
PICASSO - An Aid to an End-User Facility

P. G. Sorenson
J. A. Wald

Dept. of Computational Science
University of Saskatchewan

Saskatoon, Saskatchewan, Canada

hbh-tmct
A characterization of an end user and a dis-

cussion of an end-user facility are presented. A
language for aiding the data-base administrator
in designing forms for user's df an end-user fac-
ility is described in a tutorial manner. The pa-
per concludes with an outline of work related
to the form's approach and other types of user-
oriented query language facilities.

lnfrryduc;tian
In this paper we describe PICASSO, a system

that has been developed at the University of Sask-
atchewan to aid the data-base administrator in
establishing a proper end-user facility for a data-
base management system. Our concept of an end-
user facility is consistent with that described
in the Progress Report on the Activities of the
CODASYL End User Facility Task Group [1976]. In
the first section of the paper we elaborate on a
characterization of an end user and establish the
environment in which such a person is perceived
to operate. The second section briefly describes
the role of the data-base administrator and identi-
fies the need for a facility such as PICASSO.
The third section presents the PICASSO language and
illustrates its major concepts with examples.
The final two sections set the effort on PICASSO
in a perspective with other research being under-
taken and outlines future developments in the
area of end-user systems.

The End Urn
Codd[1974], among others, has expressed

some concern regarding the lack of a proper
interface between a certain class of end user -
which he refers to as "casual users" - and the
data-base management system with which the user
interacts. He characterizes the casual user as
follows:

"The casual user is one whose inter-
action with the system is irregular in
time and not motivated by his job or
social role, Such a user cannot be
expected to be knowledgeable about
computers, programing, logic, or
relations. . . . The class of casual
user is quite broad - it includes almost
all. of institutional management (private
and public) and housewives."

Codd's attempts to rendezvous with the casual
user are both valid and commendable. However, not
only is the data processing industry neglecting

the casual user, it is also ignoring the end user
who interfaces daily with the computer in personnel,
accounting, payroll, marketing, production, etc.
departments throughout the business community.
Let us seek a clearer characterization of this
type of end user.

The End User Facility Task Group (henceforth
referred to as EUFTG)[1976] has expended a great
deal of effort attempting to classify end users.
A summary of their classification is as follows:

a) The end user is a person engaged in
a job that directs or supports the direction
of the following activities: planning, manage-
ment, execution,monitoring, or evaluation.

b) An end user has an established need to
collect and manipulate data that are directly
related to his/her job requirements and exper-
iences.

c) An end user is competent in his/her job
but is not necessarily a data processing expert
and should not expect to become proficient in
programming or any other data processing special-
ity.

d) The end user must be willing to under-
stand that his/her view of the data is defined
and that there is a finite set of operations he/
she may invoke.

To satisfy the needs of the end user, the
EUFTG selected a form-oriented approach, an
approach which they believe allows different users
of a data base to have their own logical percep-
tion of the data. Certainly there is ample justi-
fication for this approach since forms have been
and are commonly used in a business environment for
person to person communication(Silas[1976]). Ob-
ciously we concur with this approach and support
it with the design of the PICASSO form generation
system. It should be noted, however, that certain
classes of end users require additional end-user
facilities. ,This point is conceded by the EUFTG
and is accomodated in their proposed conceptual
environment for an end-user facility as shown in
Figure 1. The pragmatics, which represents the
interface between the end user and the end-user
facility (i.e., the EUF is the shaded Portion of
the diagram), is a subsystem that converts a user's
manipulative request to a canonical representation
which is sent to the EUF. In many instances, a
user request can be directly converted to a canon-
ical representation - a representation containing
statements in the data manipulation language (DML)
of the host DBMS. However, in the remaining cases,
a dialog type of facility must be created to assist

30

http://crossmark.crossref.org/dialog/?doi=10.1145%2F509404.509411&domain=pdf&date_stamp=1977-08-03

in acquiring the necessary information from the end
user. A much greater effort must be expended to
comprehend and then manipulate this dialog into
a canonical expression of the user's need. Proce-
dures for handling errors and user's requests for
additional information should be incorporated in
the pragmatics. Later in the paper, in a section
entitled "Related Work", we discuss user interfaces
at a more general level and describe some alterna-
tives to the form's approach.

