
Journal of Computer and System Sciences 72 (2006) 1094–1117

www.elsevier.com/locate/jcss

Optimal rate-based scheduling on multiprocessors ✩

Anand Srinivasan, James H. Anderson ∗

Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175, USA

Received 15 December 2004; received in revised form 27 February 2006

Available online 17 April 2006

Abstract

The PD2 Pfair/ERfair scheduling algorithm is the most efficient known algorithm for optimally scheduling periodic tasks on
multiprocessors. In this paper, we prove that PD2 is also optimal for scheduling “rate-based” tasks whose processing steps may be
highly jittered. The rate-based task model we consider generalizes the widely-studied sporadic task model.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Fairness; Multiprocessors; Optimality; Pfair; Real time; Scheduling

1. Introduction

In the real-time scheduling literature, the periodic [15] and sporadic [16] task models have received the most
attention. In the periodic model, each task is invoked repeatedly, with consecutive invocations, or jobs, being spaced
apart by a fixed amount; in the sporadic model, a lower bound on the time between invocations is assumed. In practice,
however, event occurrences often are neither periodic nor sporadic. For example, in an application that services packets
arriving over a network, packet arrivals may be highly jittered. Rate-based scheduling schemes are more seamlessly
able to cope with jitter. In such schemes, there is no restriction on a task’s instantaneous rate of execution, but an
average rate is assumed. If a task’s instantaneous rate exceeds its average rate, then it is dealt with by using simple
mechanisms such as postponing deadlines. In this paper, we investigate rate-based scheduling on multiprocessors.
The starting point for our work is recent research on Pfair and ERfair scheduling algorithms, which are known to be
optimal for scheduling periodic tasks on multiprocessors [3,5–7].

1.1. Pfair scheduling and variants

Under Pfair scheduling, each task is required to execute at a uniform rate, while respecting a fixed allocation quan-
tum. Uniform rates are ensured by requiring the allocation error for each task to be always less than one quantum,
where “error” is determined by comparing to an ideal fluid system. Due to this requirement, each task is effectively

✩ Work supported by NSF grants CCR 9972211, CCR 9988327, ITR 0082866, CCR 0204312, and CCR 0309825. Some of the results in this
paper were presented in preliminary form at the 34th ACM Symposium on Theory of Computing [A. Srinivasan, J. Anderson, Optimal rate-based
scheduling on multiprocessors, in: Proceedings of the 34th ACM Symposium on Theory of Computing, ACM, May 2002, pp. 189–198].

* Corresponding author.
E-mail address: anderson@cs.unc.edu (J.H. Anderson).
0022-0000/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2006.03.001

A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117 1095
Fig. 1. The Pfair windows of the first two jobs (or sixteen subtasks) of a task T with weight 8/11 in a Pfair-scheduled system. During each job
of T , each of the eight units of computation must be allocated processor time during its window, or else a lag-bound violation will result.

Fig. 2. The Pfair windows of the first job of a task T with weight 8/11 are shown. The schedule shown is ERfair, but not Pfair.

subdivided into quantum-length subtasks that must execute within windows of approximately equal lengths: if a sub-
task of a task T executes outside of its window, then T ’s error bounds are exceeded. The length and alignment of
a task’s Pfair windows are determined by its weight, which is defined as the ratio of its per-job execution cost and
period. An example Pfair window layout for a task of weight 8/11 is given in Fig. 1, which is considered in detail
later.

Under Pfair scheduling, if some subtask of a task T executes “early” within its window, then T is ineligible for
execution until the beginning of its next window. This means that scheduling algorithms are necessarily not “work
conserving” when used to schedule periodic tasks. A scheduling algorithm is work conserving if no processor ever
idles unnecessarily. More precisely, if there are M processors, and k uncompleted jobs at time t , then min(k,M)

processors should be busy at time t . Work-conserving algorithms are of interest because their use often results in
lower job response times, especially in lightly-loaded systems. In addition, non-work-conserving algorithms often
entail higher runtime overheads. (Extra bookkeeping must be done to keep track of when a job is and is not eligible.)
In [3], we introduced a work-conserving variant of Pfair scheduling called Early-release fair (ERfair) scheduling.
Under ERfair scheduling, subtasks may be released “early,” i.e., such a subtask may become eligible for execution
before its Pfair window, as illustrated in Fig. 2.

In [4,18], we proposed a further extension of the Pfair task model called the intra-sporadic (IS) model. The sporadic
model generalizes the periodic model by allowing jobs to be released “late,” i.e., the separation between consecutive
job releases of a task is allowed to be more than the task’s period. The IS model generalizes this by allowing subtasks
to be released late, as illustrated in Fig. 3. Early-release behavior is also allowed. As explained later, the IS notion of
a rate is quite similar to that found in the recently-proposed uniprocessor rate-based execution model [14]. In [4], we
presented an algorithm that optimally schedules IS tasks on two processors. However, we left open the problem of
optimally scheduling IS tasks on systems of more than two processors.

1.2. Contributions of this paper

In this paper, we close this problem by showing that the PD2 Pfair algorithm [3,5] correctly schedules any feasible
IS task system on M processors. Because the IS model is a generalization of the sporadic model, our work also shows
that PD2 is optimal for scheduling sporadic tasks on multiprocessors. As periodic task systems represent a “worst-

1096 A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117
Fig. 3. The PF-windows of the first eight subtasks of an IS task T with weight 8/11. Subtask T5 is released three time units late causing all later
subtask releases to be delayed by three time units.

case” scenario in the spectrum of IS (or sporadic) task systems, one may think that the optimality of PD2 follows as
a simple corollary from previous work. However, as explained in detail later, previously-presented proofs for Pfair
and ERfair scheduling algorithms do not easily extend beyond the periodic task model. In this paper, we provide a
new approach for dealing with Pfair- or ERfair-scheduled systems and use it to show that IS tasks can be optimally
scheduled on multiprocessors. Since the presentation of this work as a conference paper [18], this approach has been
used as a basis for proving a number of other results about fair-scheduled multiprocessor systems [2,8,11–13,19,20].
In addition to presenting a fundamentally new proof approach, this paper breaks new ground by being the first to show
that sporadic or IS tasks can be optimally scheduled on systems of more than two processors.

In the rest of this paper, we present needed definitions (Section 2), describe the PD2 algorithm (Section 3), prove
that PD2 optimally schedules IS tasks (Section 4), and then conclude (Section 5). A few technical results are proved
in Appendix A.

2. Definitions

In the following subsections, relevant concepts and terms are defined. We begin with Pfair and ERfair scheduling.

2.1. Pfair and ERfair scheduling

In defining notions relevant to Pfair scheduling, we limit attention (for now) to periodic tasks; we assume that each
such task releases its first job at time 0. A periodic task T with an integer period T .p and an integer per-job execution
cost T .e has a weight wt(T) = T .e/T .p, where 0 < wt(T) � 1. Such a task T is light if wt(T) < 1/2, and heavy
otherwise.

Under Pfair scheduling, processor time is allocated in discrete time units, called quanta; the time interval [t, t + 1),
where t is a nonnegative integer, is called slot t . (Hence, time t refers to the beginning of slot t .) In each slot, each
processor can be allocated to at most one task. A task may be allocated time on different processors, but not in the
same slot (i.e., interprocessor migration is allowed but each task must execute sequentially). The sequence of allocation
decisions over time defines a schedule S. Formally, S : τ × N �→ {0,1}, where τ is a set of tasks and N is the set of
nonnegative integers. S(T , t) = 1 iff T is scheduled in slot t . Thus, in any M-processor schedule,

∑
T ∈τ S(T , t) � M

holds for all t .
The notion of a Pfair schedule is defined by comparing such a schedule to a fluid processor-sharing schedule that

allocates wt(T) processor time to task T in each slot. Deviation from the fluid schedule is formally captured by the
concept of lag. The lag of task T at time t , denoted lag(T , t), is defined as wt(T) · t − ∑t−1

u=0 S(T ,u). A schedule is
Pfair iff

(∀T , t :: −1 < lag(T , t) < 1). (1)

Informally, the allocation error associated with each task must always be less than one quantum.
The lag bounds above have the effect of breaking each task T into an infinite sequence of unit-time subtasks. We

denote the ith subtask of task T as Ti , where i � 1. As in [6], we associate a pseudo-release r(Ti) and pseudo-deadline
d(Ti) with each subtask Ti , as follows (for brevity, we often drop the prefix “pseudo-”):

A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117 1097
r(Ti) =
⌊

i − 1

wt(T)

⌋
, (2)

d(Ti) =
⌈

i

wt(T)

⌉
. (3)

Ti must be scheduled in the interval w(Ti) = [r(Ti), d(Ti)), termed its window, or (1) will be violated. Note that
r(Ti+1) is either d(Ti) − 1 or d(Ti). Thus, consecutive windows of the same task either overlap by one slot or are
disjoint (see Fig. 1). The length of Ti ’s window, denoted |w(Ti)|, is d(Ti)− r(Ti). As an example, consider subtask T2
in Fig. 1. Here, we have r(T2) = 1, d(T2) = 3, and |w(T2)| = 2. Therefore, T2 must be scheduled in either slot 1 or 2.
(If T1 is scheduled in slot 1, then T2 must be scheduled in slot 2.)

The notion of ERfair scheduling [3] is obtained by simply dropping the −1 constraint in (1). With this change,
a subtask can become eligible before its Pfair window. This is illustrated in Fig. 2. Note that any Pfair schedule is
ERfair, but not necessarily vice versa. It is easy to show that, in any Pfair or ERfair schedule, all job deadlines are
met [3].

