a form 
which completely represents the user 
view so that it can be subsequently used 
in the design. 

In the rest of this paper the term user view will -- 
imply both application and user views, 

The final outcome of the above two components 
is view representation individually by users. 
The present paper addresses view representation 
in the above context. 

The problem of view representation has been 
addressed more as a by-product of a data model 
development. The most pertinent among these is 
the work of Chen [ll and Smith and Smith [12]. 
Chen’s entity-relationship model is simple and 
easy to conceptualize, and allows a user view to 
be represented by means of entities, relationships 

and their respective attributues. Although the 
E-R diagrams are a good vehicle.for view 
representation, the semantics of the E-R model 
fall short in the following areas: 

i> defining relationships either among two 
other relationships or among an entity 
and a relationship: 

ii) distinguishing among different types of 
relationships. 

The work of Smith and Smith on data 
abstraction is very useful for view modeling. 
Their Ideas on aggregation and generalistion 
hierarchies are conceptually elegant and result 
in a homogeneous representation of a user view 
without any implementation camstraints. As 
proposed, their approach is supposed to apply to 
the community view of data and as such it demands 
a lot of skill on the part of the designer using 
it If the scale of the problem is large. However, 
if suitably modified it can be used to advantage 
for view representation. We have done this, by 
redefining some of its constructs, adding new 
ones, and introducing semantic information along 
these contructs. 

2.2 Objective 

Kahn [7] pointed out that there are two 
aspects of user view which must be modeled in 
order to adequately represent it. These are: 
the information structure perspective (Le., the 
non-process-oriented view), and the usage 
perspective (i.e., the process-oriented view). 
Both the E-R model of Chen end the data 
abstraction approach of Smith and Smith are biased 
toward the former. 

Navathe [lo] has proposed a technique for 
analyzing schema of existing databases. He 
distinguishes the associations among groups of 
data into two types: Identifying associations 
and non-identifying associations. This concept 
is tied to the identifiabilitv of individual 
instances of data and duplicaiion of Instances 
occurring in the database. Previously the data 
modeling-approaches have tended to address 
relationships only at schema level, and have 
failed to incorporate the interrelationships 
among data et the instance level. Typically, a 
user has a lot of knowledge about instance 
relationships which does not surface in the 
conventional data models. 

In the present paper we draw from the date 
abstraction model of Smith and Smith and propose 
a technique for view representation to achieve 
a better modeling of the usage perspective and 
to incorporate the relationships among data 
instances, especially those which are used for 
identification purposes. The objective is to 
obtain a vehicle which represents a user view as 
explicitly as possible in the following sense: 

Information Structure Perspective 

-.distinction among different kinds of 
associations between entities; 



- allowing associations in which entities 
or associations or a combination of the 
two can participate; 

- incorporation of the dependence of 
entities on one another for the sake of 
identification. 

Usage Perspective 

- effect of insertion and deletion of 
entities and associations on one another 
at schema and instance levels; 

- incorporation of user-defined rules 
about instances of data. 

2.3 Definitions and Notation 

A user view is represented in terms of 
entities, associations, attributes and connectors 
in a & diagram. 

An entity models anything that exists as a 
physical thing, e.g.‘, an object, an event, a 
person, and whose existence is of interest to 
US. An association is an n-ary relationship 
among entities, among entities and associations, 
or among associations. It represents a fact, an 
idea or a specific aspect of a relationship 
between its components. Examples: “Advisor-of” 
is the name of an association between the entities 
Professor and Student. 
“Enrolled-as-teaching-assistant” is an association 
between two other associations, “Enrollment” and 
“Teaching-assignment.” An association ehould 
not correspond to a physical thing which is of 
interest to some user; if it does, i.e., if a 
user is interested in the association as an object 
in itself, It must be represented as an entity. 
For example, “Has-supervisor” is allowed to be 
an association between Employee and Project so 
long as it stands for the concept of an employee 
being supervised on a project (by some person 
whose name is an attribute of “Ras-supervisor” 
but whose existence is of no concern to us). 
However, if Supervisor per se is of interest to 
the user as a physical thing, Supervisor must be 
represented as an entity and “Ras-supervisor” 
must be modeled as an association among three 
entities--Supervisor, Employee and Project. 

