DISCUSSION PAPER NO. 313

Nonprocedural Query Processing for Databases
with Access Paths

by
Nancy Griffeth

December 1977

NORTHWESTERN UNIVERSITY
GRADUATE SCHOOL OF MANAGEMENT
EVANSTON, ILLINOIS 60201

Nonprocedural Query Processing for Databases with Access Paths
by N. Griffeth

Abstract. The use of '"rules of inference" in database systems with
access paths -- e.g., CODASYL and IMS databases -- is proposed to
allow nonprocedural querying of the database systems. The kinds
of access paths for which these rules of inference are required

are isolated. It is shown that the rules of inference required

for a CODASYL or an IMS database depend on the configurations of
the edges in a diagram of the database.

Nonprocedural Query Processing for Databases with Access Paths
by N. Griffeth

I. Introduction.

The definition of a database must leave nothing to the imagina-
tion of the user. If it does, each user is free to supply his own
interpretation to those parts of the database which have not been
unambiguously specified. The result will be, at best, that the
user is misled as to what the responses to his queries mean. At
worst, the integrity of the database will be violated by inconsistent
updating.

In this paper, it is shown that existing database systems
require the user to place his own interpretation on those facts
which are not explicitly stored in the database, but which may be
deduced from facts which are explicitly stored. The facts which
are explicitly stored are unambiguously defined due to definitions
of data-items, sets, segments, etc. But there is no provision
for specifying the rules by which facts may be deduced. This
problem impedes the development of truly nonprocedural query
languages by requiring the user to supply the reasoning by which
the facts are deduced. The reasoning may be supplied in the form
of a procedure which navigates the access paths in the database or
in a simpler form, such as an expression in the relational calculus.

For the same reason, the construction of logical views from a
physical database also depends on the user to supply a technique
for forming the logical view from the physical database.

This problem can be rectified by provision of "inferential
rules” in the database definition. The rules are used, in the
place . of user-provided techniques, to infer facts not explicitly
stored in the database from those which are explicitly stored. 1In
fact, an algorithm for inferring facts from a relational database
system, using such inference rules, has been developed by Minker
(8). The rules are stored as data in the database, so that potential
ambiguity in the batabase is avoided. ’

Relational database systems contain no access paths. The
presence of access paths in a database complicates the analysis of
the inference procedures, because access paths may be used in two
ways.

One of these ways uses access paths to reconstruct logical
records which have been partitioned into several physical records
for efficient storage and/or retrieval. The other way uses access
paths to perform inferences. These two ways of using access paths
will be treated separately. First, a primitive access path will
be defined as a means of recovering explicitly stored facts.
Procedures for determining which access paths are primitive in
CODASYL and IMS databases will be developed. The remaining access
paths, those used to perform inferences, must have inference rules

attached to them,

A general model for databases with access paths is also intro-
duced, to handle a more general class of database system.

Minker's algorithm for relational database systems can thus be
extended to database systems with access paths by adding an algorithm
for recovering the explicit facts from such databases. Such an
algorithm is described in section V. Minker's algorithm can then be
used to perform inferences on the facts recovered by this algorithm.

The specification of inference rules for the appropriate access
paths in a database system will then allow unambiguous traversal of
the database for queries specifying data-items in widely separated
parts of a database. Similarly, it will allow unambiguous construc-
tion of logical views from physical databases by treating references
to the logical views as queries and processing them as above (see
Stonebraker (9)).

ITI. Background,

The analysis of the roles of access paths in this paper depends
on an analysis of the underlying relationships. The relationships
used here are the same as those defined by Codd in the relational
database model (4):

A RELATIONSHIP is a time-varying relation over a set of domains.

The use of inference rules -- i.,e., rules for deducing a new relation-
ship from a collection of existing relationships -- was proposed by
Minker in (8). 1In a question-answering system, the inference rules
can be used to deduce the relationships which are the answers to the
queries.

The use of inference rules to respond to queries on CODASYL and
IMS databases (3,7) is analysed in this paper. There are languages
for traversing the access paths in these databases; for example,
CODASYL's DML and IBM's DL/1. These languages, however, may require
that an intricate procedure be written to respond even to a single

query (2).

Many nonprocedural languages have been developed for responding
to queries on relational databases. In particular, there are the
relational algebra (5); Query-by-Example (10); and SEQUEL (1).

