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Abstract 

Full cross section calculations of ion-temperature-gradient-driven turbulence with 
Landau closure are being carried out as part of the Numerical Tokamak Turbulence Project, 
one of the U. S. Department of Energy’s Phase I1 Grand Challenges. To include the full 
cross section of a magnetic fusion device like the tokamak requires more memory and CPU 
time than is available on the National Energy Research Scientific Computing Center’s 
(NERSC’s) shared-memory vector machines such as the CRAY C90 and J90. 
Calculations of cylindrical multihelicity ion-temperature-gradient-driven turbulence were 
completed on NERSCs 160-processor distributed-memory CRAY T3E parallel computer 
with 256 Mbytes of memory per processor. This augurs well for yet more memory and 
CPU intensive calculations on the next-generation T3E at NERSC. This paper presents 
results on benchmarks with the current T3E at NERSC. Physics results pertaining to 
plasma confinement at the core of tokamaks subject to ion-temperature-gradient-driven- 
turbulence are also highlighted. Results at this resolution covering this extent of physical 
time were previously unattainable. Work is in progress to increase the resolution, improve 
the performance of the parallel code, and include toroidal geometry in these calculations in 
anticipation of the imminent axrival of a fully configured, 512-processor, T3E-900 model. 

* Research sponsored by the Office of Fusion Energy, U.S. Department of Energy, under 
contract DE-AC05-960R22464 with Lockheed Martin Energy Research Corp. 
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1. Introduction 
Anomalous ion transport in tokamaks seems to be consistent with ion-temperature- 

gradient-driven turbulence. Present theoretical transport models based on this type of 
turbulence give, a good description of present data, but the quantitative agreement is not yet 
good enough for transport predictions on future devices [ 13. To further develop these 
models, a better understanding is needed of the turbulence dynamics, particularly near 
marginal stability. 

The underlying linear instability of ion-temperature-gradient-driven turbulence is the 
so-called qi mode [2] (where qiis the ratio of the density to the ion temperature scale 
lengths, qi 3 [dln(T,)/dr]/[dln(ni)/dr]). This instability is essentially an electrostatic 
sound wave that is driven unstable by the ion pressure gradient. This instability is 
triggered by vi becoming greater than a threshold value, qith. The Ti instability has a 
variety of branches in different regimes [3]. The first analytical results for the derivation of 
an ion thermal conductivity, xi, based on this instability were derived for Ti well above the 
stability threshold, where a fluid approximation could be applied [4,5]. The value for xi 
obtained in these calculations was too high when compared with the experiment. The fact 
that qi instabilities can lead to such high levels of losses suggests that a marginal stability 
condition could constrain the profiles [6] . The determination of the marginal stability 
criterion and the linear eigenmode close to the threshold requires the use of kinetic theory 
and full toroidal geometry. Therefore, the complexity of the problem has increasingly 
demanded the use of numerical calculations. 

A new opportunity emerged with the development of gyro-fluid models with 
Landau closure [7, 81 . The possibility of including Landau damping (at least in the linear 
approximation) in fluid models has extended the computational capabilities for studying 
ion-temperature-gradient-driven turbulence [9, 101 . These techniques led to a new 
approach for calculating the anomalous diffusivities [ 1 13. However, present nonlinear 
calculations are limited by the use of flux-tube calculation domains. This limitation is 
particularly important because of the role that global shear flows play on the saturation of 
the turbulence. Since the global shear flow is the outcome of Reynolds stress flow 
amplification, flow boundary conditions can determine the results. It is also not clear what 
role the limited extent of these flux tubes plays in determining the topology of the flows. 

Here, full torus fluid calculations of ion-temperature-gradient-driven turbulence 
with Landau closure have been initiated for eventual comparison with flux tube models of 
ion-temperature-gradientdriven turbulence. To keep these calculations at a computationally 
manageable level, we only include time evolution equations for the perturbed ion density 
(vorticity) and parallel velocity, in addition to a perturbed ion temperature equation in which 
a simple parallel linear Landau closure is imposed. In this simplified model, the electrons 
are treated as adiabatic. Finite differences in radius and Fourier mode expansions in 
poloidal and toroidal angles allow us to describe the full geometry. This permits the 
exploration of the tractability of nonlinear calculations covering the full plasma cross 
section compared to a radially localized toroidal annulus. 