Before concluding this section let us examine
the nature of query languages (i.e., the languages
which provide an interface between the user and his/
her database) that are available for the end user.
Currently, the query languages which are associated
with most data-base systems are tied to the data-
base organization. In hierarchical systems, the
notions of "next son" and "next brother" are nec-
essarily intrinsically embedded in the query lan-
guages that are available (e.g., IMS’s DL/I (IBM
[1975]). In the network approach as exemplified
primarily by the CODASYL data-base management
system (CODASYL[1971]), the linkages required
to establish associations between two schemas are
realized through the concept of a set. To access
properly such a data base the user must be aware
precisely of what sets exist. Query languages for
relational data bases have been oriented towards

I the relational algebra (CODD[1971]) or the relation
I calculus (CODD[1971]).

A \-/
/’

DBA COMMUNICATION

Unfortunately end users are not capable and/
or not interested in learning such highly technical
languages. In addition, these languages have been
somewhat general purpose and thereby do not reflect
the particular environment in which the user works.

Certainly substantial research in the area of end
user systems is justified and more will be said
in general concerning this topic in the last sec-
tion. Let us now examine the role of the data-
base administrator in an end-user facility.

Data-Babe AdmivLidRhatah in an End-&m Fa&.LLty
In a form-oriented end-user facility the data-

base administrator assumes the traditional responsi-
bilities including data definition, control over
access, and integrity maintenance. Because the end
user's perception of information in the data base
is by means of forms, the data-base administrator
will also be responsible for evaluating the user's
information needs and assuring that the proper
forms are defined to the system and made accessible
to the user.

Referring to Fig. 1, we see that the data-base
administrator establishes the user's information
needs, as expressed in forms, by using the data
definition facilities (i.e., the EUF DDL). The
forms defined by the data-base administrator are
called perceptual forms and these can best be view-
ed as canonical representations onto which user
level forms are mapped. It is the responsibility

0

END USER

PRAGMATICS I .^. . .- _-_._-.
PARAMETRIC

FACILITIES

DATA < > DBMS c , DATA-
BASE

Figure 1 CODASYL EUF Task Groups, Conceptual Environment

31

of the data-base administrator to ensure that the
information items basic to the perceptual form are
inserted in the data dictionary. A remaining duty
is to create a user profile through the data mani-
pulation language (DML) facilities. Part of this
profile includes a definition of the types of access
a user can engage in when interacting with the data-
base system.

From this brief review of the data-base ad-
ministrator responsibilities it is clear that the
creation of proper user form is one of the impor-
tant additional duties in a form-based end-user
facility. The success of such a facility is directly
dependent on how well the data-base administrator
can communicate with the end user and understand his/
her needs. The development of a system to create
and to modify forms easily and thereby enable the
data-base administrator to identify quickly user
requirements is imperative to the success of an
EUF. PICASSO is a system to aid in form's design.
Let us now enter into a tutorial description of
the system.

Fohm Genneha;tion by P7CASSO
In this section we describe in a tutorial

fashion how PICASSO can be used to create a 'form.
While the material is presented at a relatively
informal level, an attempt is made to define pre-
cisely the syntax of the language and this is done
with the aid of the BNF metalanguage. Throughout
the discussion we assume that the forms are created
on a display terminal device. While an attempt has
been made to keep PICASSO device independent, the
initial version interacts with an HP 2640 display
terminal.