These languages are all nonprocedural, i.e., no programs need be
written to respond to queries; however, they do require, that the
user supply any inferential reasoning required in finding the
response to a query. In general, this takes the form of specifying
the relations to be examined and the operations to be performed on
the relations.

Dolk and Loomis (6) have also proposed an algorithm for non-
procedural access to a CODASYL database. The responses supplied by
this algorithm to queries may be misleading if the user interprets

any part of the database differently from the designer, because the
rules for making inferences are not specified either in the database
or by the user.

III. Performing Inferences in a Relational Database,

In a relational database, all queries must be expressed, and the
responses to the queries found, by using domain-names and relation-
names only. No access paths are available for traversal of the data-
base. If any inferences are to be performed in responding to a query,
the rules for performing the inferences must be supplied by the user
(ordinarily); or, in Minker's algorithm, the rules of inference are
part of the database definition.

Minker uses the example shown in Figure 1 to illustrate his
algorithm for performing inferences in a relational database. The
notation used here differs somewhat from Minker's. A relationship
"Rname' over domains "Doml",'Dom2'",...;"Domn'" is written;

Rname (Doml ,Dom2,...,Domn)

If the n-tuple having value x1 on domain Doml, x2 on domain Dom2,
etc., belongs to the relationship Rname, then we write:

(x1,x2,...,%n) e Rname

Relationships:

Father (F-No,C-No)
Mother (M-No,C-No)
Husband (H-No,W-No)
Wife (W-No,H-No)
Sibling (1-No,2-No)

Domain Descriptions:

F-No = Father Number H-No = Husband Number
M-No = Mother Number W-No = Wife Number
C-No = Child 1-No = First Sibling 2-No = Second Sibling
Number Number
Stored Database:
Father Mother Husband Wife Sibling
F-No C-No M-No C-No H-No W-No W-No H-No 1-No 2-No
1 2 2 11 3 4 2 6
1 3 4 9 - 8 9 11 10
3 5
7 8
7 10

Inference Rules:

(1) If (w,h) e Wife and (m,c) e Mother then (h,c) e Father
(2) If (m,cl) e Mother and (m,c2) e Mother then (cl,c2) e Sibling
(3) If (f,cl) e Father and (f,c2) e Father then (cl,c2) e Sibling
(4) 1If (h,w) e Husband and (m,c) e Mother then (h,c) e Father

Figure 1, Example of a stored relational database with rules of
inference.

It is not necessary to store every father-child or sibling pair
in the database since these pairs may be deducible from other pairs
which are stored. 1In the stored database in figure 1, no pairs
which may be inferred from other stored pairs are stored; thus the
database avoids duplications the storage of any fact.

Consider the following query:
'"Who is the father of 112"

The answer to this query may be found bj'noticing that 2 is the mother
of 11; 6 is the husband of 2; and by inference rule (1), 6 is then
the father of 11.

The following paragraph gives an informal description of Minker's
algorithm. Minker defines two kinds of data in the database: the
extensional data, which consists of the stored database, and the
intensional data, which consists of the inference rules. We assume
that queries are boolean conjunctions of relations.

The response to a query is found by first searcing the extensional
data to find the answer. Then, if the answer was not found in the
extensional data, the intensional data is searched for a rule which
will transform the query to a new query. The same procedure is
repeated for a queries thus generated, until an answer is found, or
no more transformations are possible.

The importance of the rules of inference in determining the
answer to a query can be seen by considering the following change to
the above rules of inference:

(1) 1f gh ,w) & Husband and (f,c) e Father then (w,c) e Mother
(2) 1If (f,cl) e Father and (f,c2) e Father then (cl c2) e-Sibling
(3) If (, cl) e Mother and (m,c2) e Mother then (el ,c2) e Sibling
(4) 1If (w,h) e Wife and (f,c) e Father then (w,c) e Mother

Then the response to the query:
"Who is the father of 117"

is "The father of 11 is unknown." Siﬁilarly, the query

"Who is the mother of 57"

elicits the response "The mother of 5 is unknown.'" when the first
set of rules is used, -but the response ""The mother of 5 is 4." when
the second set of rules is used. :

The difference in responses is the result of a change in orienta-
tion of the users. One user seeks to determine the father of the
children, given the mother; the other, to determine the mother, given
the father. Such a change in orientation between two users would
not be unlikely in a real database situation. Thus, it is essential
that the rules of inference that were intended in the original data-
base definition be made explicit.