The issue of full toroidal calculations becomes an issue of problem size for a given 
level of resolution. Because the characteristic length scale is the ion Larmor radius, pi, to 
resolve this scale in a fluid calculation, we need about 10 grid points per pi. For a medium- 
size experiment, the plasma radius is about 200 pi; therefore, about 2000 radial grid points 
are needed. Resolving similar poloidal scales requires poloidal mode number values of 
about 200, and the number of Fourier components needed is about 15000. This level of 
numerical resolution implies a memory size requirement that is about an order of magnitude 
above the capabilities of the present T3E at NERSC. However, this resolution could be 
reached in the next generation T3E. We can also reduce the size of the problem to fit in the 
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present computer by reducing the radial extent of the calculation. This is what is done in 
this paper, where we study the optimal conditions for a reduced problem and present the 
result of the calculation. 

The rest of this paper is organized as follows. The set of equations used to simulate 
the ion-temperature-gradient-driven turbulence is presented in Sect. 2, together with the 
numerical discretization scheme. The implementation of this scheme on a multiple-CPU 
system is described in Sect. 3, where we also discuss the optimization studies for 
calculations done on the T3E at NERSC. The results of single- and multiple-helicity 
calculations are presented in Sect. 4. In Sect. 5 we give the main conclusions of this study. 
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2. Equations and Numerical Scheme 
In this study, we consider the simplest form of an ion-temperature-gradient-driven 

turbulence model that incorporates Landau closure. The plasma geometry is taken to be 
cylindrical, with r being the radial coordinate and 8 the poloidal angle. The model is 
derived using the perpendicular ion momentum balance to extract the perpendicular ion 
velocity, and, from the ion continuity equation, to obtain an evolution equation for the 
electrostatic potential, 6, 

where, M is the ion mass, let is the ion charge, and c is the speed of light. From the 
parallel ion momentum balance, an equation for the evolution of the parallel velocity is 
derived, 

a -  1 -  C 

at M ‘ I ’  
-yli =--V T -- 

Finally, the ion temperature evolution equation is 

The last linear term of Eq. (3) is the Landau damping term. In this model, electrons are 
assumed to be adiabatic, E/neq = Ie@/T,”‘. This condition closes the system of equations. 
In these equations the index eq indicates equilibrium quantities and the tilde refers to 
fluctuating quantities. 

The time-advanced variables in Eqs. (1) to (3) are the ion temperature, Ti, the ion 
parallel velocity, Vlli, and the z-component of the vorticity, V:&. From the latter, the 
potential and density fluctuations are derived. The equilibrium electron temperature, qeq, 
and density, ne,, are supposed to be constant in time. Only the ion temperature and 
poloidal-velocity-averaged profiles are modified by the turbulence. The total magnetic field 
can be expressed in terms of the equilibrium poloidal flux function, Yo, as 

B = -(Wo x ? ) / R o  + $2, where Bo is the toroidal component of the magnetic field. The 
derivative parallel to the magnetic field, VI,, is defined as VI, f = B - Vf . 

Equations (1) to (3) are solved by using finite differences in the radial coordinate r 
and Fourier series expansion in the angle variables 8 and [ 121. Equilibrium quantities 
are functions of the radius only. The fluctuating quantities have the following 
representation: 
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In mode number space, only a narrow wedge of m’s and n’s are resonant in the plasma 
[q(r) = rn/n where q is the safety factor and rn and n denote poloidal and toroidal mode 
numbers, respectively]. The radial extent of the calculation restricts the range of q values 
and, therefore, the distribution of Fourier components and size of the radial region are 
strongly coupled. 
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Fig. 1. Distribution of Fourier components 
included in the calculation. 

Details of the numerical discretization of the equations can be found in ref. [12] . 
After the Fourier expansion, Eqs. (1) to (3), the time evolution equations can symbolically 
be represented as 

where, X is a vector whose components are the Fourier components of the three time- 
advanced variables . The numerical scheme is time-implicit for linear terms, the first term 
on the right hand side of Eq. (3, and is time-explicit for nonlinear terms (N). These 
nonlinear terms are quadratic nonlinearities which become convolutions of the Fourier 
components. In the numerical calculation, these convolutions are treated analytically. To 
numerically advance these equations, a two-step, second-order-accurate, time-centered 
advancement scheme is used. 