An entity of an association is described by 
a descriptor set. Syntactically, a descriptor 
set can be described as a finite set of elements 
which are either elementary (or atomic) 
descriptors, called attributes or other descriptor 
sets. We intend that this definition not be a 
recursive one, i.e., a descriptor set will not 
contain itelf as an element. In fact, it appears 
that -the deepest level of nesting that is needed 
to model real applications is two. Also, our 
use of the term set is an abbreviation for 
multiset [8], since duplicate attributes may 
exist. An example is given in 2.4.2.2. A 
descriutor which is an element of another is . 
sometimes called 5 repeating-. Semantically, 
a descriptor set is a list of attribute values 
(or groups of attribute values in the case of 
repeating groups) that can be associated with an 

instance of an object (entity or association) in 
the database. Figure 1 shows two entities and 
one association with their respective descriptor 
sets. The entity Employee has two repeating 
groups, one being {Year, Grade), the other 
{School, {Degree)). 

Employee = (Ed, Dep#, (Year, Grade}, (Stool,{ Degree}}] 

Asgnmt ={ Asgnmt#, Assignment-name} 

Works = (Emp#, Asgnmt$ Supervisor-name, Start-data} 

Figure 1 

With the above definitions, a view is 
represented by a graph having entities and 
associations as the objects at its nodes. The 
edges linking the nodes are either directed or 
undirected and are termed connectors. A connector 
is a two-tuple which Is ordered only if the 
connector is directed. In this case, an arrow 
is placed on the first member. For example, 
Figure 1 has two connectors: (m, Works) 
and (Worka; Asgnmt) . The meaning of the directed 
connectors will be explained later. 

An association can also be described by an 
n-tuple containing the names of participating 
entities and associations. For example, Works 
in Figure 1 can be described as Works (Employee, 
Asgnmt) . An instance of an entity or association 
is described as an n-tuple of component instances. 

2.4 Rules for View Repreeentation 

The following eubsections present a scheme 
for representing user views of data. A set of 
definitions and conventions are proposed. For 
each component of the view, the usage perepective 
is considered in terms of insertion and deletion 
at the instance level. 

2.4.1 Entities 

One or more elements of the descriptor set 
of an entity may be used to identify an instance 
of the entity. They constitute an internal 
identifier for the entity. There may be multiple 
candidates for the internal identifier of an 
entity. A user generally selects one of them to 
actually identify an Instance of the entity. As 
per the discussion in Navathe [lo], internal 
identifiers are of two types: total and partial. 
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A total internal identifier provides full 
identification so that for a given value(s) of 
the identifier, there is a unique instance of 
the entity. Contrary to this, a partial internal 
identifier implies that further external 
identification ie necessary before a unique 
instance of the entity can be determined. 
Following Navathe’s [lOI notation, internal 
identifiers will be underlined in the descriptor 
notation of entities, e.g., Emp# for Fmployee 
and Asgnmt# for Asgnmt are underlined in Figure 1. 
If an entity has a total internal Identifier 
present in it, it is called self-identified, and 
indicated be a # sign. Since there is a l-l 
correspondence between the values of a total 
identifier for a given entity and the set of 
instances of that entity, in the sequel we will 
not make a distinction between these two concepts, 

Discussion on entities with respect to 
insertion and deletion is deferred to later 
subsections. 

2.4.2 Associations 

Associations are divided into two types, 
identifier associations and simple associations. 

2.4.2.1 Identifier Associations 

An identifier association arleee when an 
entity is provided external Identification from 
other entities and/or identifier aesociations. 
External identification has been defined by 
Navathe 1101 as the orocess of obtaininn a total 
identifier for an entity by augmenting its partial 
internal identifier with total identifiers of 
other entities and/or associations. 

The need for external identification arises 
on two grounds: 

1) A genuine need to distinguish between 
instances having the same value for an 
internal identifier which stand for 
different real-world objects. For 
example, two inetancee of Cities with 
the same City-name may etand for 
different cities and need external 
identification from State. 

-ii> A need to distinguish between duplicate 
instances of the same object used while 
realizing m:n relationships. For 
example, two instances of the Student 
which,occur in relation to two different 
Course Instances. 