2.2. The intra-sporadic task model

As noted earlier, the sporadic model generalizes the periodic model by allowing jobs to be released late. The IS
model generalizes this notion further by allowing subtasks to be released late, as illustrated in Fig. 3. More specifically,
the separation between subtask releases r(Ti) and r(Ti+1) is allowed to be more than �i/wt(T)� − �(i − 1)/wt(T)�,
which would be the separation if T were periodic (refer to Eq. (2)). Thus, an IS task is obtained by allowing a task’s
windows to be right-shifted from where they would appear if the task were periodic. Each subtask of an IS task has
an offset that gives the amount by which its window has been right-shifted. The offset of subtask Ti is denoted θ(Ti).
By (2) and (3), we have the following:

r(Ti) = θ(Ti) +
⌊

i − 1

wt(T)

⌋
, (4)

d(Ti) = θ(Ti) +
⌈

i

wt(T)

⌉
. (5)

These offsets are constrained so that the separation between any pair of subtask releases is at least the separation
between those releases if the task were periodic. Formally, the offsets satisfy the following property:

k � i ⇒ θ(Tk) � θ(Ti). (6)

Because � i
wt(T)

� �
 i
wt(T)

� − 1, by (4), r(Ti+1) � θ(Ti+1) +
 i
wt(T)

� − 1. Hence, by (5) and (6), it follows that

r(Ti+1) � d(Ti) − 1. (7)

Each subtask Ti has an additional parameter e(Ti) that specifies the first time slot in which it is eligible to be scheduled.
It is assumed that e(Ti) � r(Ti) and e(Ti) � e(Ti+1) for all i � 1. Allowing e(Ti) to be less than r(Ti) is equivalent
to allowing “early” subtask releases as in ERfair scheduling. (This is not shown in Fig. 3.) We refer to the interval
[r(Ti), d(Ti)) as the PF-window of Ti and the interval [e(Ti), d(Ti)) as its IS-window. Since e(Ti) � r(Ti), a subtask’s
PF-window is contained within its IS-window. Inequality (7) implies that PF-windows of consecutive subtasks of a
task overlap by at most one slot. Henceforth, whenever the term “window” is used without qualification, it is meant to
refer to a task’s “PF-window.”

The validity of a schedule for an IS task system is given by the definition below.

Definition 1. A valid schedule for an IS task system is one that satisfies the following properties:

(i) each subtask is scheduled in its IS-window,
(ii) two subtasks of the same task are not scheduled in the same slot, and

(iii) the number of subtasks scheduled in any slot is at most the number of processors.

Note that the notion of a job is secondary to the notion of a subtask in IS task systems. For systems in which subtasks
are grouped into jobs that are released in sequence, the definition of e would preclude a subtask from becoming

1098 A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117
eligible before the beginning of its job. Using the definitions above, it is easy to show that sporadic and periodic tasks
are special cases of IS tasks. In particular, a sporadic task T is an IS task in which only the first subtask of each job
may be released late, i.e., if Ti and Ti+1 are part of the same job, then θ(Ti) = θ(Ti+1). A periodic task T is an IS task
such that only the very first subtask of each task may be released late, i.e., θ(Ti) = θ(T1) for all i � 1. (In Section 2.1,
we assumed θ(T1) = 0.) Note that, by defining the function e appropriately, we can obtain eligibility intervals (i.e.,
IS-windows) like those in either a Pfair or ERfair system. In fact, we can define eligibility intervals (i.e., IS-windows)
that are longer than in a Pfair system but shorter than in an ERfair system.

In [4], we proved that an IS task system τ has a valid schedule on M processors (i.e., is feasible) iff
∑
T ∈τ

T .e

T .p
� M. (8)

The feasibility proof actually shows that a valid schedule exists in which each subtask is scheduled in its PF-window.
(This fact will be of importance when we consider lags in IS task systems later in Section 4.2.)

2.2.1. Usefulness of the IS task model
Figure 4 illustrates an example server task that reserves a processor share of 2/5 (given by its weight) and re-

ceives client requests requiring two or three units of processor time. As seen in the figure, the IS model allows this
functionality to be modeled easily, so that the server’s request size is decoupled from its service rate.

The IS model also allows the instantaneous rate of subtask releases to differ greatly from the corresponding task’s
average rate (given by its weight). Hence, it is more suitable than the periodic model for several applications in
networking. Examples include web servers that provide quality-of-service guarantees, packet scheduling in networks,
and the scheduling of packet-processing activities in routers [21]. Due to network congestion and other factors, packets
may arrive late or in bursts. The IS model treats these possibilities as first-class concepts and handles them more
seamlessly. In particular, a late packet arrival corresponds to an IS delay. On the other hand, if a packet arrives early
(as part of a bursty sequence), then its eligibility time will be less than its Pfair release time. Note that its Pfair release
time determines its deadline. Thus, in effect, an early packet arrival is handled by postponing its deadline to where it
would have been had the packet arrived on time.

2.2.2. Relation to the RBE task model
In the uniprocessor rate-based execution (RBE) model [14], each task is characterized by four parameters:

(x, y, d, c). A task is expected to release x jobs every y time units; each job has an execution cost of c and a rel-
ative deadline of d . In the IS model, a task with parameters (e,p) is expected to release e subtasks every p time units;
each subtask has an execution cost of one and a relative deadline of approximately p/e. An RBE task may release
more than x jobs every y time units, but the deadlines of jobs released early are postponed in a way that ensures the
system is still feasible. Deadlines of early IS subtasks are similarly postponed using (4) and (5).

Fig. 4. The up arrows corresponds to subtask eligibility times and down arrows correspond to subtask deadlines. The dotted lines are used to
illustrate IS-windows and the bold lines are used to illustrate the PF-windows. A server with weight 2/5 is shown. It receives requests of two units
of processor time at times 0 and 10, and a request of three units of processor time at time 7.

A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117 1099
3. Algorithm PD2

PD2 prioritizes subtasks by their deadlines. Any ties are broken using two tie-break parameters, the “b-bit” (or
“successor bit”), and the “group deadline.” These parameters are defined next.

3.1. The successor bit

The successor bit for a subtask Ti is defined as follows:

b(Ti) =
⌈

i

wt(T)

⌉
−

⌊
i

wt(T)

⌋
. (9)

Thus, b(Ti) is either 0 or 1. In a periodic task system, b(Ti) denotes the number of slots by which Ti+1’s window
overlaps Ti ’s window (see (2) and (3)). For example, in Fig. 1, b(Ti) = 1 for 1 � i � 7 and b(T8) = 0.

3.2. The group deadline

It can be shown that all windows of a heavy task are of length two or three [17] (see Fig. 1). Consider a sequence
Ti, . . . , Tj of subtasks of a heavy task T (without any late releases) such that |w(Tk)| = 2 for all i < k � j , b(Tk) = 1
for all i � k < j , and either b(Tj) = 0 or |w(Tj+1)| = 3 (e.g., T1, T2 or T3, T4, T5 or T6, T7, T8 in Fig. 1). If
any of Ti, . . . , Tj is scheduled in the last slot of its window, then each subsequent subtask in this sequence must be
scheduled in its last slot. In effect, Ti, . . . , Tj must be considered as a single schedulable entity subject to a “group”
deadline. Formally, we define the group deadline for the subtasks Ti, . . . , Tj to be d(Tj) if b(Tj) = 0, and d(Tj)+1 if
|w(Tj+1)| = 3. Intuitively, if we imagine a job of T in which each subtask is scheduled in the first slot of its window,
then the remaining empty slots exactly correspond to the group deadlines of T . For example, in Fig. 1, T has group
deadlines at slots 3, 7, and 10.

We let D(Ti) denote the group deadline of subtask Ti . Formally, if T is heavy, then D(Ti) = (minu:: u � d(Ti)

and u is a group deadline of T). For example, in Fig. 1, D(T1) = 3 and D(T6) = 10. If T is light, then D(Ti) = 0. For
an IS task, the group deadline is defined in the same way, assuming that all the future subtasks are released as early as
possible. In an IS task system, the group deadline of a heavy task can be calculated using the following formula [17]:

D(Ti) = θ(Ti) +
⌈

 i

wt(T)
� × (1 − wt(T))�
1 − wt(T)

⌉
. (10)

Having explained the notion of a group deadline, we can now state the PD2 priority definition.

PD2 priority definition. Subtask Ti ’s priority at slot t is defined to be (d(Ti), b(Ti),D(Ti)), if it is eligible at t .
Priorities are ordered using the following relation:

(d ′, b′,D′) (d, b,D) ≡ [d < d ′] ∨ [
(d = d ′) ∧ (b > b′)

] ∨ [
(d = d ′) ∧ (b = b′) ∧ (D � D′)

]
.

If Ti and Uj are both eligible at t , then Ti ’s priority is at least Uj ’s at t if (d(Ti), b(Ti),D(Ti)) (d(Uj), b(Uj),

D(Uj)).

According to the definition above, Ti has higher priority than Uj if it has an earlier deadline. If Ti and Uj have
equal deadlines, but b(Ti) = 1 and b(Uj) = 0, then the tie is broken in favor of Ti . This is because the window of
Ti may overlap with that of its successor, and hence not scheduling it may reduce the number of slots available for
its successor by one, constraining the future schedule. If Ti and Uj have equal deadlines and b-bits, then their group
deadlines are inspected to break the tie. If one is heavy and the other light, then the tie is broken in favor of the heavy
task (by the definition of the group deadline). If both are heavy and their group deadlines differ, then the tie is broken
in favor of the one with the later group deadline. Note that the subtask with the later group deadline can force a longer
cascade of scheduling decisions in the future. Thus, choosing to schedule such a subtask early places fewer constraints
on the future schedule. Any ties not resolved by PD2 can be broken arbitrarily.