In PICASSO a form is viewed as a logical
collection of words, lines and fields to be filled
in as exemplified in Fig. 2. If we let C designate
the set of all characters that can be present in
a form, then this set will consist of the usual
keyboard alphabet and a line drawing alphabet
which is hard-wired or simulated in software.
Every location on the form is associated with a
character from C and if we let A be the set of
addresses (i.e., character locations) on the form,
then a form is a one-to-many mapping F: C -t A.
A. Form Addressing

Each location on a form has a unique address
given by an ordered pair of numbers. The origin
of the form is denoted as (0,O) and is at the top
left corner as exhibited in Fig. 3. An address

column y. The row co-ordinate is measured from
top to bottom with the unit length equal to the
length of a character field. (In PICASSSO, each
character field is assumed to occupy a constant
area. For some of the more sophisticated display
terminals this requirement.appears to be restric-
tive; nevertheless, it is a convenient method of
addressing as will become clear in the discussion
to follow.) Similarly, the column co-ordinate is
measured from left to right with the unit length
equal to the width of a character field. The
co-ordinates of a legal address must each be non-
negative integers.

Addressing relative to the origin immediately
identifies an address on the form. A cursor is
moved to the address identified. The addressing
can be direct or relative with respect to ,either
or both of the co-ordinates. Such addressing is
used when the particular address of a geometry
(various geometries such as lines, boxes, and tex-
tual strings will be discussed shortly) is known
or is easily calculated from the present position
of the cursor. The following syntactic description
and examples illustrate how addressing is achieved
in PICASSO.

<address> ::= address (<integer>,<integer>)
<row> ::= row (<integer>)

<column> ::= column (<integer>)
<integer> ::= + <us<> 1 -<usi> 1 <usi>

<usi> ::= un&g necf in&g ett
These types of addressing are illustrated in

the following examples.
address(l,5) <=> move cursor to row 1; column 5
rod1 1 c=> move cursor to row 1; do not

change columns
column(5) <=> move cursor to column 5; do not

change rows
address(+2,3) <=> move cursor down 2 rows; and to

column 3
address(4,-6) c=> move cursor to row 4; and to the

left 6 columns
row(-8) c=> move cursor up 8 rows
column(+2) <=> move cursor to the right 2 columns

It is obvious that the addressing instructions
contribute very little towards the design of the
form per se. Addressing only establishes a base
location from which the predominate shapes of the
form; that is, the lines, textual fields, boxes,
and tables, are described. Henceforth these
shapes will be referred to as geometries. In the
remainder of this section, we will examine these

(x,y) refers to the location where row x intersects geometries.

NOTICE OF CLASS SECTION CHANGE

STUDENT

SURNAME

c-

CLASS SECTION

Figure 2 A typical form

32

L-field to be
filled in

Row
Co1 umn

012345678.

5

6

7

8

colum; 2 address (8,5)

Figure 3 Example illustrating form addressing

Note thatr,-, 1 are characters from

B. Line Geometries
The two line geometries in PICASSO are the ob-

character i n the line. In the example, the final
cursor pos i tion would be (6, 7).
C. Textua

Recal
vious ones which describe horizontal and vertical
lines. The horizontal line instruction generates
a line horizontally starting from the current
cursor position and moving right. The vertical
line instruction produces a vertical line begin-
ning at the current oursor position and proceding
downwards. The line is described,in segments
by the length and type,of each segment. The
length of the segment is in columns or rows.
The type is one of bold, blank, double or single
(not all of these are available on some display
terminals and may have to be simulated, if possi-
ble). The two line geometry instructions have the
following format.

<horizontal> ::= horizontal <type> (<usi>)
<vertical> ::= vertical <type> (<usi>)

<type> ::= bold 1 blank 1 double
1 single

<usi> ::= uti,i&~ed iti?;tegetL
An example which illustrates these instruc-

tions fs given in Fig. 4. In the example pro-
gram, the first instruction sets the cursor-at
nosition (1. 1). The second instruction draws
a double horizontal line five in length. After
resetting the cursor to (2, 2) a vertical single
line, a vertical bold line and horizontal double
line are drawn as shown in Fig. 4. Note that the
position of the cursor after a horizontal or ver-
tical instruction is respectively at the, location
one column to the right or one row below the last

~ row

-address (5 23)

1

the line drawing alphabet.