Let Xl, 9, . . . . Xn-1 be objects (entities 
or associations), Xn be an entity and A(X1, X2, 
. . . . Xn> an identifier association. Then there 
is an identifying function IA which maps inetances 
of Xl, x2, . . . . Xn-1 and a partial identifier 
for X, into an instance of Xn having that partial 
identifier. Formally,let &i denote a partial 
internal identifier for Xi, g(Xi) the set of all 
instances of Xi andy@) the set of all inetencee 
of the Internal identifier&i. 

Then 
1,*x1> x 9(X,) x . . , x P(xn-1) x fldn) V(Xn) 

such that if 1A(X1sX2t . . ..~-l.y)~ for some 
value y of the internal identifaer .&, then 
@n(G)..Y* 
i=l, . . . . 

In the preceeding equation, xi-Xi), 
n and &$.n(xn)e&Q is the value of the 

internal identifier Sn for the instance xn of 
entity X,. 

If ~1, ~2, . . . . ~~-1 are total identifiers 
for Xl, X2, . . . . Xn-1, then ~1, r2, *~n,.&l, 
4, is termed the augmented total identifier for 
xn* 

An example of an identifier association is 
shown in Figure 2. School-name ia a total 
identifier for the entity Nursery-school while 
Childname is a partial identifier for the 
attribute Child. This means that there may be 
two or more instances of the entity child in the 
database with the .same value of Childname. 
However, the existance of the identifier 
association A defines a function IA such that 
given a value sn of School-name and a value cn 
of Childname, an instance of a Child is uniquely 
identified in the database by IA(sn,cn). Thus, 
{School-name, Childname} is an augmented total 
identifier for the entity Child. 

, 

Nursery-school = (School-name, Address} 

Child ={ Childname ) 

Parent =(Soc-sec.nq, Last-name, First-name) 

Figure 2 

Every entity in a diagram must have either 
a total Internal identifier or an augmented total 
ident if ier . 

Insertion and Deletion of Entity 
and Identifier Association Instances 

The existence of identifier aeeociatione 
permits establishing explicit rules for insertion 
and deletion of inetance of entities and of 
identifier aesociations. This fact Increasea 
the semantics associated with our model. It also 
helps in the validation of changes in v.Q.wrs one 
may wish to do during a view merging operation. 

The rules for insertion and deletion of 
instances of entities and identifier aseociation 
follow. These are natural rules BO no further 
ilIustration is given. 

An inetance of an entity with a partial 
identifier can be inserted, provided 
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i> the instance Is supplied external 
identification; and 

ii) instances of entities and associations 
required in I) are supplied. 

An instance of an entity with a total 
identifier can be freely inserted, 

Insertion and deletion of an instance of an 
identifier association implies a corresponding 
insertion and deletion of instances of the 
identified entity. Insertion of an identifier 
association without a corresponding insertion of 
the identified entity is not possible except in 
the case of multiply-identified entities. (See 
2.4.3.) 

Figure 3 

2.4.2.2 Simple Associations Figure 4 

Identifying associations are used to provide 
identification to instances of entities which 
are not self-identified. Sometimes we wish to 
define associations which do not have an 
identification purpose but rather to relate 
instancee of objects. In general, if we have an 
association A(X,Y) between two objects X and Y 
and three instances XEX, ysY, (x,y)sA, i.e., x 
and y are related via A, the deletion of one of 
x or y clearly implies that the instance (x,y) 
of A has to be deleted from the database. In 
the previous section we discussed other deletion 
rules that might apply if A were an identifier 
association. In this section we discuss 
non-identifier associations and their 
insertion/deletion properties. An association 
B, defined for n objects Yi, 1=1,2,...,n, where 
each object is an entity or an association, is 
termed a simple association if B is not an 
Identifier association. It is denoted as 
B(YlrY2,***,Yn)* A unary simple association has 
only one component. 

Some associations have an owner/member 
characteristic. Member instances cannot exist 
without owners. We introduce this dependency in 
our model as follows: One of the components of 
B, say Yj, j-1,2, . . ..m. may be defined as an 
owner of the association B, and the rest as 
members of B, provided the semantics of B Implies 
the following. Whenever an instance y h 
Is deleted, all instances of B in whit d 

of Yj 
yjh 

appears are deleted; furthermore, all instances 
of Yf, 161,2,. . . ,j-l,j+l, . . . ,m assocl$ed with 
y h via B with a directed connector (B,Yf) are 
a 5. so deleted. When Yj Is an+owner of B, the 
corresponding conuector is (Y ,B). Example: In 
Figure 3, association SIJPPLIE 4 (Supplier, Part, 
Project) is defined with Supplier as owner and 
Part as a member (nothing is specified for 
Project). It implies that whenever an instance 
of Supplier is deleted, corresponding Pert 
instances are deleted owing to the directed nature 
of the connector (Supplies, Part); however, 
Project instances are not deleted since the 
connector (Supplies, Project) is undirected. 