1100 A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117
Fig. 5. The PF-windows of the first eight subtasks of a GIS task T with weight 8/11. Subtask T3 is missing and T5 is released three time units late.
(Because T3 is missing, this is not an IS task.)

4. Proof of optimality of PD2

In our proof, we consider task systems obtained by removing subtasks from an IS task system. Note that such a
task system may no longer be an IS task system (see Fig. 5). To circumvent this problem, we define a more general
model called the generalized IS (GIS) task model, and show that PD2 can optimally schedule task systems that belong
to this model. In a GIS task system, a task T , after releasing subtask Ti , may release subtask Tk , where k > i + 1,
instead of Ti+1, with the following restriction: r(Tk) − r(Ti) is at least � k−1

wt(T)
� − � i−1

wt(T)
�. In other words, r(Tk) (and

hence, d(Tk)) is not smaller than what it would have been if Ti+1, Ti+2, . . . , Tk−1 were present and released as early
as possible. For the special case where Tk is the first subtask released by T , r(Tk) is at least � k−1

wt(T)
�.

Thus, the GIS model generalizes the IS model by allowing subtasks to be absent. It follows that for every GIS task
system τ , there exists an IS task system τ ′ such that τ can be obtained by simply removing certain subtasks in τ ′.
Hence, if there exists a schedule for τ ′ in which no deadline is missed, then that schedule can be easily modified (by
removing subtasks) to obtain a schedule for τ . Therefore, expression (8) is a feasibility condition for GIS task systems
as well.

Note that subtask indices for a GIS task are assigned to reflect the missing subtasks. For example, task T in Fig. 5
releases subtask T4 after releasing T2; T3 is missing and θ(T4) = 0. Hence, the formulae for subtask release times
and deadlines of a GIS task are as in (4) and (5). Further, the formulae for the b-bit and group deadlines are also as
defined in (9) and (10). This implies that the PD2 priority definition of a subtask of a GIS task is the same as for the
corresponding IS task.

Terminology

An instance of a task system is obtained by specifying a unique assignment of release times and eligibility times
for each subtask, subject to (6). Note that the deadline of a subtask is automatically determined once its release time is
fixed (refer to (4) and (5)). If a task T , after executing subtask Ti , releases subtask Tk , then Tk is called the successor
of Ti and Ti is called the predecessor of Tk (e.g., T4 is T2’s successor in Fig. 5). The following property is used in our
proofs.

Claim 1. If subtask Tk is the successor of subtask Ti , then r(Tk) � d(Ti) − 1.

Proof. Note that
 i
wt(T)

� � � i
wt(T)

� + 1. Because k � i + 1, � k−1
wt(T)

� � � i
wt(T)

�. Therefore, � k−1
wt(T)

� �
 i
wt(T)

� − 1.

By (6), θ(Tk) � θ(Ti). Therefore, θ(Tk) + � k−1
wt(T)

� � θ(Ti) +
 i
wt(T)

� − 1. By (4) and (5), this implies that r(Tk) �
d(Ti) − 1. �
4.1. Displacements

By definition, the removal of a subtask from one instance of a GIS task system results in another valid instance.
Let X(i) denote a subtask of any task in a GIS task system τ . Let S denote a schedule of τ obtained by any scheduling
algorithm (such as PD2) that schedules on an earliest-pseudo-deadline-first (EPDF) basis. Assume that removing X(1),
scheduled in slot t1 in S, causes X(2) to shift from slot t2 to t1, where t1 �= t2, which in turn may cause other shifts. We

A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117 1101
Fig. 6. A chain of four displacements, caused by removing X(1) , which was scheduled in slot t1.

call this shift a displacement and represent it by a four-tuple 〈X(1), t1,X
(2), t2〉. A displacement 〈X(1), t1,X

(2), t2〉 is
valid iff e(X(2)) � t1. Because there can be a cascade of shifts, we may have a chain of displacements, as illustrated
in Fig. 6.

Removing a subtask may also lead to slots in which some processors are idle. If k processors are idle in slot t ,
then we say that there are k holes in slot t . Note that holes may exist because of late subtask releases, even if the total
utilization is M .

The lemmas below concern displacements and holes. Lemma 1 states that a subtask removal can only cause left-
shifts, as in Fig. 6. Lemma 2 indicates when a left-shift into a slot with a hole can occur. Lemma 3 shows that shifts
across a hole cannot occur. Here, τ is an instance of a GIS task system and S denotes a schedule for τ obtained by a
greedy EPDF-based scheduling algorithm. Throughout this section, we assume that ties among subtasks are resolved
consistently, i.e., if τ ′ is obtained from τ by a subtask removal, then the relative priorities of two subtasks in τ ′ are the
same as in τ .

Lemma 1. Let X(1) be a subtask that is removed from τ , and let the resulting chain of displacements in S be C =
Δ1,Δ2, . . . ,Δk , where Δi = 〈X(i), ti ,X

(i+1), ti+1〉. Then, ti+1 > ti for all i ∈ {1, . . . , k}.
Proof. Let τ ′ be the task system instance obtained by removing X(1) from τ , and let S′ be its PD2 schedule. Note that
the last displacement creates a hole at tk+1 in S′. Suppose ti+1 � ti for some i ∈ {1, . . . , k}. Let

tj = min{ti | ti+1 < ti ∧ 1 � i � k}.
(Informally, the leftmost right-shift occurs when X(j+1) scheduled at tj+1 shifts to tj .) We consider two cases de-
pending on whether j is equal to k.

If j = k, then the last displacement is as shown in Fig. 7(a). Note that X(k+1) is eligible to be scheduled in slot
tk+1 in S′, because it is scheduled there in S and no subtask (in particular, its predecessor) scheduled before tk+1 is
shifted to tk+1 (by the choice of j). Because there is a hole in slot tk+1 in S′ and tk+1 < tk , this contradicts the greedy
behavior of the scheduling algorithm.

If j < k, then by our choice of j , tj+1 < tj and the displacements are as in Fig. 7(b). By the minimality of tj ,
tj+2 > tj+1. Thus, at tj+1, X(j+1) is chosen over X(j+2) in S. After the displacements, X(j+1) is scheduled at tj and
X(j+2) at tj+1(< tj). This contradicts our assumption that ties are broken consistently in S and S′. Hence, ti+1 > ti
for all i ∈ {1, . . . , k}. �
Lemma 2. Let Δ = 〈X(1), t1,X

(2), t2〉 be a valid displacement in S. If t1 < t2 and there is a hole in slot t1 in S, then
X(2) is the successor of X(1).

Proof. Because Δ is valid, e(X(2)) � t1. Since there is a hole in slot t1 and X(2) is not scheduled there in S, X(2) is
the successor of X(1). �

1102 A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117
(a) (b)

Fig. 7. Lemma 1. A chain of k = 4 displacements is shown. (a) The leftmost right shift occurs when X(5) shifts from t5 to t4, i.e., j = k. (b) The
leftmost right shift occurs when X(4) shifts from t4 to t3, i.e., j < k (here, tj = t3, tj+1 = t4, and tj+2 = t5).

Lemma 3. Let Δ = 〈X(1), t1,X
(2), t2〉 be a valid displacement in S. If t1 < t2 and there is a hole in slot t ′ such that

t1 � t ′ < t2 in that schedule, then t ′ = t1 and X(2) is the successor of X(1).

Proof. Because Δ is valid, e(X(2)) � t1. If t1 < t ′, then e(X(2)) < t ′, implying that X(2) is not scheduled in slot
t2 > t ′, as assumed, since there is a hole in t ′. Thus, t1 = t ′; by Lemma 2, X(2) is the successor of X(1). �
4.2. Flows and lags in GIS task systems

The lag of an IS or GIS task at time t can be defined in the same way as it is defined for periodic tasks. Let
ideal(T , t) denote the share that T receives in a fluid schedule in [0, t). Then,

lag(T , t) = ideal(T , t) −
t−1∑
u=0

S(T ,u). (11)

For a periodic task that begins execution at time 0, ideal(T , t) = (T .e/T .p)t . To define ideal(T , t) for an IS or GIS
task, we consider the feasibility proof given in [4]. There, a valid schedule is shown to exist by constructing a flow
network with a certain real-valued flow. ideal(T , t) is defined based on this flow:

ideal(T , t) =
t−1∑
u=0

flow(T ,u). (12)

Here, flow(T ,u) is the flow (or share) assigned to task T in slot u. We formally define flow(T ,u) below. For moti-
vation, consider a task of weight 5/16. In any valid schedule, each subtask of this task receives a share of one unit
processor time over its IS-window. In the ideal system, each subtask gets a share of 5/16 in each slot of its PF-window,
except maybe the first and last slots of the window. This is illustrated in Fig. 8. Inset (a) shows the shares assigned in
each slot of the PF-window for a periodic task of weight 5/16, and inset (b) shows the shares in each slot for an IS
task of weight 5/16 in which some subtasks are released late. Note that the shares for each subtask sum to one (e.g.,
5/16 + 5/16 + 5/16 + 1/16 = 1 for the first subtask). Also, note that the share in each slot is at most 5/16, the weight
of the task. For the periodic task, the share in each slot is exactly 5/16, whereas for the IS task, it may be less (see
slot 3 in inset (b)). In the flow network, each subtask has flows corresponding to these shares.