1 Geometries
1 from the beoinnina of this section that

a form consists, in part, of a' collection of words-
and fields to be filled in by the end user. The
blank fields to be filled should be sensitive
to the user's information; that is, one can visibly
insert the information into the space provided.
The rest of the form, which generally contains
predefined textual fields and lines, should be
insensitive to the user's input and thus it should
be impossible for the user to destroy the form in-.
advertently. In PICASSO, all fields are protected
(unchanged) except those which are declared un-
protected.

A single instruction, the write instruction,
is provided to write text and unprotected fields
on the form. A prescribed sequence of characters
are printed from left to right starting at the
position of the cursor. Fields which are unpro-
tected are prefixed by the w operator. Column
addressing in included to facilitate an efficient
and simple way of generating a string of text which
is delimited by several blank characters.
<write> ::= write (<parm list>)
<parm list> ::= <parm> 1 cparm> , <parm list>
<parm> ::= <text> 1 <column>
<text> ::= "d&&g" 1 blank (<usi>) 1 u"dMng"

I %blank (<usi>)
<usi> ::= undgned im.hg eh

The following set of instructions generates

33

address (1,l)

horizontal double (5)

address (2,2)

vertical single (1)

vertical bold (3)

horizontal double (5)

Figure 4 Example illustrating the line drawing
instructions

the form shown in Fig. 5. In this example, the
shaded areas are the unprotected fields which are
to be filled in by the user. The "shadow text",
dd/mm/yy, indicates to the user how the data field
is to be filled in.
address(l,l)

write("Fil1 in all blanks",column(+5),
"Press 'return' when done")

address(2,l)
write("Date: ' ,~"dd","/",s"mm","/" ,~"yy"

address(3,l) write("Name: ",sblank(20))

Fill in all blanks Press 'return' when done
Date: B-jijjiJ
Name: F

Figure 5. An example form illustrating the write
instruction.

D. Box Geometries
It is a verv common oractice in forms desisn

to group certain"logically related items together
in a box (for example, see Kaiser [1968] and
Tavernier [1972]). This approach is illustrated
in Fig. 2 by the grouping of student and class
information in separate boxes. This grouping
concept is often generalized to include the design
of boxes within boxes; thereby, illustrating that
within a logical grouping of data there exist
subgroups. In fact, a direct analogy can be
drawn between a box and a grouping identifier
within a record structure of some programming
languages. For example, the PL/I record structure
for a class change record might be

DECLARE 1 CLASSCHG,
2 STUDENT,

3 SURNAME CHARACTER (25),
3 INITIALS CHARACTER (2).
3 STUD ID CHARACTER (6);-

2 CLASS.-
3 ABBREV CHARACTER (8),
3 NUMBER CHARACTER (4),
3 FROM FIXED (2))
3 TO FIXED (2);

The similarities between the record structure and
the boxes in Fig. 2 are obvious.

To create a box in PICASSO we use a box in-

instruction. The instruction generates a box whose
top left corner coincides with the most recent cur-
sor position. The position of the cursor is then
treated as a new origin so that all subsequent
addresses and creations of geometries can be made
relative to this point. The box, itself, is des-
cribed by its inner dimensions and the type of line
which forms the box. Therefore, syntactically the
box instruction is
<box> ::= box <type> (<us-l> x <usi>)
<type> ::= bold 1 blank 1 double 1 single

As an example, the sequence of instructions
to the left of Fig. 6 generates the box represented
in the accompanying figure.

The presence of a blank type supports our
view that a box is more than a collection of phy-
sical lines. It is a logical unit. Once a box
is established the user can ignore the rest of the
form and concentrate on filling in the inside of
the box before proceeding to another box at the
same level.

Every instance of the box instruction changes
the position of the current origin and previous
origins can only be recovered when all boxes gen-
erating subsequent origins are completed. The
completion of a box is indicated by an end of box
instruction.