A number of simple associations may exist 
with the same components, e.g., Supplier and 
Can-Supply in Figure 3. 

The owner/member description in an association 
can be extended. For example, for simple 
associations without an owner, connectors directed 
outward from the association can be given the 
following meaning. Consider the view diagram 
with associations A and B in Figure 4. Whenever 
an instance of W 0’: of X is deleted, all instances 
of A $n which the instance of W (or X) exist must 
be deleted. This Is just the nornal deletion 
property described earlier, However, if in doing 
so there are no more instances of some Y (or 2) 
in A then those instances of Y (or Z) must be 
deleted provided they have no other directed 
connector incident from any other association. 
For those objects (entities or associations) 
having multiple incident directed connectors, 
the instance deletion occurs only if it is 
mandated by all connectors incident on it. For 
example, Z has two incident connectors; therefore 
the rule for instance deletion of Z is: 

Delete an appropriate instance z of Z whenever 

(w OR x) AND (p OR q) 

are deleted, where w, x, p, and q are 
Instances of corresponding objects such that 

(w,x,y,z)EQA, the set of instances of A, 
and (z,p,q)@, the set of instances of 
B. 

The above illustration indicates just One Of 
the many possible ways in which a rule of 
instance-level insertion or deletion can be 
defined in the present model of view 
representation. Rules for which no graphic 
counterpart exists must be defined by means of 
separate assertions. (See 2.5.) 

An identifier of a simple association is 
defined as the concat’;;nation of the total 
identifiers of its components. In the deecriptor 
notation a simple association B(Yl,Y2, a . . ,Ym) is 
described as 

B - (tid(Yl) ,tid(Y2),. . .tld(Ym), bl,b2,. l .,bn) 

where tld(Yj) is the total identifier of Yj, and 
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bi, i=1,2,...,n are attributes of B. The 
identifier of B is tid(Yi), tid(Y2),.,.,tid(Ym). 
Duplicate descriptors are eliminated when they 
stand for external identifiers of the same 
ina tance . An example of the above concepts is 
given in Figure 5. It chows a database schema to 
keep information about countries, statea and 
cities. Country is the only entity that hae 
internal identification. State derives its 
identification from Country, i.e., Its total 
augmented identifier is {Country-name, 
State-name.] Likewise, City derives its 
identification via the identifier association B. 
Its total augmented identifier should be 
{Country-name, Country-namb, State-name, 
City-name), the second and third attributes being 
the total identifier of State. However, both 
occurences of Country-name stand for the same 
instance of a country so it is not needed in the 
total augmented identifier. Thus, City has 
{Country-name, State-name, City-name) as its 
total identifier. A similar situation occurs 
for the identifier of the association 
Largest-state, which associates countries with 
the largest state in that country. -- The duplicate 
occurrence of Country-name is dropped from the 
descriptor set of Largest-state since it denotes 
the same instance of country. A different 
situation occurs with the association 
Major-export-port which associates every exporting 
country with that city (in the world) on which 
the port receiving the largest volume of traffic 
is located. Thus the association 
Major-export-port has two country names, one of 
the country which exports and the other of the 
importing country where the port is located. 

Country ={ ~ountrv-name, C-POP} 

State =( State-name, S-pop) 

City = (Citv-name, T-POP] 

A = (Countrvname, State-name) 

S =(Countnvnme. State-name, City-name) 

Largest-state -(Countrv-name State-nam) 

Historic-capitals =( poo;;;m;;f;,:Wame, CitWame} 

Major-export-port = Countrv-name, Countwname, State-name, City-name, 
( No-of-docks, Sea-name 1 

Figure 5 

2.4.2.3 Placement of Entities and Associations 
in a View Diagram 

As a general rule entities will be placed at 
a lower level with respect to all a&eociations 
in a view diagram. To avoid confusion a dotted 
line is used to separate entities from 
associations whenever necessary (e.g., Figure 5). 