Formally, flow(T ,u) is defined in terms of a function f , which indicates the share assigned to each subtask Ti in
each slot u. The function f is defined as follows:

f (Ti, u) =

⎧⎪⎪⎨
⎪⎪⎩

(� i−1
wt(T)

� + 1) · wt(T) − (i − 1), u = r(Ti),

i − (
 i
wt(T)

� − 1) · wt(T), u = d(Ti) − 1,

wt(T), r(Ti) + 1 � u � d(Ti) − 2,

0, otherwise.

(13)

For example, consider the last slot of the second subtask in Fig. 8(b) and also the first slot of the third subtask.
f (T2, d(T2)) = f (T2,8), which by (13) equals 2 − (
 2 � − 1) · (5/16) = 2/16, as shown in Fig. 8. Similarly,
5/16

A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117 1103
(a) (b)

Fig. 8. Fluid schedule for a task T of weight 5/16. The share of each subtask in the slots of its window is shown. In (a), no subtask is released late;
in (b), T2 and T5 are released late. Note that flow(T ,3) is either 5/16 or 1/16 depending on when subtask T2 is released.

f (T3, r(T3)) = f (T3,8), which by (13) equals (� 2
5/16� + 1) · (5/16) − (3 − 1) = 3/16. Note that these two flows sum

to 5/16, the weight of the task.
The function flow(T ,u) is defined as flow(T ,u) = ∑

i f (Ti, u). The following properties about flows are used in
our proof. (We only prove (F1) here to give a flavor of the proof technique used. The other properties are proved in
Appendix A.)

(F1) For all time slots t , flow(T , t) � wt(T).

Proof. We first show that f (Ti, t) � wt(T). This follows directly from (13) if t /∈ {r(Ti), d(Ti) − 1)}. If t = r(Ti),
then

f (Ti) =
(⌊

i − 1

wt(T)

⌋
+ 1

)
× wt(T) − (i − 1) by (13)

�
(

i − 1

wt(T)
+ 1

)
× wt(T) − (i − 1) �x� � x

= wt(T) by simplification.

If t = d(Ti) − 1, then

f (Ti) = i −
(⌈

i

wt(T)

⌉
− 1

)
× wt(T) by (13)

� i −
(

i

wt(T)
− 1

)
× wt(T)
x� � x

= wt(T) by simplification.

We now only need to consider the time slot in which two consecutive PF-windows overlap. That is the case
when d(Ti) − 1 = r(Ti+1) for some i. In this case, the total flow is f (Ti, d(Ti) − 1) + f (Ti+1, r(Ti+1)). Thus,
flow(T , d(Ti) − 1) is i − (
 i

wt(T)
� − 1) × wt(T) + (� i

wt(T)
� + 1) × wt(T) − i, which simplifies to (� i

wt(T)
� −

 i
wt(T)

� + 2) × wt(T). Since d(Ti) − 1 = r(Ti+1), by (4) and (5), it follows that θ(Ti) = θ(Ti+1) and
 i
wt(T)

� − 1 =
� i

wt(T)
�. Therefore, � i

wt(T)
� −
 i

wt(T)
� = −1. Hence, flow(T , d(Ti) − 1) = wt(T). Thus, in all cases, we have

flow(T , t) � wt(T). �
(F2) Let Ti be a subtask of a GIS task and let Tk be its successor. If b(Ti) = 1 and r(Tk) � d(Ti), then

flow(T , d(Ti)− 1)+ flow(T , d(Ti)) � wt(T). (For example, in Fig. 8(b), flow(T ,3)+ flow(T ,4) = 1/16 < 5/16
and flow(T ,14) + flow(T ,15) = 5/16.)

(F3) Let Ti be a subtask of a heavy GIS task T such that b(Ti) = 1 and let Tk be the successor of Ti . If
u ∈ {d(Ti), . . . ,D(Ti) − 1} and u � r(Tk), then flow(T , d(Ti)) + flow(T ,u) � wt(T). (This is an extension
of (F2) to heavy tasks.)

1104 A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117
From (11) and (12), we get

lag(T , t + 1) =
t∑

u=0

(
flow(T ,u) − S(T ,u)

) = lag(T , t) + flow(T , t) − S(T , t). (14)

Similar to the notion of lag for tasks, we can define the total lag of a task system. The total lag for a schedule S and
task system τ at time t + 1, denoted by LAG(τ, t + 1), is defined as follows:

LAG(τ, t + 1) = LAG(τ, t) +
∑
T ∈τ

(
flow(T , t) − S(T , t)

)
. (15)

LAG(τ,0) is defined to be 0. Note that the definitions of lag and LAG do not make any assumptions about the validity
of the corresponding schedule. The lemma below is used in later proofs.

Lemma 4. If LAG(τ, t) < LAG(τ, t + 1), then there is a hole in slot t .

Proof. Let k be the number of subtasks scheduled in slot t . Then, by (15), LAG(τ, t + 1) = LAG(τ, t) +∑
T ∈τ flow(T , t)− k. If LAG(τ, t) < LAG(τ, t + 1), then k <

∑
T ∈τ flow(T , t). Because flow(T , t) � wt(T) (by (F1)),

we have
∑

T ∈τ flow(T , t) �
∑

T ∈τ wt(T), which by (8) implies that
∑

T ∈τ flow(T , t) � M . Therefore, k < M , i.e.,
there is a hole in slot t . �
4.3. Necessity of new proof techniques for IS task systems

Because periodic job releases represent a “worst-case” scenario for an IS task, one may think that the optimality of
PD2 for IS tasks follows as a simple corollary from previous work. One proof technique that has been used in prior
work is a “swapping” argument wherein an arbitrary schedule is systematically converted to one in accordance with
PD2 by swapping subtasks that violate the PD2 priority definition [5]. To ensure that multiple subtasks of the same
task are not scheduled at the same time, needed valid swappings may involve many subtasks of many tasks. To do
this correctly, it is crucial that at any moment of time, future window alignments can be predicted. However, such
predictions cannot be made for IS task systems.

Another approach that has been often used with uniprocessor scheduling algorithms is to reduce sporadic systems
to periodic systems in the following way. Consider a scheduling algorithm A that has been shown to be correct for
periodic tasks. Suppose that there exists a feasible sporadic task system τ that misses a deadline at some time td when
scheduled using A. Let S be the corresponding schedule. We may assume that all jobs in S after td are released in
a periodic fashion, because such jobs have no impact on the deadline miss at time td . Now, if we inductively “right-
shift” all jobs released before time td in S until there are no sporadic separations among jobs before td , then we get
a schedule S′ that is in accordance with the periodic task model (see Fig. 9(a)). Moreover, “right-shifting” such jobs
in S can only increase demand near time td . Thus, a deadline is missed at time td , a contradiction.

To see why this argument cannot be applied in Pfair-scheduled multiprocessor systems, consider the situation
shown in Fig. 9(b). Here, subtask Ti is right-shifted into slot t . Before the shift, subtask Uj was scheduled at t and
some processor was idle at t . After the shift, Uj has higher priority than Ti , so the two are swapped in the schedule
as a result of shifting Ti . Note that Uj being scheduled at t makes Uj+1 ineligible at t . However, after Ti and Uj are
swapped, Uj+1 is eligible at t and thus it may left-shift into slot t . This may cause a cascade of other left-shifts, which
in turn can cause a presumed (future) missed deadline to be met. The root of the problem here is that right-shifting
certain subtasks may in fact reduce demand in the future.

In the next subsection, we present a novel lag-based proof to establish the optimality of PD2 for IS task systems.

4.4. Correctness proof

We now show that PD2 correctly schedules any GIS task system. In particular, we prove that the following assump-
tion leads to a contradiction: PD2 misses a deadline for some feasible GIS task system. This assumption implies the
existence of a time td and an instance of a task system τ as given by Definitions 2 and 3.

Definition 2. td is the earliest time at which any task system instance misses a deadline under PD2.

A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117 1105
(a) (b)

Fig. 9. The following notation is used in this figure. A right arrow over a window corresponds to a right-shift of that window. A “dashed” window
is used to depict the window’s new position after the shift. Subtasks are denoted by rectangles. An arrow over a subtask indicates the direction it is
displaced as a result of a shift. Such a subtask’s new position is indicated by a corresponding “dashed” rectangle. (a) Starting with a sporadic task
set that misses a deadline at td , we can right-shift all windows towards td . Intuitively, we should get a periodic task system that misses a deadline
at td . (b) Unfortunately, right-shifting a window need not increase future demand. Here, shifting Ti to the right by two slots decreases its priority
and hence subtask Uj , which was scheduled later at time t in the original schedule, may now have higher priority. Note that at time t , a processor
might be idle, in which case Uj+1 can now be scheduled in that slot. This can cause a cascade of future left-shifts. Thus, right-shifting a window
can in fact decrease future demand.

Definition 3. τ is an instance of a task system with the following properties.

(T1) τ misses a deadline under PD2 at td .
(T2) No instance of any task system that satisfies (T1) releases fewer subtasks in [0, td) than τ .
(T3) No instance of any task system that satisfies both (T1) and (T2) has a larger rank than τ , where the rank of an

instance is the sum of the eligibility times of all subtasks with deadlines at most td .

Existence of τ follows from the fact that (T1)–(T3) are applied in sequence; e.g., τ is not claimed to be of maximal
rank—rather, its rank is maximal among those task system instances satisfying (T1) and (T2).

By (T1), (T2), and Definition 2, exactly one subtask in τ misses its deadline: if several subtasks miss their deadlines,
all but one can be removed and the remaining subtask still misses its deadline, contradicting (T2).

In the rest of this proof, we use S to denote the PD2 schedule of τ . We now prove several properties about τ and S.