IV. Performing Inferences in Database Models with Access Paths.

In this section, the use of inference rules in models with
access paths is analysed. First, the role of an access path in a
database is examined and the term access path is formally defined.
Next, two types of access paths are compared to illustrate when
inference rules can be used to remove ambiguity and when they cannot.
Then, a characterization is developed of the situations in which
inference rules can be used. Finally, this characterization is
applied to the CODASYL and IMS database models to determine when
inference rules are required to eliminate ambiguity in a database
in each of the models.

A. The role of an access path in a database

An access path is a means for determining a '"mext'" record (or
group of 'mext'" records) from a given record. Access paths are
often implemented by pointers, but they may also be implemented
using directories, record contents, physical positioning of records,
etc. To maintain generality, the term access path will be defined
as a means of relating one record to a set of records, as follows:

An ACCESS PATH is a class of mappings f from a record type to
the powerset (i.e., the set of all subsets) of a record type (or

types).

For example, each set type in a CODASYL database defines an access
path., The class of mappings defined by a set type having owner
record type A and member record type B is

{ £: domain(B)—>SING(domain(A)) }
where SING(X) denotes the set of singleton sets over a set X:
SING(X) = { {x}: xe X}
There are several possible uses of access paths. An access
path may be used to indicate a relationship between records. Or it

may be used to perform inferences. In this section, we are concerned
with differentiating these two uses of an access path.

B. Construction of relationships using access paths

A database can be defined by specifying a set of record types
and access paths. An instance of the database will then be a collec-
tion of files (each file containing all the active records of a
single record type) and mappings (one mapping for each access path
in the database).

Any record in first normal form -- i.e., with all repeating
groups 'flattened" -- may be regarded as a member of a relationship.
Also, any concatenation of first normal form records or any equijoin
of first normal form records on common data-items may be regarded as
a member of a relationship.

Thus, if we have a stored database, then for each access path
in the database definition, a relationship may be constructed from
the database. Let f denote the mapping belonging to the access
path which is.currently stored in the database. Let A denote the
file which is the domain of f£. Let Bl,..., Bn be the files involved
in the range of f. The mapping f might be defined as follows:

where POW(X) denotes the powerset of a set X, i.e., the set of all
subsets of X. Then the following construction gives the relation-
ship corresponding to f:

1, For each record in A, convert A to first normal form.
Then use f to find the set of records (or the set of tuples of
records) related to the record in A.

2. For each record or tuple of records related to A, convert it to
first normal form and concatenate it with the record in A.

C. Characterization of primitive vs, inferred relationships

PATIENT
ILLNESS

DIAGNOSIS
i Rx

TREATMENT

Figure 2. A Patient Diagnosis and Treatment database.

A relationship constructed from a database will be called a
"primitive relationship' if it cannot be constructed by performing
a nontrivial inference on the other relationships in the database.
A relationship will be called an "inferred relationship" if it can
be constructed by performing a nontrivial inference. An inference
will be considered trivial if any of the relationships involved
contains the inferred relationship or if all of the relationships
involved uniquely determin the wvalue of the inferred relationship.

Primitive relationships must be unambiguously defined in the
definition of the stored database. Inferred relationships can be
defined by inference rules.

EXAMPLES

Consider the access paths defined by the diagram in Figure 2,
assuming that each arrow represents a 1:N relationship. The
"Illness" and "Rx'" relationships are primitive relationships,
because they cannot be inferred from any other relationships. A
"Patient-Treatment" relationship can be inferred from the "Illness"
and '"Rx" relationships, using the following operation: :

Patient-Treatment
= Pr(Patient, Treatment) {Illness [Diagnosis=Diagnosis] Rx}

where Pr(xl,...,xn) denotes projection onto x1, ... ,xn and [x=y]
denotes the equijoin on x and y.