2.4.3 Multiple Identification of Entities 

In our model for view representation, every 
entity has actual and potential internal 
identifiers. The following cases can arise: 

i> An entity has several potential internal 
identifiers, all of which are total. 
In this case the entity ie not dependent 
on any identifier aeeociation and any 
one of its total identifiers suffices 
to identify its instances. 

ii> An entity hae several potential internal 
identifiers, all of which are partial. 
In thle case external identification 
may be provided to the entity via one 
or more distinct identifier asaociatione. 
As a result there will be different 
augmented total Identifiers for the same 
entity. Example: In Figure 2 Child hae 
an internal identifier Child-name, It 
is identified via two identifier 
relatione A and B. The resultant 
augmented total Identifiers are 

(School-name, Child-name) and 
(Sot-eec-no, Child-name). In such a 
case any one of the internal identifiers 
which gets augmented may be underlined 
In the descriptor notation for the 
entity. 

iii) An entity has several potential Internal 
identifiers, some of which are partial 
and 8ome of which are total. If one of 
the total internal identifier6 is 
actually used, then the entity can be 
declared a8 self-identified. 
Nevertheless a number of identifier 
associations can exist to provide 
external identification for it aa in 
ii) above. Example: in Figure 6 the 
entity Book has a total internal 
identifier viz. Lib-congr-no; hence it 
is shown as a self-identified entity. 
Title is a partial internal identifier 
for it. Identifier associations A and 
B result In the augmented total 
identifiers: (Publ-name, City, Year, 
Title) and (Author-name, Title) for 
Book. 

2.4.4 Special Types of Simple Associations 

Three special types of simple associationa 
called categorization, aelection and eubeetting 
are defined below. They are necessary to model 
explicitly a epeclflc nature of the relationship 
among data instances. By dietinguiahing these 
types from the remaining eimple associations it 



Publisher -{ Publ-name, City) 

Publ-date -( m) 

Book -( Libcana-no, Title, Price) 

Author =( Author-name) 

Figure 6 

is possible to define rules of schema and Instance 
level insertion and deletion which are 
semantically appropriate for each individual type 
but which are not generally applicable to all 
simple aaeociations. 

2.4.4.1 Categorization 

A categorization is an association between 
an owner entity and member entities called 
categories. Consider a categorization A of an 
entity X into entity types Xl, X2, . . ., X,. It 
is denoted by the association A(X,Xl,X2,...,Xn). 
It implies there exists a mapping fA which maps 
every instance of X into a subset of categories 
Xl, X2, a*** Xn* 

Given XI%, fA(x) identifies all those 
categories Xii, Xi 
(X,XiltXi2 f 

I a-., 
EA 

Xim such that 
,..., xb with xij~ij, j=l,..., m. 

A number of categorization functions fA, fB... 
may be defined for a given X. 

In the view diagram a categorization 
association is marked as “cat.” The entity being 
categorized is connected to the categorization 
association by a directed connector (Figure 7). 

Figure 7 

If the same target categories apply to two 
different entities, e.g., Students and Staff are 
both to be distinguished into Male and Female, 
two separate categorizations must be defined 
(Figure 8). Smith and Smith’s [12] concept of 
generalization clusters Is vary similar to 
categorization; however, they allow for only 
mutually exclusive categories, which 3.0 a severe 
constraint in dealing with real-life data. For 
example, students in a university may be 
categorized ipto undergraduate, graduate, special, 
professional, resident, conguter, aid-recipient, 
etc., so that one student could belong to mulfiple 
categories. It is unnatural to have to define 
a number of categorizations to satisfy mutual 
exclus ivenese . Note that the associated mapping 

gives, for every student, the proper subset of 
categories. 

Cat 

Figure 8 

Whereas the owner of a categorization i6 
externally identified or self-identified, each 
of the member entities (categories) may either 
depend for external identification on the owner 
or be self-identified. Transmission of external 
identifiers from the owner to the categories is 
modeled by a separate identifier aesociation; 
e.g., note the (Student, Male) and (Student, 
Female) identifier associations in Figure 8. 