Lemma 5. The following properties hold for τ and S.

(a) For all subtasks Ti in τ , e(Ti) � min(r(Ti), t), where t is the time at which Ti is scheduled in S. (Because
e(Ti) � r(Ti) and e(Ti) � t , this property actually implies e(Ti) = min(r(Ti), t).)

(b) Let t be the time at which Ti is scheduled and let Tk be Ti ’s successor. If either d(Ti) > t + 1 or d(Ti) =
t + 1 ∧ b(Ti) = 0, then Tk is not eligible before t + 1.

(c) For all Ti , d(Ti) � td .
(d) There are no holes in slot td − 1.
(e) LAG(τ, td) = 1.
(f) LAG(τ, td − 1) � 1.

Proof. Below, we prove each property separately.

Proof of (a). Suppose that e(Ti) < min(r(Ti), t). Consider the task system instance τ ′ obtained from τ by changing
e(Ti) to min(r(Ti), t). Note that e(Ti) is still at most r(Ti) and τ ′’s rank is larger than τ ’s. τ ′ is feasible because the
feasibility proof produces a schedule in which each subtask is scheduled in its PF-window (refer to Section 2.2).

Since PD2 priorities do not depend on eligibility times, it is easy to see that the relative priorities of the subtasks do
not change for any slot u ∈ {0, . . . , td − 1}. Hence, τ ′ and τ have identical PD2 schedules. Thus, τ ′ misses a deadline
at td , contradicting (T3).

1106 A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117
Proof of (b). By Claim 1, r(Tk) � d(Ti) − 1. Therefore, if d(Ti) > t + 1 or r(Tk) � d(Ti+1), then r(Tk) � t + 1.
Further, since Ti is scheduled in [t, t + 1), Tk is scheduled at or after time t + 1. Therefore, by part (a), e(Tk) � t + 1.

We now consider the case when d(Ti) = t +1. Since b(Ti) = 0, by (9), it follows that � i
wt(T)

� =
 i
wt(T)

�. Therefore,
by (4)–(6), r(Ti+1) � d(Ti). Therefore, r(Tj) � t + 1, for all j > i. In particular, r(Tk) � t + 1, where Tk is Ti ’s
successor. As before, by part (a), it follows that e(Tk) � t + 1.

Proof of (c). Suppose τ contains a subtask Uj with a deadline greater than td . Since S is obtained using an EPDF-
based scheduling algorithm, Uj can be removed without affecting the scheduling of higher-priority subtasks with
earlier deadlines. Thus, a deadline is still missed at td after Uj ’s removal. This contradicts (T2).

Proof of (d). Let Uj be the subtask that misses its deadline at td in S. (Recall that there is only one such subtask.)
Because d(Uj) = td , d(Uk) � td − 1, where Uk is Uj ’s predecessor (if it exists). By the minimality of td , Uk meets
its deadline and hence is scheduled before td − 1. Thus, if there is a hole in slot td − 1, then Uj is scheduled there, in
which case it meets its deadline. Contradiction.

Proof of (e). By (15), we have

LAG(τ, td) =
td−1∑
t=0

∑
T ∈τ

flow(T , t) −
td−1∑
t=0

∑
T ∈τ

S(T , t).

The first term on the right-hand side of the above equation is the total share in [0, td), which equals the total number
of subtasks in τ . The second term equals the number of subtasks scheduled in S over the interval [0, td). Since exactly
one subtask misses its deadline in S, the difference between these two terms is 1, i.e., LAG(τ, td) = 1.

Proof of (f). By (d), there are no holes in slot td − 1. Hence, by Lemma 4, LAG(τ, td − 1) � LAG(τ, td). Therefore,
by (e), LAG(τ, td − 1) � 1. �

Because LAG(τ,0) = 0, by part (f) of Lemma 5, there exists a time t (< td − 1) such that LAG(τ, t) < 1 and
LAG(τ, t + 1) � 1. Without loss of generality, let t be the latest such time. Thus, we have the following:

0 � t < td − 1 ∧ (
LAG(τ, t) < 1

) ∧ (
LAG(τ, t + 1) � 1

) ∧ (
u ∈ [t + 1, td] ⇒ LAG(τ, u) � 1

)
. (16)

(Note that the last inequality partly follows from parts (e) and (f) of Lemma 5.) We now show that such a t cannot
exist, thus contradicting our starting assumption that td and τ exist.

By (16), we have

LAG(τ, t) < LAG(τ, t + 1). (17)

Hence, by Lemma 4, there is at least one hole in slot t . We now group the tasks into sets A, B , and I (depending on
how their subtask releases occur around time t).

(1) A denotes the set of tasks that are scheduled in slot t .
(2) B denotes the set of tasks not in A that are “active” at t . A task U is said to be active at time t if it has a subtask

Uj such that e(Uj) � t < d(Uj). (A task may be inactive because of a late subtask release.)
(3) I denotes the set of the remaining tasks that are not active at time t .

Figure 10 shows how the tasks in A, B , and I are scheduled. Of these three sets, set B is the most interesting. As we
show below, every task in B must have an IS separation in slot t . We use this to prove that LAG reduces below one
before time td .

We now prove several properties of set B , and we start by showing that B is nonempty.

Lemma 6. |B| > 1.

Proof. Let the number of the holes in slot t be h. Then,
∑

T ∈τ S(T , t) = M −h. By (15), LAG(τ, t + 1) = LAG(τ, t)+∑
T ∈τ (flow(T , t) − S(T , t)). Thus, because LAG(τ, t) < LAG(τ, t + 1), we have

∑
T ∈τ flow(T , t) > M − h.

For every V ∈ I , since either d(Vk) < t or r(Vk) > t holds, by (13), flow(V , t) = 0. It follows that∑
flow(T , t) > M − h. Thus, by (F1),

∑
wt(T) > M − h.
T ∈A∪B T ∈A∪B

A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117 1107
Fig. 10. Sets A, B , and I . The PF-windows of a sample task of each set are shown. The PF-windows are denoted by line segments. An arrow over
a release (respectively, deadline) indicates that the release (respectively, deadline) could be anywhere in the direction of the arrow.

Because the number of tasks scheduled in slot t is M − h, |A| = M − h. Because wt(T) � 1 for any task T ,∑
T ∈A wt(T) � M − h. Thus,

∑
T ∈B wt(T) > 0. Hence, B is not empty. �

In the proofs of Lemmas 7, 8, and 10, we use the following technique to prove the required result: if the required
condition is not satisfied, then a subtask can be removed without causing the missed deadline at td to be met, thus
contradicting (T2).

Lemma 7. Suppose there is a hole in slot u ∈ {0, . . . , td − 1}. Let U be a task that is not scheduled in slot u, but
is active at u. Further, let Uj be the subtask with the largest index such that e(Uj) � u < d(Uj). Then, d(Uj) =
u + 1 ∧ b(Uj) = 1.

Proof. Because there is a hole in slot u and no subtask of U is scheduled at time u, and because e(Uj) � t < d(Uj),
Uj is scheduled before time u. Because u < td , by Definition 2, Uj meets its deadline. From the lemma statement, we
have d(Uj) � u + 1. Suppose that the following holds:

d(Uj) > u + 1 or d(Uj) = u + 1 ∧ b(Uj) = 0. (18)

Under these assumptions, we show that Uj can be removed and a deadline is still missed at td , contradicting (T2).
Let the chain of displacements caused by removing Uj be Δ1,Δ2, . . . ,Δk , where Δi = 〈X(i), ti ,X

(i+1), ti+1〉 and
X(1) = Uj . By Lemma 1, ti+1 > ti for 1 � i � k.

Note that at slot ti , the priority of subtask X(i) is at least that of X(i+1), because X(i) was chosen over X(i+1)

in S. Thus, because X(1) = Uj , by (18), for each subtask X(i),1 � i � k + 1, either d(X(i)) > u + 1 or d(X(i)) =
u + 1 ∧ b(X(i)) = 0. Therefore, by part (b) of Lemma 5, the following property holds.

(E) The eligibility time of the successor of X(i) (if it exists in τ) is at least u + 1 for all i ∈ {1, . . . , k + 1}.

We now show that the displacements do not extend beyond slot u. Assume, to the contrary, that tk+1 > u. Consider
h ∈ {2, . . . , k + 1} such that th > u and th−1 � u, as depicted in Fig. 11(a). Such an h exists because t1 < u < tk+1.
Because there is a hole in slot u and th−1 � u < th, by Lemma 3, th−1 = u and X(h) must be X(h−1)’s successor.
Therefore, by (E), e(X(h)) � u + 1. This implies that Δh−1 is not valid.

Thus, the displacements do not extend beyond slot u, implying that no subtask scheduled after u is left-shifted.
Hence, a deadline is still missed at time td , contradicting (T2). Therefore, we have d(Uj) = u + 1 ∧ b(Uj) = 1. �

The following corollary directly follows by applying Lemma 7 to slot t and tasks in set B .

Corollary 1. Let U be any task in B . Let Uj be the subtask with the largest index such that e(Uj) � t < d(Uj). Then,
d(Uj) = t + 1 ∧ b(Uj) = 1.

We now consider two separate cases depending on whether B contains a light task.

1108 A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117
(a) (b)

Fig. 11. (a) Lemma 7. IS-windows are denoted by line segments. X(h) must be the successor of X(h−1) because there is a hole in slot u.
(b) Lemma 8. If there is a hole in both slots t and t + 1, then X(h−2) and X(h−1) must be scheduled at t and t + 1 in S, respectively. Also,
X(h) must be the successor of X(h−1), which in turn, must be the successor of X(h−2).