On the other hand, if the relationships "'Illness' and "Rx" are
M:N instead of 1:N, then the relationship "Patient-Treatment' cannot
be inferred from them. This follows because the value of the "Patient-
Treatment' relationship may be an arbitrary subset of :

domain(Patient) x domain(Diagnosis) x domain(Treatment).

where domain(R) denotes the set of values that can be taken on by a
member of relationship R (or a record of record type R). The values
of the subrelationships '"Illness' and "Rx'" are just projections of
the value of "Patient-Treatment' . onto

domain(Patient) x domain(Diagnosis)
and
domain(Diagnosis) x domain(Treatment)

But arbitrary subsets of a space cannot be recovered from projections
of the space onto proper subspaces.

D. Application to the CODASYL Database Model

In this section, an example of a CODASYL database is given to
illustrate how ambiguity can be eliminated by the use of inference
rules. Next, the primitive relationships -- i.e., those that must
be defined by the database definition rather than by inference rules--
ari isolated. All other relationships can be defined by inference
rules.

DOCTOR PATIENT

Dx ILLNESS

DIAGNOSIS

TEST Rx

OBSERVATIONS TREATMENTS

Record types:

Doctor - gives the doctor identifying information (number, name,
specialty, etc.)
Patient - gives the patient identifying information (number, name,
room, etc.)
Diagnosis - describes what the doctor identified as being wrong with
the patient and when (date, disease description, etc.)
Treatment - describes what was prescribed to cure whatever was wrong
with the patient (date, treatment type; treatment number,
etec.)
Observation - describes symptoms observed in the patient (date,
symptom, severity, etc.)

Set types:

Dx - relates the doctor to the diagnoses he performed (each diagnosis
is performed by a single doctor)

Illness - relates the patient to the diagnoses of his problems (each

diagnosis relates to a single patient)

Rx - relates each treatment of a problem to the diagnosis of the
problem, describing when the treatment was prescribed, how much
etc.

Test - relates observations of a problem to the diagnosis of the problem

Figure 3. A CODASYL patient treatment database.

The potential ambiguity in the database defined in figure 3.
arises in the inference of relationships between doctors and treatments;
between patients and treatments; between doctors and observations;
and between patients and observations. One set of inference rules
for this database might be the following:

(1) 1If (doctor,diagnosis) e Dx and (diagnosis,treatment) e Rx then
(doctor,treatment) e Doctor's-prescription

(2) 1If (patient,diagnosis) e Illness and (diagnosis,treatment) e Rx
then (patient,treatment) e Patient's-treatment

(3) 1If (doctor,diagnosis) e Dx and (diagnosis,observation) e Test
then (doctor,observation) e Diagnostic-procedure

(4) 1If (patient,diagnosis) e Illness and (diagnosis,observation) e Test
then (patient,observation) e Patient's-symptoms

This set of inference rules says that doctors treat the patients
they diagnose and patients are treated for the illnesses diagnosed
in them. The observations correspond to symptoms that the patients
exhibit, and are used by the doctor in reaching the diagnosis.

A second, equally plausible set of inference rules would be the
following:

- 10 -

(1) 1I1If (doctor,diagnosis) e Dx and (diagnosis,treatment) e Rx
then (doctor,treatment) e Doctor's-prescription

(2) 1If (patient,diagnosis) e Illness and (diagnosis,treatment) e Rx
then (patient, treatment) e Patient's-treatment

(3) 1If (doctor,diagnosis) e Dx and (diagnosis,observation) e Test
then (doctor,observation) e Doctor's-progress-notes

(4) 1If (patient,diagnosis) e Illness and (diagnosis,observation) e Test
then (patient,observation) e Patient's-progress

In this case, the observations are used as a record of the
Patient's progress and his response to treatment, rather than as the
explanation of the diagnosis. Other interpretations are possible.
The patient may not necessarily be treated by the doctor who
diagnosed him. Similarly, the observations may be made by somesone
other than the diagnosing doctor,

Any of these interpretations would be valid in certain circum-
stances. The danger that one person may assume that one interpreta-
tion holds must be avoided in the database definition, The inclusion
of the appropriate definitions for primitive relationships and
inference rules for inferred relationships will accomplish this.

Next, we must consider how to apply the definitions of primitive
and inferred relationships to CODASYL databases, in order to decide
what kinds of definitions and what inference rules must be supplied
for the database. There are three cases to consider:

(1) A record type R is a member of set type A and owner of
set type B. 1Is the relationship between the owner Q of
set type A and the member S of set type B primitive or
inferred?

(2) A record type R is the owner of two set types, A and B.
Is the relationship between the member Q of set type A
and the member S of set type B primitive or inferred?