<end of box> ::= end box
A PICASSO program which creates the form in

Fig. 2 is as follows.
comment(PICASS0 program for generating the class

change form.)
box bold(17x61)

address(l,5)
write(‘NOTICE OF CLASS SECTION CHANGE")

address(3,5) write("STUDENT")
address(4,5)
box single(4x52)

address(l,2) write("SURNAME", column(30),
“INITIALS”, column(ll),
"STUDENT Itill)

address(2,2) write(Qblank(25), column(33),
blank(2), column(43),
Qblank(6))

address(l,28) vertical single(2)
address(l,34) vertical single(2)

end box
address(9,5) write("CLASS", column(35),

34

(10,12) (,0,23)

address(l0,12)

box bold(5xlO)

(16,12) (16,23)

Figure 6 Example illustrating the construction of a box.

address(l0,5)
box single(4x37)

"SECTION")

. comment(Instructions for creating the

. class section box would fall
here.)

end box
end box

E. Midpoint Addressing and Centering Textual
Geometries

In designing a form - in particular, in tit-
ling parts.of a form - it is convenient to be able
to center textual geometries with respect to a
particular address. In PICASSO, this operation is
achieved through the use of the center instruction
which has the following form:

<center> ::= center(<text list>)
<text list> ::= <text> 1 <text>, <text list>

where <text> has the same syntax and semantics as
described in the textual geometry subsection.

As an example, suppose we wish to center the
text "NOTICE OF CLASS SECTION CHANGE" with respect
to character position 31 in the form as given in
Fig. 2. This can be accomplished with -

address(l,31)
center("NOTICE OF CLASS SECTION CHANGE")

/
It is a very common situation that the address

about which a text string is to be centered is
, the midpoint of a geometry. To locate such a
/ midpoint address with respect to a given geometry
j we use the following instruction.
j <midpoint addressing> ::= midpoint

(<m-geometry>)
<m-geometry> ::= horizontal 1 vertical

1 box
We can illustrate midpoint addressing by redoing the
previous example assuming a current origin of
(0,O) for the box of dimension (17x61) as:

row(l) midpoint(horitonta1)
center("NOTICE.OF CLASS SECTION CHANGE")

In this example the midpoint is found with respect
to the last box (or entire screen area if no box
has been defined) in the horizontal direction of
the current row.

Midpoint addressing relieves the form's de-
signer of the rudimentary task of computing the
middle of a given geometry. This idea is exempli-

fied again in the following program which creates
the form in Fig. 7.

address(5,5)
box sinqle(13x28) row(l) midpoint(horizonta1)

center("PICASSO", sblank(2)) .
midpoint(box) center("midpoint of box")

end box

Note that midpoint addressing need not always
be used in conjunction with centering. For example,
it is convenient to be able to find the midpoint of
a geometry and use relative addressing in creating
other geometries based on this midpoint.

F. Table Geometry
The final geometry we examine is the table

geometry. This type of geometry is particularly
useful in designing forms requesting lists of items
say for inventory control. Fig. 8 (taken from
Tavernier [1972] Fig. 5.1) is an example of such a
form.

In PICASSO a.table is composed of rows and
columns which vary in sizeand which are subscribed
by using vertical and horizontal .lines. These lines
may vary in type (i.e., double, single, bold or
blank lines). The fields in a table can be blank,
or contain protected and unprotected text. Only
tables of a normal form can be described by the
PICASSO table instruction. By a normalized table,
we mean all rows must have the,same number of columns
and all columns must have the same number of rows.
Unnormalized tables can be achieved by modifying a
normalized skeleton using other PICASSO instructions
involving blank geometries.

At first glance, it appears that a table can
be generated using the previously described in-
structions. This is true; however, the process
would betedious and complex. In addition, the
intersection of a horizontal and a vertical line
geometry creates a gap at the intersection point
as is illustrated in Fig. 2. In the construction
of a table we know precisely where horizontal and
vertical lines intersect and at these positions-
we can make use of join characters such as "I', "d",
"t'l:-::J-", or "T" instead of the line characters "I"
or For terminal devices without such special
line drawing characters, the problem of line separa-
tions at intersection points will persist unless