Categorizations enforce an additional semantic 
notion related to insertion/deletion activities. 
Let C be a categorization of entity X with mapping 
fC* Insertion of an instance x of X implies the 
insertion of instances of all categories included 
in f c (x1 . Convarely, insertion of an instance 

iFinstance 
of Xj implies a corresponding insertion of an 

. For example, if Students are 
categorized into Medical, Engineering, Law, 
Science, Arta and Business Students, inserting 
a student with a joint-major In Law and Businers 
implies inserting two new instances under those 
categories; alternatively, insertion in Arts 
implies an insertion in Student. 

2.4.4.2 Selection 

A selection association is a binary 
association among entities. Consider a selection 
association A(X,Y). It provides an aeoociation 
by which an instance of X is associated with a 
subset of the instances of Y. The eubeets 
represent a partitioning of instances of Y which 
are non-overlapping such that a different instance 
of X is associated via A with each partition. 
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LetgY be the set of instances of Y. 2% 
denotes the power set ofgY, i.e., the set of all 
its subsets. 

Then there is a function GA associated with 
A: 

GA:% * 3 2 , such that 

9;r- : G(x) 
i-1 A i 

and GA(Xi)nGA(Xj)“!d for l#j, where xl, x2, 
. . . . xm are all the Instances of X. 

In the view diagram a selection association 
is marked as “Sel.” X is represented as the 
cyner of A(X,Y) by means of the directed connector 
&A) (e.g., see Figure 9). 

another association, Consider a subsetting 
association A(B), It provides a means of 
associating the name A with a subset of instances 
of B. Attributes of the subset as a whole are 
represented as attributes of A. -For each subset 
of B a different subsetting association is 
required. There is no mutual exclusiveness 
contralnt among the subsets so defined. 

In the view diagram a subsetting association 
is marked “sub ” B Is marked as the owneg of 
A(B) by means Af the directed connector (B,A). 
In Figure 10 Advisor-of is an association between 
Professors and Students. Phd-advisors, 
Project-advisors, Curriculum-advisors are 
subsetting associations defined with Advisors-of 
as a component. The set of instances of 
Advieor-of which belong to these three subsets 
need not be mutually exclusive. 

Figure 9 

If the instances of a given ent%ty are to be 
partitioned In various ways, a number of 
selections may be defined for it; e.g., in 
Figure 9, A and B select Student instances by 
Country and by Major. 

The main difference between selection and 
categorization is at the instance level. For 
example, association A in Figure 9 associates 
countries (e.g., U.S., Canada, India and Taiwan) 
with the instances of students who are from the 
respective countries. If the same information 
were to be modeled using categorization, for each 
student instance an additional instance would be 
required under each of the categories such as 
U.S.-students, Canadian-students, etc. The mutual 
exclusivity constraint is easier to enforce on 
selection association than on categorization. 

As was the case for categorizations, 
selections also enforce an additional semantic 
notion. Insertion of an owner instance x for 
selection A(X,Y) implies that the corresponding 
selection function GA must be modified, instances 
of Y must be repartitioned, and new instances of 
A must be created if necessary. For example, if 
an instance of Country Is inserted in Figure 9 
for Nepal, the set of Student Instances belonging 
to the Indian subcontinent previously may now be 
further partitioned. 

2.4.4.3 Subsetting 

A eubsettlng association is a unary 
association in which the component object is 

( Advisor-of ) 

Figure 10 

Selection and subaetting are parallel concepts 
which have been defined for entities and 
associations respectively. The former allows a 
subset of entity instances to be aggregated and 
associated with a foreign Instance of an entity, 
whereas the latter allows a subset of association 
instances to be aggregated and named. 

Insertion or deletion of an instance b of B 
Implies a modification of the Instance of each 
subsetting association for which B is an owner 
of the association and b is a member of the 
subset. 

2.5 Assertions 

When a user view ia modeled according to the 
rules of Section 2.4, a part of the usage 
perspective associated with the view is Inherent 
in terms of the rules of instance insertion and 
deletion which have been described for each object 
type. Some of the rules contribute to the meaning 
of a particular object type whereas some stand 
for a convention in view representation (e.g., 
see 2.4.2.2). These conventions can be modified 
and additional conventions may be defined to make 
the instance level interaction among data as 
explicit as possible. However, the farther the 
exercise ie carried out the more cumbersome view 
representation becomes. 