(3) A record type R is the member of two set types, A and B.
Is the relationship between the owner Q of set type A
and the owner S of set type B primitive or inferred?

In the first case, the application of the equijoin operation
allows us to infer the relationship between the owner record type Q
of a set type A and the member record type S of a set type B owned
by the member record type R of set type A. In the example of
figure 3:

Patient-Diagnosis-Treatment = Illness [Diagnosis=Diagnosis] Rx

In the second case, if two set types are owned by the same
record types, then the equijoin allows us to infer the relationship
between them:

Observation-Diagnosis-Treatment = Test [Diagnosis=Diagnosis] Rx

- 11 -

(a)

(b)

. ©)

C Q
R__pR = R
s s
nontrivial inference
R R = | r
— i
Q s Q >
nontrivial inference
Q LS s |
R = R l
R |

- trivial inference

Figure 4. (a) An inferred relationship.
(b) An inferred relationship.
(c) A primitive relationship.

In the third case, we are comnsidering two set types having a
common member; e.g., ''Dx" and "Illness" in the above example. Note
that defining a common member in two set types is the standard
technique, in the CODASYL database model, for defining a many-to-many
relationship. This many-to-many relationship should behave like an
arbitrary many-to-many relationship, i.e., as mentioned at the end
of section IV.C. and discussed in more detail in section IV.E. below,
it should not be possible to infer it from subrelationships.

In fact, the relationship can be constructed using the equijoin
on the common member record type of the two set types. But in this
one case, all of the relationships involved in constructing the
relationship '"Doctor-Patient-Diagnosis' uniquely determine the con-
structed relationship. Thus the inference is trivial (see section

- 12 -

IV.C.), so that "Doctor-Patient-Diagnosis" is a primitive relationship.

Thus the primitive relationships in a CODASYL database may be
described as those which are constructed from groups of '"confluent
sets", i.e., sets having a common member record type. Figure 4
summarizes the results developed here.

E. Application to the IMS Database Model

In this section, an example of an IMS database is developed to
illustrate how ambiguity can be eliminated from a hierarchical model
by the use of inference rules. Then, the primitive relationships
of the IMS model are distinguished from the inferred relationships,
as was just done for the CODASYL model.

Consider the following sets of inference rules for the database
in figure 5:

(1) 1If (patient,diagnosis) e Dx and (patient,treatment) e Rx
then (diagnosis,treatment) e Contra-indication-check

(2) 1If (diagnosis,observation) e Test and (diagnosis,assessment)
e Prognosis then (observation,assessment) e Condition

and

(1) 1If (doctor,patient) e Medical-care and (patient,diagnosis) e Dx
then (doctor,Dx) e Doctor's-Dx

(2) 1If (doctor,patient) e Medical-care and (patient,treatment) e Rx
then (doctor,treatment) e Doctor's-Rx

(3) If (doctor,diagnosis) e Doctor's-Dx and (doctor,treatment) e
Doctor's-Rx then (diagnosis,treatment) e Check-Contra-
indications

(4) 1If (diagnosis,observation) e Test and (diagnosis,assessment)
e Prognosis then (observation,assessment) e Condition

The first set of rules implies that the database users are looking
at all of the diagnoses and treatments of a given patient to deter-
mine if any of the treatments are contra-indicated by any of the
diagnoses. The second set of rules implies that the users are

also looking for contra-indications, but this time they are checking
to see whether a doctor prescribed any treatments contra-indicated
by any of his own diagnoses.

DOCTOR '
v - MEDICAL-CARE
PATIENT
Dx T Tx
¥ -
DIAGNOSIS TREATMENT
TEST I PROGNOSTIS
L m—
OBSERVATIONS AS_SE SSMENTS

ocegment types:

Doctor - gives the identifying information for the doctor (number,
nama, specialty, etc.)
Patient - gives the identifying information for the patient (number,
name, etc.)
Diagnosis - describes the reason given by the doctor for the patient's
problem
Treatment - describes the procedures prescribed by the doctor to
cure/improve the patient's problem
Observations - describes the symptoms observed in the patient
Assessments - describes the doctor's opinion of the patient's condition

Figure 5. An IMS patient treatment database.