35

30 characters
rc -----

A .___ . ----.--- ._ __

i

PIcassom

15 lines
midpoint of box

k

Figure 7 Centering and midpoint addressing example form

Port number
\

Cost code
Danger level

Description Bin number
1

’ - “ty cuoniity
out

BOlOnCe Dote Controct ptity Q$itY Bclonce

I

Figure 8 Stock and record form

some suitable character such as the "+" operator
can be used.

lows.
A grammar describing the table instruction fol-

Additional restrictions will be made as the
constituent parts are discussed.
<table> ::= table <type> (<usi> x <usi>)

column <logical column list>
row <logical row list>

<logical column list> ::= <logical size>
1 <logical size> <logical
column list>

<logical size> ::= <usi> (<usi> , ctype#>)
<logical row list> ::= <logical row> 1 <logical row>

<logical row list>
<logical row> ::= <logical size> (<physical row

1%~)
<physical row list> ::= <physical row> 1 <physical

row> , <physical row list>
<physical row> ::= blank 1 unprotected

I (<field list>)
<field list7 ::= <field> 1 <field> , <field list>
<field> ::= blank
<type #7 I

unprotected I "4&&g"
::= <type> #

An instance of a table declaration in the table
construct is: table bold(22x30). This declares
the inside dimension of the table to be 22 charac-
ter positions long by 30 character positions wide
and the border of the table to be bold line type.

Before proceeding with the discussion of table
geometries the terms physical column, physical row,
logical column and logical row must be defined. A
physical column is a column one character position
in width and a physical row is a row one character
position in height. Logical columns and logical
rows are the columns and rows formed in a table
and these can be one or more physical columns or
physical rows in width and height, respectively.

With reference to the BNF description given

36

earlier, a <logical column list> describes the width
in character positions of each logical column and the
line type of the vertical line to the right of it.
An instance of <logical size> description is: 2(3,
single). For a column definition, this designates
logical column 2 to be 3 character positions wide
with a single vertical line on its right boundary.
There should be one <logical size> entry in the <logi.
cal column list> for each logical column. We insist
that the order of the <logical column list> entries
be in increasing magnitude of the logical column
number, the first <usi> in a <logical size>.. A re-
striction on the <logical column list> is that the
<type#!> of the last <logical size> be set to I#'.
This is understandable since the vertical line to the
right of the last logical column is the border and
the border has already been described in the table
declaration. It is expected that the width of the
table given in the table declaration be consistent
with the width of the table determined by the logical
columns. Therefore, the sum of physical column
lengths, the second <usi> in <logical size>, plus the
number of vertical lines must equal the column dimen-
sion given in the table declaration.

The <logical row list> describes the width
of each logical row and the line type of the hori-
zontal line below it. It also describes the
contents of each field in each physical row. A
field, in this sense, is the intersection of a
logical column with a physical row. An instance
of a <logical row list> is:
4(3,double)(blank,("litl",blank,"lit3"),unprotected).
This describes a logical row to be 3 physical rows
wide with a double horizontal line below it. The
first physical row (of logical row 4) is blank in
each field. The second physical row has the string
"litl" in its first field; a blank in its second
field; and the string "lit3" in its third field.
The third physical row is unprotected in each field.

The instance: blank,("litl",blank,"lit3"),
unprotected is a physical row list . The ith
<physical row> in a <physical row list> corres-
ponds to the ith physical row of a logical row.
When a physical row is 'blank' or 'unprotected'
then all the fields of the corresponding physical
row are blank or unprotected respectively.

If the <physical row> is a <field list>, .
i.e., ("litl",blank,"lit3"), then there is a one-
to-one mapping from the. <field list> to the physical
row. When a <field> is 'blank' or 'unprotected',
then the corresponding field of the physical row
is blank or unprotected. When <field> is a
string, then that string is automatically centered
in the corresponding field of the physical row.

As with the <logical column list>, the <type#>
of the last <logical row> in the <logical row list>
must be '#I. Also, the sum of the physical row
lengths plus the number of horizontal lines must
equal the row dimension given in the table declara-
tion;

The following instructions describe the table
in Fig. 9. The blank physical rows are marked with
arrows at the side of the table.

table bold(llx26)
column l(8,double)

2(8, single)
3(8,#)

row 1(3,single)(blank,(blank,"titlel","title2",
blank)

2(3,single)(blank,("title3",unprotected,

unprotected),blank)
3(3,#)(blank,("title4",unprotected,unprotect-

ed),blank)

logical row 1

logical column 2

Figure 9 Typical normalized form.