At At 
2 2 i+1’2 = ( L  + - R  )Xi  + - N N , , ( X i ) ,  Lm,nXm,n m.n 

At At 
( L m , n - y R m , n ) X z ! ,  = (Lm,n +-Rm,n)XL,n 2 +AtNm,n(Xi+”2).  (7) 

For this numerical scheme, the main computational tasks are the inversion of the matrices 
L [for Eq. (6)] and L - AtR/2 [for Eq. (7)] and the calculation of the convolutions twice 
for each time step. 
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3. Multi-CPU Implementation of the Numerical Scheme 

Using the time advancement scheme in Eqs. (6) and (7), most of the floating point 
operations are in the convolutions in the nonlinear terms and in the matrix operations for the 
solution of the time-implicit linear terms. The convolutions are done analytically. Fast 
Fourier transforms are not used because only a narrow wedge of m’s and 11’s are resonant 
in the plasma. The convolutions are done in complex exponential form and are banded in 
rn and n space. The matrix inversion is accomplished by a block-tridiagonal matrix 
decomposition done at the beginning of the calculation and then solving the linear system 
twice in each time step. 

PVM is used for the multiprocessor implementation of this scheme on the T3E. 
The serial code is replicated on all processors used. Only matrix operations for the time- 
implicit linear terns and convolutions for the time-explicit nonlinear part of the calculation 
are distributed to multiple processors. For matrix operations, parallelization is done for all 
radial grid points at once over the number of Fourier harmonics in which all physical 
quantities in the problem are expanded. For the convolutions, parallelization is done over 
the number of radial grid points for all Fourier harmonics at once. Memory for the matrices 
is allocated at run time and depends on the number of processors requested for the 
calculation. Since memory is relocated in going from matrix inversion to the convolutions 
and vice versa, a global send and receive is done using PVM after all the linear matrix 
solutions and after all the convolutions in each time step. 

Flow traces of the time spent in called routines have been generated. Figure 2 
shows the time distribution among the different types of operations for a calculation with 
424 grid points and 2351 Fourier components run on 16 processors. Two versions of the 
banded convolution routine have been written. One is for a vector machine with 
vectorization over the radial dimension. The other is for cache-based machines with the 
outer loop over the radial dimension for maximum re-use of cache residency. The vector 
routine executes faster than the cache-based one on the T3E. Work is underway to 
understand why this routine is faster and to optimize the coding. 

There are two communication subroutines in this code. One follows the calculation 
of the convolutions and data is packed in many short arrays, one per radial slice. The 
second follows the matrix inversion and the same amount of data is packed in fewer, but 
longer, arrays, one per Fourier component. Each way of packing is a consequence of the 
way data is stored in each processor at that time. The f i t  subroutine takes much more time 
than the second. To improve efficiency, a second version of the communication subroutine 
following the convolutions was implemented. In this version, the packing routine was 
called with longer arrays, of the length of the number of Fourier components instead of the 
number of grid points per processor. With the communications handled in this way, the 
percentage of time spent in the communication routine for the convolutions decreases by 
about a factor of 2, as shown in Fig. 3. The linear solve routines and their communication 
routine are not as time-consuming, by more than a factor of 20 compared to the 
convolutions. The replicated serial coding used primarily for setup at the beginning of the 
calculation takes an insignificant percentage of the time. 
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Fig. 2. Time distribution among the different types of 
operations for a calculation run on 16 processors before 
optimization of the convolution communications. 
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Fig. 3. Time distribution among the different types of 
operations for a calculation run on 16 processors after 
optimization of the convolution communications. 

Here we consider two different problem sizes: one uses the maximum capacity of 
the Cray Y-MP/C90 and another uses the maximum capacity of the present T3E. The first 
allows us to compare the efficiency of both machines, the second to test the capabilities of 
the T3E. The latter calculation is still an order of magnitude below the resolution 
requirements for a full-size plasma experiment. 

The smaller nonlinear calculation was carried out with 559 Fourier components and 
with the radial extent restricted by the small number of resonant modes, represented with 
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420 grid points. It has been performed on both the Cray Y-MP/C90 [13] and the T3E. 
Identical results were obtained on both machines over 5200 time steps. On the C90 the 
average number of concurrent processors was between 4 and 5, while 9 processors were 
used on the T3E. The elapsed seconds per time step averaged 1.6 for the C90 and 5.37 for 
the T3E. The shared memory requirements were 30.6 Mword for the C90 and the memory 
per processor was 8.3 Mword for the T3E. For the calculation with 559 Fourier 
components on the T3E, the number of processors, np, was varied from 1 to 64 to 
calculate the speed-up (time on one processor / time on np processors) as a function of the 
number of processors. This is the largest calculation that can be run on one processor, 
since each processor has 32 Mword of memory. The maximum speed-up was 8 for 32 
processors (Fig. 4). Since the efficiency decreased as we went beyond nine processors, 
nine processors were used. 
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Fig. 4. Memory used per processor and speed-up factor as a 
function of number of processors for a calculation using 559 
Fourier components and 420 radial grid points. 