A consideration of how primitive relationships may be distinguished
from inferred relationships in an IMS database concludes this section.
In an IMS database, the parent-child relationships are M:N, in the
sense that a single patient in the database of figure 5 could be
related by the "Medical-care' relationship to several doctors. Each
physical patient record is, of course, related to only one physical
doctor record (its parent), but in the relationship recovered by the
procedure of section IV.B., each patient may be related to several
doctors. The latter relationship represents the logical relationship,
which is the relationship of interest here.

- 14 -

Thus, each path in an IMS database defines a relationship which
may be an arbitrary subset of the cartesian product of the domains
of the record types along the path. Thus the path (Doctor,Patient),
(Patient,Diagnosis), (Diagnosis,Observation) defines a relatlonshlp
whose value may be any subset of the following set:

domain(Doctor) x domain(Patient) x domain(Diagnosis) x domain
(Observation)

To demonstrate that not all values of such a relationship can
be recovered from a fixed set of subrelationships, consider the
projection of n-~space over the real numbers onto subspaces in the
following example:

Let A={ (1,...,1), (2,.::,2) , oo , (Ny0..,0)}
and
let B={ (1,2,...,2) , (2,1,...,1) , (3,:+053) 5 occ , (My00.,n) }

Note that these two sets have identical projections onto the first
coordinate and onto the second through nth coordinates. Thus they
cannot be recovered from these projections. Given any pair of pro-
jections, a similar example of a pair of subsets of n-space whose
projections are identical on the subspaces could be constructed.
This result can then be extended inductively to n subspaces.

This shows that each path of an IMS database corresponds to
a primitive relationship. Thus the relationship defined by a path
in an IMS database should be explicitly defined by the database
definition.

The only other case that needs to be considered is the case where
a parent record type has multiple child record types. In this case,
the relationship over all of the record types can be constructed
using the equijoin over each of the parent-child relationships. From
figure 5:

Patient-Diagnosis-Treatment = Dx [Patient=Patient] Rx
Thus this kind of relationship is inferred.

V. A General Model for Database Definitions.

In this section, a general model is developed for defining the
"primitive access paths in a database. A primitive access path
corresponds to a primitive relation: primitive relations are constructed
by following primitive access paths.

Definitions

The following definitions will be required for the general model:

Data-item - the smallest unit of data that can be referenced by a
database system; a set of allowable values is associated
with a data-item.

- 15 -

Data-item value - an occurrence of a data-item, with a particular. .
. value assigned to it o

Data-aggregate - a collection of data-items and data-aggregates

Data-aggregate value - a collection of data-item values and data-

aggregate values
Record type - a named collection of data-items and data-aggregates
Record - an instance of a record type; i.e., a collection of data-
item values and data-aggregate values.

File - a collection of records of a single record type

Access path - a class of mappings f from one record type to the
powerset (i.e., set of all subsets) of another record
type (or types)

Traversal rule - a restriction on the class of all access paths in

a database model
Database definition - a collection of record types and access paths
Database - a collection of records and mappings

In the following discussion, a traversal rule will be defined
to limit the access paths in the CODASYL and IMS models to those
configurations which define primitive relationships.

A. Application of the general model to CODASYL and IMS databases

Some access paths in the IMS database defined in figure 5 are:

{ £:Doctor —» POW(Patient) }
[f:Treatment ——>POW(Patient x Doctor) }
{ f:Diagnosis—-> POW(Observations) x POW(Assessments) }

where POW(x) denotes the powerset of x.

Some access paths in the CODASYL database defined in figure 3
are:

f:Diagnosis — 3 SING(Doctor) }
f:Treatment ——> SING(Diagnosis x Doctor x Patient) }

where SING(x) denotes the set of all singleton sets over a set x, i.e.,
the set of all sets having only one member.

The primitive access paths in the IMS database defined in figure 3
are:

{ f:0bservations.—y POW(Diagnosis x Patient x Doctor) }
f:Assessments-.—_3POW(Diagnosis x Patient x Doctor) 3}
f:Treatment — 5 POW(Patient x Diagnosis) }

The primitive access paths in the CODASYL database defined in figure 3

f:Treatments- — 3 SING(Diagnosis) }

f:Observations ——>»SING(Diagnosis) }
f:Diagnosis —__» SING(Doctor x Patient) }

- 16 -

In general, the primitive access paths in a CODASYL database
correspond to the confluent sets in the database. Thus each primi-~
tive access path has the form:

f : R—>SING (S1 x ... x Sn)
for record types R, S1, ... , and Sn, with Si the owner of a set type
and R the member. The primitive access paths in an IMS database
correspond to the paths. Thus each primitive access path has the
form:

f: Sn—>POW (S1 x ... x Sn-1)

for segment types S1, ... , Sn-1, and Sn, where each Si is the parent
segment type of Si+l.