4.4.1. At least one task in B is light
The following property (proved in Appendix A) is used in the proof of Lemma 8.

(L) For a light task T , if Tk is the successor of Ti , then d(Tk) � d(Ti) + 2.

Lemma 8. If B has at least one light task, then there is no hole in slot t + 1.

Proof. By (16), t < td − 1, and therefore, t + 1 � td − 1. Suppose that there is a hole in slot t + 1. By part (d) of
Lemma 5, t + 1 < td − 1, i.e.,

t + 2 � td − 1. (19)

Let U be a light task in B and let Uj be the subtask of U with the largest index such that e(Uj) � t < d(Uj).
Our approach is the same as in the proof of Lemma 7. Let the chain of displacements caused by removing Uj be
Δ1,Δ2, . . . ,Δk , where Δi = 〈X(i), ti , X(i+1), ti+1〉 and X(1) = Uj . By Lemma 1, we have ti+1 > ti for all i ∈ [1, k].
Also, the priority of X(i) is at least that of X(i+1) at ti , because X(i) was chosen over X(i+1) in S. Because U is light
and d(Uj) = t + 1 ∧ b(Uj) = 1 (by Corollary 1), this implies the following:

(P) For all i ∈ {1, . . . , k + 1}, either (i) d(X(i)) > t + 1 or (ii) d(X(i)) = t + 1 and X(i) is the subtask of a light task.

Suppose the chain of displacements extends beyond t + 1, i.e., tk+1 > t + 1. Consider h ∈ {1, . . . , k + 1} such that
th > t + 1 and th−1 � t + 1. Because there is a hole in slot t + 1 and th−1 � t + 1 < th, by Lemma 3, th−1 = t + 1
and X(h) is the successor of X(h−1). Similarly, because there is a hole in slot t , th−2 = t and X(h−1) is the successor
of X(h−2). This is illustrated in Fig. 11(b).

By (P), either d(X(h−2)) > t + 1 or d(X(h−2)) = t + 1 and X(h−2) is the subtask of a light task. In either case,
d(X(h−1)) > t + 2. To see why, note that if d(X(h−2)) > t + 1, then because X(h−1) is the successor of X(h−2), by (5),
d(X(h−1)) > t + 2. On the other hand, if d(X(h−2)) = t + 1 and X(h−2) is the subtask of a light task, then, by (L),
d(X(h−1)) > t + 2.

Now, because X(h−1) is scheduled at t +1, and d(X(h−1)) > t +2, by part (b) of Lemma 5, the successor of X(h−1)

is not eligible before t + 2, i.e., e(X(h)) � t + 2. This implies that the displacement Δh−1 is not valid. Thus, the chain
of displacements cannot extend beyond time t + 2. Hence, because t + 2 � td − 1 (by (19)), removing Uj cannot
cause a missed deadline at td to be met. This contradicts (T2). Hence, there is no hole in slot t + 1. �
Lemma 9. If B has at least one light task, then LAG(τ, t + 2) < 1.

Proof. Let the number of holes in slot t be h. We now derive some properties about the flow values in slots t and
t + 1.

A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117 1109
By the definition of I , only tasks in A ∪ B are active at time t . Therefore,
∑

T ∈τ flow(T , t) = ∑
T ∈A∪B flow(T , t).

Since wt(T) � 1 for any T , we have
∑

T ∈A wt(T) � |A|. Thus, by (F1),
∑

T ∈A flow(T , t) � |A|. Now, because there
are h holes in slot t , M − h tasks are scheduled at t , i.e., |A| = M − h. Thus,

∑
T ∈A flow(T , t) � M − h and∑

T ∈τ

flow(T , t) � M − h +
∑
T ∈B

flow(T , t). (20)

Consider U ∈ B . Let Uj be the subtask of U with the largest index such that e(Uj) � t < d(Uj). Let C denote the
set of such subtasks for all tasks in B . Then, by Corollary 1,

for all Uj ∈ C, d(Uj) = t + 1 ∧ b(Uj) = 1. (21)

Let A′ denote the tasks in A that are active at time t + 1. Similarly, let I ′ denote the tasks in I that are active at
time t + 1. Then, the set of active tasks at time t + 1 is A′ ∪ I ′ ∪ B . Thus, because τ is feasible,∑

T ∈A′∪I ′∪B

wt(T) � M. (22)

Also,
∑

T ∈τ flow(T , t + 1) = ∑
T ∈A′∪I ′∪B flow(T , t + 1). By (F1), this implies that

∑
T ∈τ flow(T , t + 1) �∑

T ∈A′∪I ′ wt(T) + ∑
T ∈B flow(T , t + 1). Thus, by (20),∑

T ∈τ

(
flow(T , t) + flow(T , t + 1)

)
� M − h +

∑
T ∈A′∪I ′

wt(T) +
∑
T ∈B

(
flow(T , t) + flow(T , t + 1)

)
. (23)

Consider Uj ∈ C (hence, U ∈ B). Let Uk denote the successor of Uj . Since Uj is the subtask with the largest
index such that e(Uj) � t < d(Uj), we have e(Uk) � t + 1. Hence, by Lemma 5(a), r(Uk) � t + 1. By (21), we have
d(Uj) = t + 1 and b(Uj) = 1. Therefore, by (F2), flow(U, t) + flow(U, t + 1) � wt(U) for each U ∈ B . By (23), this
implies that

∑
T ∈τ (flow(T , t) + flow(T , t + 1)) � M − h + ∑

T ∈A′∪I ′∪B wt(T). Thus, from (22), it follows that∑
T ∈τ

(
flow(T , t) + flow(T , t + 1)

)
� M − h + M. (24)

By the statement of the lemma, B contains at least one light task. Therefore, by Lemma 8, there is no hole in slot
t + 1. Since there are h holes in slot t , we have

∑
T ∈τ (S(T , t) + S(T , t + 1)) = M − h + M .

Hence, by (24),
∑

T ∈τ (flow(T , t) + flow(T , t + 1)) �
∑

T ∈τ (S(T , t) + S(T , t + 1)). Using this relation in the
identity (obtained from (15)), LAG(τ, t + 2) = LAG(τ, t) + ∑

T ∈τ (flow(T , t) + flow(T , t + 1)) − ∑
T ∈τ (S(T , t) +

S(T , t + 1)), and the fact that LAG(τ, t) < 1, we obtain LAG(τ, t + 2) < 1. �
4.4.2. All tasks in B are heavy

We now extend Lemmas 8 and 9 to the case in which B consists solely of heavy tasks. The following lemma is the
counterpart of Lemma 8.

Lemma 10. Let U be a heavy task in B and let Uj be the subtask of U with the largest index such that e(Uj) � t <

d(Uj). Then, there exists a slot with no holes in [d(Uj),min(D(Uj), td)).

Proof. By Corollary 1, d(Uj) = t + 1 ∧ b(Uj) = 1. By (16), t < td − 1. Therefore d(Uj) � td − 1. If
min(D(Uj), td) = td , then by part (f) of Lemma 5, slot td − 1 satisfies the stated requirement. In the rest of the
proof, assume that D(Uj) < td . Let v = D(Uj). Since b(Uj) = 1, by the definition of D, D(Uj) > d(Uj), i.e.,

t + 1 < v. (25)

Suppose that the following property holds:

(H) There is a hole in slot u for all u ∈ {t, . . . , v − 1}.

Given (H), we show that removing Uj does not cause the missed deadline to be met, contradicting (T2). Let
Δ1,Δ2, . . . ,Δk be the chain of displacements caused by removing Uj , where Δi = 〈X(i), ti ,X

(i+1), ti+1〉, X(1) = Uj ,
and t1 is the slot in which Uj is scheduled. By Lemma 1, ti+1 > ti for all i ∈ {1, . . . , k − 1}. Also, the priority
of X(i) is at least that of X(i+1) at ti , because X(i) was chosen over X(i+1) at ti in S. Thus, by Corollary 1, for all
i ∈ {2, . . . , k + 1}, one of the following holds:

1110 A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117
(a) d(X(i)) > t + 1,
(b) d(X(i)) = t + 1 ∧ b(X(i)) = 0, or
(c) d(X(i)) = t + 1 ∧ b(X(i)) = 1 ∧ D(X(i)) � v.

We now show that the displacements do not extend beyond slot v − 1 (which implies that Uj can be removed
without causing the missed deadline to be met). Suppose, to the contrary, they do extend beyond slot v − 1, i.e.,
tk+1 > v − 1.

Let tg be the largest ti such that ti < t and let th be the smallest ti such that ti > v − 1. (Note that such a tg exists
because t1 < t .) Then, by (H), there are holes in all slots in [tg+1, th−1]. Thus, by Lemma 3,

for all i ∈ [g + 1, h − 1], X(i+1) is the successor of X(i). (26)

Note that since Δi is valid, we have e(X(i+1)) � ti . Hence, for any i ∈ {g + 1, . . . , h − 2}, since there are holes in the
interval [ti , ti+1), we have ti+1 � ti + 1. (Otherwise, X(i+1) would have been scheduled before ti+1.) By Lemma 1,
we have ti+1 = ti + 1.