To state complicated interdependence of 
instances in a user view, it can be supplemented 
by a set of assertions; e.g., an assertion for 
the view in Figure 11 is the following: 

The assertions can be alternatively regarded 
as a statement of the validity constraints which 
a user makes to maintain consistency among the 
data expressed in his view (see [2]). 

Let $i3 denote the set of instances of 
object J. 2.6 Summary 

Let 6c,y> denote.an instance of an 
association (X,Y) which associates 
instances x and 9. 

Then if asa, SET and cEgC are Instances of 
Assistantship-slot, Student, and Class 
respectively and %Enrollment, 
T-Teaching-assignment, W=Award, then 
<a,c>sgT and (a,s>EB~<s,c>E+, i.e., a 
atudent who is given an assistantship slot for 
a particular class muat be enrolled in it as a 
student. Another way of stating the same 
assertion would be: 

Figure 11 

Subsections 2.3 through 2.5 have proposed a 
scheme for representation of user views, A view 
is represented in terms of entities, associations 
(together referred to as objects) and connectors 
connecting them. Entities are of two types-- 
self-identified and externally identified, 
Associations are divided into identifier 
associations and simple associations. Three 
special types of simple associations termed 
categorization, selection and subsetting have 
been defined, Connectors are divided into 
directed and undirected connectors. 

The overall model of view representation was 
described in terms of the definitions and notation 
of the various types of objects and connectors 
stated above and conventions pertaining to their 
representation in view diagrams. The rules of 
instance insertion and deletion for each object 
type express the semantics associated with their 
use in different contexts. Use of assertiona to 
atate additional rules waa exhibited. 

3 VIEW INTEGRATION 

View integration IS the second phase of 
logical database design where ueer views are 
merged to obtain a community view. In addition 
to merging, it alao involves schema 
transformationa necessary to arrive at “compromise 
views” possibly under consultation with 
userafdesignera. A detailed treatment of view 
integration using schema transformations proposed 
earlier for database restructuring [ll] will be 
presented in a separate paper. 

In performing any schema level operations on 
views, schema objects (viz. entities and 
associations) need to be inserted and deleted. 
The semantics of the view representation scheme 
presented in Section 2 will be further augmented 
with the schema insertion and deletion rules in 
Section 3.1 below. Some pointers to view merging 
are presented in Section 3.2. 

Figure 12 3.1 Schema Inaertion end Deletion 

Consider another example view in Figure 12. 
It represents information on employees who have 
certain jobe and posseaa certain types of 
licenses. With the abbreviations for the objects 
aa shown in the diagram, the assertion “an 
employee can be hired for a job provided he 
possesses the licenses required for the job” can 
be written aa: 

for at least one L 

3.1.1 Entities 

When an entity with a partial identifier ia 
to be schema inserted in a view, one or more 
identifier associations must be inserted to 
provide total identification for that entity. 
An entity with a total identifier can, however, 
be freely Inserted. 

When an entity with a partial identifier 
which depends upon external identification is 
schema deleted from a view, identifier 
association(e) for which it wae a receiving 
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component must be deleted. For example, in 
Figure 5 If City is deleted, B must be deleted; 
if State is deleted, A must be deleted. For 
every identifier association so deleted, the 
identifier associations for which It Is a sending 
component and those receiving entities which are 
not at the receiving end of any other identifier 
associations and which are not self-identified 
must be deleted. For example, in Figure 5 if A 
Is deleted, B is deleted and City is deleted. 
Note, however, that in Figure 13 City has been 
alternatively identified from Mayor, Hence If 
State is deleted in Figure 13, it results in 
deletion of A’ and B’ but not of City. 

6’ 

A’ E’ 

I \ 

# COUNJY state City # Mayor 

Figure 13 

3.1.2 Identifier Associations 

Schema insertion of an identifier association 
amounts to defining a new identifying function. 

Schema deletion of an identifier association 
A has the following implications: 

i> Upward propagation rule: associations 
in which A is a component mu8t be schema 
deleted (e.g., B in Figure 5); 

ii) AND rule: if all the identifier 
associations providing external 
identification to an entity are schema 
deleted and the entity has no total 
internalidentifier then such an entity 
must be schema deleted. (For example, 
schema deletion of A results in schema 
deletion of State in Figure 5.) 