B. Traversal algorithm

Minker's algorithm provides a technique for finding a member of
an inferred relationship, given the primitive relationships in a ‘
database. Application of this algorithm to databases with access
paths will require an additional algorithm to find those members of
a primitive relationship which satisfy a given query. Referring to
the discussion in section IV.B., the following algorithm will serve
to search the extensional data for the members of a primitive
relationship satisfying the query. It is assumed that each primitive
relationship in the database is associated with an access path by the
database definition. The notation a b will denote the concatenation
of tuples (first-normal-form records) a and b.

Tl: [Locate the access path] Search the database definition for the
access path corresponding to the primitive relationship. Let

f : F—>POW(GL x ... X Gn)

be the mapping from this access path which is currently stored
in the database. G., G2, ..., Gn, and F and files.,

T2: [Search the file F for records satisfying the queryl For each
record r belonging to F, convert r to first normal form. The
result will be a set {rl,...,rn}. For each ri which satisfies
those parts of the query relevant to F, perform step T3.

T3. [Search the image f(ri) for records satisfying the queryl For
each concatenation sl ... sn of records in £(ri), convert
sl ... sn to first normal form. The result will be a set
{sll ... sin, .., sml ... smn} of records. For each sjl
sjl ... sjn satisfying the query, return rl sjl ... sjn as a
response to the query.

This algorithm may not be particularly efficient. 1In particular, the
efficiency of the algorithm will depend on the relative distributions
of physical records in the database and on the types of queries. A

- 17 -

possible technique for improving the efficiency of the algorithm
would involve the choice of record types, given a collection of
queries and the likelihood of each query.

VI. Conclusions.

The definition of a database may allow each individual user his
own interpretation of some of the relationships which can be recovered
from the database. This can result in misunderstanding of the
responses to queries and to inconsistency in the updating of the data-
base.

To avoid this problem, each relationship that can be recovered
from the database must be defined, either as a primitive relationship,
independent of the other relationships in the database, or as an
inferred relationship, in terms of how it may be inferred from the
other relationships in the database.

These two kinds of relationships can be distinguished from each
other in the CODASYL and IMS database models by the configurations
of the access paths from which primitive relationships are construct-
ed. 1In general, a '"traversal rule'" can be defined which describes
the primitive access paths of a database. Relationships constructed
from these access paths must be defined as primitives of the database.
All other relationships must be defined by rules of inference.

- 18 -

BIBLIOGRAPHY

10.

Astrahan, M. M., and Chamberlin, D D., "Implementation of a
Structured English Query Language', Proceedings of the Inter-
national Conference on Management.of Data, San Jose, California,
May 1975,

Bachman, C. W., "The Programmer as Navigator", CACM 16 11

(Nov. 1973)

CODASYL Data Base Task Group Report, ACM, Néw York (April 1971).
Codd, E. F., "A Relational Model of Data for Large Shared Data
Banks", CACM 13 6 (June 1970).

Codd, E. F., "Relational Completeness of Data Base Sublanguages',
Courant Computer Science Symposium (May 1971).

Dolk, D. R., and Loomis, Mary E., "A Methodology for the Design
Generallzed Query Processors for CODASYL Databases', Proceedings
of the IEEE Computer Software and Applications Conference,
Chicago, Illinois (Nov. 1977).

IBM, Information Management System/Virtual Storage (IMS/VS)
System/Appllcatlon Design Guide, Manual SH20-9025.

Minker, J., "Performing Inferences over Relational Data Bases'
Proceedings of the International Conference on Management of

of Data, San Jose, California, (May 1975).

Stonebraker, Michael, "Access Control 1n a Relational Data Base
Management System by Query Modification', Proceedings of the
1974 ACM National Conference, San Diego, California (Nov. 1974).
Zloof, Moshe, and de Jong, S. Peter, M The System for Business
Automation (SBA): Programming Language', CACM 20 6 (June 1977).