Also, because there are holes in the interval [t, tg+1) (by (H)) and tg < t , we have tg+1 = t . Similarly, th−1 = v −1.
(Otherwise, X(h) is scheduled at or before v − 1.) Thus, we have the following:

tg+1 = t ∧ th−1 = v − 1, (27)

for all i ∈ {g + 1, . . . , h − 1}, ti = t + i − (g + 1). (28)

Earlier, we showed that one of (a)–(c) holds for all i ∈ [2, k + 1]. If either d(X(g+1)) > t + 1 or d(X(g+1)) = t + 1 ∧
b(X(g+1)) = 0, then since X(g+1) is scheduled at t , by Lemma 5, part (b), e(X(g+2)) � t + 1 (recall that, by (26),
X(g+2) is the successor of X(g+1)). In other words, the displacement Δg is not valid. Therefore,

d
(
X(g+1)

) = t + 1 ∧ b
(
X(g+1)

) = 1 ∧ D
(
X(g+1)

)
� v. (29)

We now consider two cases. In each, we show that the displacements do not extend beyond v − 1, as desired.

Case 1. X(g+1) is the subtask of a light task. By (25), t + 1 � v − 1 and hence, by (H), there is a hole in both t and
t + 1. Also, by (27) and (28), we have v − 1 = t + (h − 1) − (g + 1) = t + h − g − 2. Because t < v − 1 (by (25)),
we have h > g + 2, i.e.,

h � g + 3.

Because X(g+1) is the subtask of a light task, the reasoning used in the proof of Lemma 8 applies. Thus, the displace-
ment Δg+2 is not valid. Hence, the displacements do not extend beyond slot t + 1 (and hence, slot v − 1).

Case 2. X(g+1) is the subtask of a heavy task. Let v′ = D(X(g+1)). By (29), v′ � v. We now show that the displace-
ments cannot extend beyond slot v′ − 1 (and hence, slot v − 1). By (28), X(i) is scheduled in slot t + i − (g + 1) in S

for all i ∈ {g + 1, . . . , h− 1}. By (26), all X(i) where g + 1 � i � h are subtasks of the same heavy task. We now show
that the displacement Δv′−1−t+(g+1) (= Δv′−t+g) is not valid. Let w = v′ − t + g.

By (28), tw = v′ − 1. Because X(i) is scheduled at ti , the subtask scheduled at v′ − 1 is X(w). Since X(i+1) is the
successor of X(i), by (5), d(X(i)) > d(X(i−1)) for all i ∈ [g + 2,w]. Because d(X(g+1)) = t + 1 (by (29)),

for all i ∈ {g + 1, . . . ,w}, d
(
X(i)

)
� t + i − g. (30)

In particular, d(X(w)) � v′.

We now show that if d(X(w)) = v′, then b(X(w)) = 0. In this case, because d(X(w−1)) < d(X(w)), we have
d(X(w−1)) < v′. By (30), d(X(w−1)) � v′ − 1. Therefore, d(X(w−1)) = v′ − 1. Similarly, by induction, d(X(i)) =
t + i −g for all i ∈ {g + 1, . . . ,w}. (Refer to Fig. 12(b).) Because D(X(g+1)) = v′ and d(X(w)) = v′, by the definition
of D, b(X(w)) = 0. (In this case, the group deadline corresponds to the last slot of a window of length two.)

Thus, either d(X(w)) > v′ or d(X(w)) = v′ ∧b(X(w)) = 0. Since X(w) is scheduled at v′ − 1, by Lemma 5, part (b),
the eligibility time of the successor of X(w) is at least v′. Hence, Δw is not valid. Thus, the displacements do not
extend beyond slot v′ − 1. �

A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117 1111
(a)

(b)

Fig. 12. Lemma 10. (a) There are holes in all slots [t, v]. X(i) scheduled at ti displaces X(i−1) scheduled at ti−1. Also, by (28), the ti ’s are
consecutive and satisfy ti = t + i − (g + 1). Further, X(h−1) is the subtask scheduled in slot v. (b) Case 2. D(X(g+1)) = v′. Hence, either
d(X(w)) = v′ ∧ b(X(w)) = 0 (as depicted) or d(X(w)) > v′ .

Lemma 11 below extends Lemma 9 by allowing B to consist solely of heavy tasks. The following claims are used
in its proof.

Claim 2. If Uj is scheduled in slot u, where 0 � u < td and u < d(Uj), and if there is a hole in slot u, then d(Uj) =
u + 1.

Proof. Because u < td , by Definition 2, no deadline is missed in [0, u + 1). Because Uj is scheduled in slot u, i.e.,
[u,u + 1), we have d(Uj) � u + 1. Suppose that d(Uj) > u + 1. Then, by part (b) of Lemma 5, the successor of Uj

(if it exists) is not eligible before u+ 1. Hence, by Lemma 2, we can remove Uj and no displacements will result, i.e.,
a deadline is still missed at td , contradicting (T2). Therefore, d(Uj) = u + 1. �
Claim 3. Suppose there is a hole in slot u ∈ {0, . . . , td − 1}. Let Uj be a subtask scheduled at t ′ � u. If the eligibility
time of the successor of Uj is at least u + 1, then d(Uj) � u + 1.

Proof. If t ′ = u, then clearly u < d(Uj) and hence by Claim 2, d(Uj) = u + 1. On the other hand, if t ′ < u and
d(Uj) > u, then we have e(Uj) � u < d(Uj). In this case, Lemma 7 implies that d(Uj) = u + 1. Thus, d(Uj) �
u + 1. �
Lemma 11. There exists v ∈ {t + 2, . . . , td} such that LAG(τ, v) < 1.

Proof. Because LAG(τ, t) < 1 and LAG(τ, t + 1) � 1 (by (16)),

LAG(τ, t) < LAG(τ, t + 1). (31)

Thus, by Lemma 4, we have the following property:

1112 A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117
(H) There is at least one hole in slot t .

Let A,B , and I be as defined in the proof of Lemma 9. If any task in B is light, then by Lemma 9,
LAG(τ, t + 2) � 0, which establishes our proof obligation. We henceforth assume all tasks in B are heavy.

Let U be any task in B . Let Uj be the subtask with the largest index such that e(Uj) � t < d(Uj). Let C denote
the set of such subtasks of all tasks in B . Then, by Corollary 1,

for all Uj ∈ C, d(Uj) = t + 1 ∧ b(Uj) = 1. (32)

Let Li be the lowest-priority subtask in C. Then,

for all Uj ∈ C, d(Uj) = t + 1 ∧ b(Uj) = 1 ∧ D(Uj) � D(Li). (33)

By Lemma 10, there is a slot in [t,min(D(Li), td)) with no hole. Let u be as follows:

(U) u is the earliest slot in [t,min(D(Li), td)) with no hole.

Figure 13 depicts this situation. By (U) and (H),

u � t + 1, (34)

and there are holes in all slots in {t, . . . , u − 1}. We now establish the following property about tasks in B .

Claim 4. All tasks in B are inactive over the interval [t + 1, u).

Proof. If the interval [t + 1, u) is empty, then the claim is vacuously true, so assume it is nonempty. Let V be any
task in B . We first show that no subtask of V is scheduled in [t, u).

Note that because V ∈ B , no subtask of V is scheduled in slot t . Let Vi be the earliest subtask of V scheduled in
[t + 1, u) and let v be the slot in which it is scheduled. Because there is a hole in slot v, by Claim 2, d(Vi) = v + 1.
By (4) and (5), this implies that r(Vi) � v. If r(Vi) < v, then e(Vi) < v. Thus, because there are holes in all slots in
{t, . . . , v − 1}, Vi should have been scheduled earlier. Therefore, r(Vi) = v, which implies that wt(V) = 1. However,
this contradicts the fact that some subtask of V has a b-bit of 1 (by (32)). Hence, no subtask of any task in B is
scheduled in [t, u) (see Fig. 13). Moreover, because there are holes in all slots in [t, u), the earliest slot after t at
which a subtask of a task in B is eligible to be scheduled is u. By (32), this implies that all the tasks in B are inactive
in [t + 1, u − 1]. �

Let Uj be any subtask in C, and let Uk be the successor of Uj . By Claim 4, r(Uk) � u. Furthermore, by
(32)–(34) and (U), d(Uj) = t + 1 � u < D(Uj). Hence, by (F3), flow(U, t) + flow(U,u) � wt(U). Because this
argument applies to all tasks in B , we have

for all U ∈ B, flow(U, t) + flow(U,u) � wt(U). (35)

We now show that LAG is nonincreasing over [t + 1, u).

Claim 5. LAG(τ, v + 1) � LAG(τ, v) for all v ∈ {t + 1, . . . u − 1}.

Fig. 13. Lemma 11. Uj is the critical subtask of a task in A and Uk is the successor of Uj . There is a hole in each slot in [t, u − 1] and there is no
hole in slot u. The earliest time at which Uk ’s PF-window starts is u, i.e., r(Uk) � u.

A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117 1113
Proof. If {t + 1, . . . , u} is empty, then the claim is vacuously true, so assume it is nonempty. Suppose for some
v ∈ {t + 1, . . . , u − 1}, LAG(τ, v + 1) > LAG(τ, v). Then, by Lemma 6, there exists a task that is active at v but not
scheduled at v. Let V be one such task and let Vk be the subtask with the largest index such that

e(Vk) � v < d(Vk). (36)

Because no subtask of V is scheduled at v and because there is a hole at v, Vk is scheduled before v. By (U), there is a
hole at v−1; moreover, because t +1 � v � u−1, we have v−1 ∈ {t, . . . , u−2} ⊆ {0, . . . , td −1}. Hence, by Claim 3,
we have d(Vk) � v, which contradicts (36). Therefore, LAG(τ, v + 1) � LAG(τ, v) for all v ∈ {t + 1, . . . , u − 1}. �

We now show that LAG(τ, u + 1) < 1, which establishes our proof obligation.
For each v ∈ {t, . . . , u}, let Hv denote the number of holes in slot v. Then, M − Hv tasks are scheduled in slot v.