The larger calculation was done for 2351 Fourier components and 424 grid 
points. This calculation is too large for the C90 and was completed on the T3E. This 
production calculation was run for 26,850 time steps in many short batch runs (because of 
batch queue time limitations) over a few weeks. Physics and restart data were stored every 
50 time steps. A partial analysis of the resulting 12 GBytes worth of information is 
presented in Sect. 4. In order to calculate the optimal number of processors, the number of 
T3E processors was varied to see its effect on the elapsed time per step. We used the same 
criterion for optimal performance as in ref. 12: that CPU time per step be reduced less than 
25% as the number of processors is increased by a factor of 2. For the first version of the 
code, in which short arrays are used in the PVM packing routine, the optimal number of 
processors was 32. After the PVM routine was called with fewer but longer arrays, the 
optimal number of processors was increased to 90 and the elapsed time for each step was 
reduced by a factor of 2 as shown in Fig. 5. With this optimization in the convolution 
communications, calculations with more grid points and more Fourier components over a 
larger number of processors are now possible. To date, a performance of 2.2 Gflops has 
been achieved with 128 processors. It should be noted that in this case 42% of the elapsed 
time is spent in loading instructions and data caches. We further remark that the loading and 
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cache time increases linearly with the number of processors and at the same rate as the 
communications time. 
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optimal number of processors increased from 64 to 90 and up to 128 as the radial grid was 
increased from 128 to 384 and up to 512, and from 64 to 90 as the number of Fourier 
components was increased from 1281 to 2305, as shown in Fig. 6. Since the convolutions 
are divided among processors radially and this is the most time-consuming routine, the 
optimal number of processors shows more of an increase as the radial grid is increased than 
when the number of Fourier components is increased. The improvement made in the 
mamx inversion has led to results that are different from those of the iPSC/860 where the 
mamx solve routines took a significant percentage of the elapsed time per time step 1141. 
The optimization task now becomes improving the convolution techniques beyond the 
improvement in communications described here. 
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4. Results of the Nonlinear Calculations 
For the calculations presented in this paper, the plasma geometry is a circular cross 

section geometry. The plasma minor radius, a, is such that pi(O)/a = 1 / 100 [with pi(O) 
indicating the Larmor radius at r=0] and the assumed aspect ratio R/a = 8.33. This 
corresponds to about one-half of the radius of a medium-size tokamak experiment. Since 
we have restricted the radial range to (0.3 I r/a I0.7), the present study is limited to one- 
fourth of our simulation goal. 

Existing calculations have shown that the nonlinear evolution of the ion- 
temperature-gradient-driven turbulence leads to averaged plasma profiles that are close to 
marginal stability to Ti modes. This seems also to be true in the case of the experimentally 
measured density and temperature profiles. For this reason, the nonlinear calculations 
presented in this paper were carried out for a value of qi relatively close to marginal 
stability. For the 3/2 helicity, resonant at r/a = 0.5, marginal stability is qi = 0.8. 
Therefore, qi = 1.2 was a reasonable compromise, being close to marginal but large 
enough to have characteristic times which are not too long. The equilibrium 4, nq, and 
Tiq profiles used for these calculations are shown in Fig. 7. 
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Fig. 7. Equilibrium q, nq, and Tiq  profiles used in the 
nonlinear calculations. 

The main dimensionless parameters characterizing the properties of the instability 
are: &/pi and LJ&, where L, and L, are the density and the magnetic shear scale length 
respectively. For these profiles they vary: 180 > LJpi > 115 and 55 > LJL,, > 15. Here 
we also take the equilibrium ion and electron temperatures to be equal. 

The effect of the Landau damping terms in this model was first tested on the linear 
stability of the Ti modes. As expected, there is a significant reduction in the linear growth 
rates with the Landau closure term. This is shown in Fig. 8, where the linear growth rates 
of the modes in the 3/2 helicity for two values of Ti are plotted. For each value of vi, the 
growth rates are compared with the growth rate obtained in the absence of the Landau term. 

Single-helicity calculations were carried out to see the effect of the localization by 
Landau damping of the instability, and to understand the dynamics of the nonlinear 
saturation mechanisms. This single-helicity calculation was done with the ITGDT (for ion 
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temperature gradient driven turbulence) code, where 109 Fourier components and 420 grid 
points were used. The fluctuation amplitude grows exponentially in the linear phase and 
saturates to a relatively low level (< 1%). The interesting issue is that there is significant 
localization of the fluctuations with Landau damping on, as opposed to when the Landau 
damping term is not included. This localization is maintained during the full nonlinear 
evolution and there is no evidence of outgoing drift waves coupled to the fluctuations (Fig. 
9). 
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Fig. 8. Linear growth rate with and without Landau damping 
term for two values of Vi. 
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Fig. 9. Nonlinear evolution of the fluctuation profile without 
(left) and with (right) Landau damping. 