G. Geometry Enhancement
In the illustrations of forms so far the un-

protected fields have been shaded. This shading
represents an inverse video enhancement of a blank
field. Other types of enhancements incorporated
in PICASSO are blinking, underlining and half-
bright - obviously not all of these are available
on all video terminals.

In PICASSO the default enhancement of all pro-
tected geometries is normal brightness while the
default enhancement for unprotected fields in
inverse video. The default may be changed by either
a local or global instruction. A local instruction
prms enhancement for a single geometry specifi-
cation onlv and the instruction apoears immediately
prior to specification. It has the following f

<local enhancement> ::= local (<enhance 1 i
<enhance list> ::= blinkin 1 inverse 1

bright 7 underlined
As an example,
local(blinking,inverse)
box single(4x8)
produces a box which is displayed in inverse v 'i
with blinking characters.

orm
St>)

deo

The global instructions, "global" and "sglobal",
are used to enhance a series of geometries. These
enhancements stay in effect until the next "global"
or "ylobal" instruction is encountered. Syn-
tactically, these instructions appear as
<global enhancement> ::= global (<enhance list>)
<unprotected global enhancement> ::= sglobal

(<enhance list>)-
The following examples illustrate these instructions.
global(blinking) <=> all protected

7
eometries (un-

til the next global instruction have a blinking
enhancement,

%global(inverse;underlined) <=> all unprotected
geometries (until the next %global instruc-
tion) will have an enhancement of blinking
underlined characters.

This concludes our tutorial discussion of
PICASSO. We have omitted some features such as
the ability to abbreviate commands and to apply
instructions repetitively. However, the descrip-
tion should give an appreciation of the language
and how it can be applied. Let us now compare
PICASSO to some of the specifications outlined in

37

the CODASYL End User Facility Report.

CampwuYhon wi.-d~ Rhe ELIF Repoti
In the CODASYL EUF Report, a number of objects

are defined which allow an end user to conceptual-
ize, at a logical level, data into the following
classes: data base, file, folder, form, group and
item. The concepts of form, group, and item have
a physical realization in PICASSO's form, box (and
table), and textual geometries, respectively. Hence
a DBA should have no problem in translating a user's
view of the data to these primitives.

The notions of data base, file, and folder have
not been handled, as yet, in PICASSO. Logistically,
there should be little difficulty in adding commands
for handling these higher level objects. The major
difficulty arises when attempting to realize these
concepts in the underlying physical files and physi-,
cal data base.

Facilities describing how data should be mani-
pulated (e.g., adding, deleting, updating data)
have been ignored in this discussion. Similarly,
a data manipulation language (DML) has not been
proposed by the EUF Task Group. Certainly.such lang-
uage features must be intimately tied to the prag-
matics of the system.

Probably the most important consideration when
viewing PICASSO in relation to the EUF Report is
whether it is a system capable of easily describing
the example forms given in the appendices of the
Report. We feel that given a basic understanding of
PICASSO these forms can be quickly generated by a
data-base administrator who need not learn the in-
tricacies of working with line drawing sets for a
particular terminal device.

Rehted Wotk
The.efforts related to PICASSO are part of a

more general investigation into the subject of user-
oriented query languages (henceforth referred to as
UQUELS). We can characterize this class of languages
in the following manner:

"A UQUEL is a self-contained, high-level query
language which allows the user to interact
with a data base in order to accomplish a
specific task. The UQUEL does not necessarily
retain a view of the data inherent to the
specific data base of data-base approach."
(Malakoe [1977])

Therefore, a UQUEL should not be designed for an
underlying data-base management system.