3.1.3 Simple Associations 

Schema insertion of simple associations is 
limited only by the fact that insertion of 
equivalent associations is redundant. 

Schema deletion of a simple association also 
satisfies the upward propagation rule, namely, 
that all associations in which it is a component 
are scheme deleted. 

3.1.4 Categorization 

By the definition of categorization, schema 
insertion of one or more additional owners for 
a given categorization is not allowed, 

Schema insertion or deletion of a member 
entity (category) in a particular categorization 

C implies that the definition of associated 
function fC be modified to include the new member 
entity. The effect of redefinition of fC extends 
to instances of all categories, and may require 
some category instances to be inserted and/or 
deleted. 

For a given entity X, if a categorization C 
associates it with categories Xl, X 
another categorization C’ can be 

(’ . . . . Xm, 
SC B ema inserted 

which associates X with the same categories. 

Schema deletion of a category from 
categorization C also results in a redefinition 
of fC and a corresponding insertion and/or 
deletion of instances of other categories, 

Schema deletion of a categorization C per ae 
has no effect on its components. When the owner 
of a categorization is schema deleted, the 
categorization must also be scheme deleted. 

3.1.5 Selection 

A given selection association A(X,Y) has only 
one owner and one member entity, Hence schema 
insertion of an entity either as owner,or as 
member into an already defined selection is ruled 
out. However, any number of new selection 
associations may be schema inserted for a given 
pair of entitles. 

Schema deletion of a selection A by itself 
has no effect on its components. Since selections 
are binary, when the owner or member of a 
selection is schema deleted the selection must 
also be schema deleted. 

3.1.6 Subsetting 

Any number of subsetting associations can be 
schema Inserted for a given component association. 
Similarly subsetting associations can be freely 
schema deleted without affecting their component, 

3.2 View Merging 

As was mentioned in the introduction, our 
goal in formulating the above model for view 
modeling was to facilitate the process of view 
integration. Such a study will be done in the 
near future. Some of the problems of view merging 
are illustrated in the following paragraphs, The 
operations discussed are all schema operations. 

3.2.1Merging of Simple Associations 

In general, merging of simple associations 
would be feasible only for associations of the 
same type. 

While operating on binary associations which 
are functional in nature, the following strategy 
can be employed. Suppose G(A,B) and H(B,C) are 
two simple associations for which there exist 
functions 
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Then there exiats a function FJ:YA-+P~ which ia a 
composition of the two functions FG and FD, i.e., 
FJ~FD*FG. During merging if all three of the 
above functions are encountered, FJ can be 
eliminated, This action should be approved by 
the user(s) since it may imply losing direct 
access from A to C. 

3.2.2 Merging of Identifier Associations 

Figure 14 shows examples of merging identifier 
associations in cases where the same entities 
play sending or receiving roles under different 
associations. In general the rule that the 
sending components in an identifier association 
must have total internal identifiers must be 
observed. Figure 15 shows possible valid and 
invalid structures in the context of this rule, 

+Jg-pg& 

Prof course Text 

(8) 

4+&&g 
(b) 

n 

Figure 14 

3.2.3 Merging of Entities 

Identical entities can always be merged. 
Otherwise, suppose E and E’ era two entities for 
which 

E$‘, (~t:~rms of their descriptor 

id(E) = id@‘), for every internal id 
of E and E’ 

tid(E) - tid(E’), i.e., the total 
identifiers are the same 

then the result of merging E and E’ may be 
regarded as E’. It however implies that 
descriptors in the set E’-E receive null values 
in the instances of E after merging. 

Valid 

Figure 15 

4 CONCLUSIONS 

This paper has described a scheme for 
representing user/application views during the 
first phase of logical database design. The 
proposed scheme differs from conventional data 
models mainly In two ways, First, both 
schema-level and instance-level data relationships 
are incorporated in the view representation. 
Second, as a consequence, a part of the usage 
perspective in terms of insertion and deletion 
of instances is also impl,icit in the view 
representation. The resulting view 
representations are therefore more explicit than 
the representations in some of the indicated 
models. 

The problem of view integration was only 
briefly addreeaed in this paper. It involves 
schema modifications in addition to the schema 
insertion and deletion and simple cases of merging 
discussed in the paper. The authors are currently 
working on this problem based on their earlier 



work on schema transformations for database 
restructuring. 
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