The next step in this study is to carry out full 3-D calculations. We have considered 
cases with different radial extent to vary the size of the problem in trying to understand the 
efficiency of the algorithm implementation. We have also considered cases with different 
numbers of nonlinear couplings to understand turbulent saturation mechanisms. The 
Fourier component distribution is shown in Fig. 1. The calculation was done for = 1.2, 
and with 2351 Fourier components and 424 grid points. The nonlinear evolution showed 
clear differences from the single-helicity case. In Fig. 10, we have plotted the time history 
of the fluctuations and the heat flux at the center of the computational box, r/u = 0.5. The 
time evolution shows a large overshoot in the initial phase of the nonlinear calculation, 
followed by a nearly steady state phase. However, there is a slow decay of the fluctuations 
in this second phase. This is probably caused by the fact that the averaged ion temperature 
profile has been modified by the fluctuations so that the profile becomes linearly stable to 
all qi modes towards the end of the nonlinear phase. 
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Fig. 10. Time history of the rms fluctuation levels and heat 
flux at the center of the computational box, r/u = 0.5. 

In the steady state phase of the turbulence, the spectrum of the Fourier components 
is well converged (Fig. 11). It has a clear peak, and this peak shifts to higher m values as 
we move towards the plasma edge region. This indicates that the use of a constant m value 
as spectral cutoff was not the best choice. The cutoff in m has to increase linearly with r. 
The linear stability theory gives k,p, = (1 + T,)-''~ for the maximum linear growth rate; for 
the present parameters we have mmx = 67r/u. The peak of the turbulence spectrum is 
close to the maximum of the linear growth rate for the different helicities, as can be seen in 
Fig. 11. 
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Fig. 11. Spectrum of the Fourier components of the 
electrostatic potential fluctuations at different radial positions 
averaged over the steady state phase. 
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The radial scales of the turbulence are of the order of pi. The radial correlation 
length in the steady state phase is about 3.0 pi. No large-scale structures are observed (Fig. 
12). This indicates that the induced transport is local and the scaling is gyro-Bohm. 

Fig. 12. Contour of cons 
state of the turbulence. 

The turbulence-induced thermal diffusivity, time-averaged over the steady state 
phase of the calculation, is xi  = 1.0 x 10-3pi(0)v(O). 

The time evolution of the fluctuations shows that they remain radially localized 
during the whole nonlinear phase (Fig. 13). Fluctuation levels are somewhat larger than in 
the single-helicity case. This is not surprising because of the larger free energy source 
(broad radial range) and the cross couplings between helicities. A quasi-periodic oscillation 
in the fluctuation level is observed during the steady state of the turbulence. 

In the nonlinear regime, a relatively large averaged poloidal flow is generated 
through Reynolds stress. The largest flow is at the transition regions (inside and outside) 
where the number of modes decreases and there is a large radial inhomogeneity of the radial 
fluctuation profile (Fig. 14). This effect raises the question of the proper treatment of the 
sheared poloidal flow in a flux tube. In this case, the radial inhomogeneity is given by the 
flux tube boundaries that are artificially set up. Inside the radial region where the 
calculation is performed, the fluctuation level is effectively flat and the sheared poloidal 
flow is negligible. 
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Fig. 13. The time history of the Ti rms fluctuation profile. 
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Fig. 14. The radial profiles of the electrostatic potential 
fluctuations and the poloidal flow. 

15 



5. Conclusions 
The parallel algorithm used for calculations of ion-temperature-gradient-driven 

turbulence has permitted successful completion of multi-helicity calculations on the T3E. 
Significant improvements have been realized by efficient packing of the communications 
messages before passing. For the present T3E and for the larger size calculations, 128 
processors give the optimal performance. Computational issues that remain are: 
1) The time spent in the convolution algorithm is the dominant part of the calculation. We 
have to develop a more efficient method for parallel calculation of the convolutions so as to 
minimize the loading and cache time. 
2) Further refinements in the communications are needed to improve scalability. 

The physics results are satisfactory and more calculations are needed to understand 
the effect of changing parameters. 

The next step in this project is the development of full torus turbulence calculations 
with toroidal geometry. 
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