Three general methods of interacting with the
user are apparent.
dialogue (e.g.,

These are question-answering
Codd[1974]), simple predicate

based systems (e.g., Zloof[1975]) and the form's
based approach (e.g., EUF Task Group Report [1976]).

For some applications, an appropriate end user
facility should contain features from all of these
types of UQUELS. The blending together of these
types of interaction must be handled in the prag-
matics section of the EUF. Just how this can best
be accomplished is part of our general investiga-
tion.

Probably the strongest statement related to
the area of end user query languages is by Codd
Cl971 1.

"Many users need query languages specialized
to their applications. The high cost of support-
ing a great variety of these languages and
their translators suggest that as many as
possible of the common services in these

translators be identified and programmed once
and for all."

In a second part of our general investigation, we
are attempting to identify these general properties
described by CODD.
the fast,

In so doing we plan to support
relatively efficient, and inexpensive

generation of UQUELS for special applications through
the use of UQUEL writing systems for each class
of UQUEL.

Condk&Lon and FWL&WL Developmment
In this paper we have introduced a system for

aiding in the design of forms for an end-user
facility. While the various form generating
commands have been only briefly described, it
should be clear that PICASSO is a system which can
greatly assist the data-base administrator.

Further work is needed to complete the system.
Particular attention must be focused on extending,
the form primitives to accomodate data objects such
as folder, and file as suggested by the EUF Task
Group. The system is being implemented as part of
a form's interface to the INGRES relational data-
base system (Stonebraker[1975]) on a PDP-11/40.
It is planned that the system be applied to a num-
ber of application areas and hence a number of
different data bases.

As stated previously, pICASSO was designed to
be independent of any type of display terminal or
operating system. To this end, we plan to imple-
ment the system on several types of display termin-
als and, initially, in two different operating en-
vironments: the PDP-11/40 and IBM S370/158.

Addendum - The name. PlCKS0
We decided to avoid"the more traditional ap-

proach of using abbreviations or acyronyms when
selecting a name for our'language. Any resenblance
between the name of this language and a certain
artist whose work is reknown for its varied and
unusual geometric qualities is not coincidental.

Acknow&dgemneti
This research was sponsored in part by the

National Research Council of Canada, Grant No.
A9290. We would like to thank Janet Merck for her
able assistance in typing the manuscript.

BibLiognczphy
A Progress Report on the Activities of the CODASYL

End-User Facility Task Group, FDT Bulletin of
ACM SIGMOD, Vol. 8, No. 1, 1976, pp. 1-19.

CCDASYL Data Base Task Group, April 1971 report,
ACM, New York

Codd, E.F.: "Relational Algebra:, Courant Computer
Science Symposia 6, Data Base Systems, New
York, Prentice Hall, New York, 1971.

Codd, E.F.: "A data base sublanguage founded
on the relational calculus", Proc. 1971.
ACM-SIGFIDET Workshop on Data Description
Access and Control, ACM, New York, pp. 35-68.

Codd, E.F.: "Seven Steps to Rendezvous with the
-Casual User", Data' Base Management, J.W.
Klimbie and K.L. Koffeman(eds), North-Holland
Publishing Co., Eindhoven; The-Netherlands,
1974, pp. 179-200.

IBM, Information Management System/Virtual Storage
(IMS/VS), General Information Manual, GH20-
1260-3. 1975.

Kaiser, J.B:: Forms Design and Control, American
Management Association, Inc, 1968.

38

Malakoe, G.: "User Oriented Query Languages -
UQUELS", Master Thesis, University of Saskatch-
ewan, to be submitted in 1977.

Silas, J.: "Good Forms Design Cuts Costs", Journal
of Systems Management, Dec. 1976, pp. 38-21.

Stonebraker, M.R.: "Getting Started in INGRES -
A Tutorial", University of California, Berkeley,
ERL Mem., No. ERL-M518, Aur. 1975.

Tavernier, G:- Basic Office-Systems and Records,
Gower Press, Epping, G.B., 1972.

Zloof, M.M.: "Query by Example", Proc. Nat. Computer
Conf., AFIPS Press, Vol. 44, 1975, pp. 431-438.