Also, let Iv (Av) denote the tasks in I (A) that are active at v.
By (15) and Claim 5,

∑
T ∈τ flow(T , v) �

∑
T ∈τ S(T , v). Therefore,

for all v ∈ {t + 1, . . . , u − 1},
∑
T ∈τ

flow(T , v) � M − Hv. (37)

Because τ is feasible, by (8), we have
∑

T ∈B∪Iu∪Au
wt(T) � M . Hence, by (35) and (F1), we get

∑
T ∈B(flow(T , t)+

flow(T ,u)) + ∑
T ∈Iu∪Au

flow(T ,u) � M . Thus,∑
T ∈B

flow(T , t) +
∑

T ∈B∪Iu∪Au

flow(T ,u) � M. (38)

Because the tasks in A (= At) are the ones scheduled in slot t , the number of tasks in set At is M −Ht . Hence, by (F1)
and because the weight of each task is at most one,∑

T ∈At

flow(T , t) �
∑
T ∈At

wt(T) � M − Ht . (39)

We are now ready to show that LAG(τ, u + 1) � 0. Because S(T , v) = M − Hv , by (15), LAG(τ, u + 1) −
LAG(τ, t) = R, where R = ∑u

v=t (
∑

T ∈τ flow(T , v)) − ∑u
v=t (M − Hv). By (U), there are no holes in slot u, hence,

Hu = 0. Therefore,

R =
u∑

v=t

(∑
T ∈τ

flow(T , v)

)
−

u−1∑
v=t

(M − Hv) − M. (40)

The right-hand side of (40) can be rewritten as follows:

∑
T ∈τ

(
flow(T , t) + flow(T ,u)

) − (M − Ht) − M +
u−1∑

v=t+1

(∑
T ∈τ

flow(T , v) − (M − Hv)

)
.

Rearranging terms, and using
∑

T ∈I flow(T , t) = 0 (which follows by the definition of I), we get∑
T ∈B

flow(T , t) +
∑

T ∈B∪Iu∪Au

flow(T ,u) − M +
∑
T ∈At

flow(T , t) − (M − Ht)

+
u−1∑

v=t+1

(∑
T ∈τ

flow(T , v) − (M − Hv)

)
.

By (37)–(39), the above value is nonpositive. Hence, by (40), LAG(τ, u + 1)−LAG(τ, t) � 0. Because LAG(τ, t) < 1,
this implies that LAG(τ, u + 1) < 1.

By (U) and (34), t +1 � u � min(D(Uj), td)−1. Hence, t +2 � u+1 � td . Thus, there exists a v ∈ {t +2, . . . , td}
such that LAG(τ, v) < 1. �

Recall our assumption that t is the latest time such that LAG(τ, t) < 1 and LAG(τ, t + 1) � 1. Because t � td − 2
(by (16)), we have t + 2 � td . By Lemma 11, LAG(τ, v) � 0 for some v ∈ {t + 2, . . . , td}. By Lemma 5, parts (e)
and (f), v cannot be td or td − 1. Thus, v � td − 2. Because LAG(τ, td) � 1, this contradicts the maximality of t .
Therefore, td and τ as defined cannot exist. Thus, we have the following theorem.

1114 A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117
Theorem 1. PD2 correctly schedules any feasible GIS task system.

The following corollaries are immediate.

Corollary 2. PD2 is optimal for scheduling IS task systems on multiprocessors.

Corollary 3. PD2 is optimal for scheduling sporadic task systems on multiprocessors.

5. Concluding remarks

In this paper, we have shown that PD2, the most efficient optimal Pfair scheduling algorithm proposed to date,
correctly schedules any feasible IS or GIS task system on M processors. This paper is the first to show that IS, GIS,
or sporadic tasks can be optimally scheduled on systems of more than two processors.

Two key insights led to our proof: the development of a notion of lag for GIS systems that can be used to sufficiently
predict where holes exist in a schedule, and the identification of certain minimality conditions (Definitions 2 and 3) that
facilitate the reasoning. It is these notions that distinguish our proof from previous proofs for Pfair/ERfair scheduling
algorithms. Since the presentation of this work as a conference paper [18], the proof techniques of this paper have been
used in work involving various Pfair-like scheduling algorithms and task models. In particular, these techniques have
been used to establish the correctness of algorithms for systems with soft real-time tasks that require only bounded
deadline tardiness [11–13,19], for dynamic systems that permit tasks to leave and join at runtime [20], and for systems
where task weights can be changed dynamically [2,8].

The IS task model incorporates a very flexible notion of a rate. Indeed, as shown herein, the resulting multiprocessor
execution model has many characteristics in common with the uniprocessor rate-based execution model proposed by
Jeffay and Goddard [14]. The IS task model also generalizes the model considered in our prior work on scheduling
mixed early-release/nonearly-release periodic task systems [5].

The rate-based properties of PD2 make it potentially useful in several application domains. One such application
(potentially) is the scheduling of rate-based packet flows in wave-division-multiplexing (WDM) networks. In WDM
networks, optical multiplexing techniques are used to send multiple packets over the same link in parallel. In a similar
vein, PD2 can be used to solve the parallel switching problem in ATM networks mentioned in [1]. Also, as noted
earlier, PD2 might be useful in multiprocessor real-time applications that have processing steps that are triggered by
messages sent over a network.

The fairness properties of PD2 also make it useful for multiplexing independently-authored applications on the
same system. This is because such algorithms ensure temporal isolation among applications (no “misbehaving” ap-
plication can execute faster than its proscribed rate, unless there is spare processing capacity). This observation led
researchers at the University of Massachusetts and Ensim Corp. to investigate the use of fair scheduling algorithms
on multiprocessor servers for commercial web-hosting sites [9,10]. However, this prior investigation was entirely em-
pirical in nature. In this paper, we have given the first ever general optimality proof for a multiprocessor rate-based
scheduling algorithm that provides fairness guarantees. As noted above, the techniques used in our proof are not
unique to PD2 and have been applied to other rate-based and fair scheduling algorithms as well.

Acknowledgments

We are grateful to Uma Devi and Phil Holman for their comments on earlier drafts of this paper.

Appendix A. Properties about flows for IS and GIS tasks

We now prove properties (F2) and (F3) of GIS tasks that are used in the proofs in Section 4. We establish (F2) and
(F3) by deriving several other useful properties about GIS and IS tasks. With the exception of (B3) (which applies
only to IS tasks), all the properties below hold for GIS tasks.

(L) For a light task T , if Tk is the successor of Ti , then d(Tk) � d(Ti) + 2.

A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117 1115
Proof. Because Tk is Ti ’s successor, k � i + 1. Hence, d(Tk) � θ(Tk) +
 i+1
wt(T)

�. By (6), d(Tk) � θ(Ti) +
 i+1
wt(T)

�.

Therefore, by (5), d(Tk) − d(Ti) �
 i+1
wt(T)

� −
 i
wt(T)

�. Thus,

d(Tk) − d(Ti) � i + 1

wt(T)
−

⌈
i

wt(T)

⌉

x� � x

>
i + 1

wt(T)
− i

wt(T)
− 1
x� < x + 1

= 1

wt(T)
− 1 by simplification

> 2 − 1 wt(T) < 1/2 ⇒ 1

wt(T)
> 2.

Therefore, d(Tk) > d(Ti) + 1, i.e., d(Tk) � d(Ti) + 2. �
(B1) Let Ti be a subtask with b(Ti) = 1. If Ti+1 exists, then f (Ti, d(Ti) − 1) + f (Ti+1, r(Ti+1)) = wt(T).

Proof. By (13),

f
(
Ti, d(Ti) − 1

) = i −
(⌈

i

wt(T)

⌉
− 1

)
× wt(T)

and

f
(
Ti+1, r(Ti+1)

) =
(⌊

i

wt(T)

⌋
+ 1

)
× wt(T) − i.

Since b(Ti) = 1, by (9),
 i
wt(T)

� = � i
wt(T)

� + 1. Hence,

f
(
Ti+1, r(Ti+1)

) =
⌈

i

wt(T)

⌉
× wt(T) − i.

Therefore, f (Ti, d(Ti)) + f (Ti+1, r(Ti+1)) = wt(T). (See Fig. 8.) �
(B2) Let Ti be a subtask such that b(Ti) = 1. If Ti+1 exists and is released late, i.e., r(Ti+1) � d(Ti), then

flow(T , d(Ti) − 1) + flow(T , d(Ti)) � wt(T).

Proof. Because Ti+1 is released late, by (7), we have r(Ti+1) � d(Ti). By (4) and (5), it follows that r(Tk) > d(Ti)

for all k > i + 1. Similarly, d(Tj) < d(Ti) for all j < i. This implies that the slot d(Ti)− 1 lies within the PF-window
of only one subtask, namely, Ti , and the slot d(Ti) can lie within the PF-window of only one subtask, namely, Ti+1.
Thus, the contribution to the flow in slot d(Ti) − 1 is f (Ti, d(Ti) − 1) and the contribution to slot d(Ti) is at most
f (Ti+1, r(Ti+1)). Hence, by (B1), flow(T , d(Ti) − 1) + flow(T , d(Ti)) � wt(T). �
(B3) If Ti and Tk are subtasks of an IS heavy task T such that k > i and r(Tk) < D(Ti), then f (Ti, d(Ti) − 1) +

f (Tk, r(Tk)) � wt(T).

Proof. If b(Ti) = 0, then D(Ti) = d(Ti). In this case, r(Tk) � D(Ti) holds, since (4) implies r(Tk) � d(Ti) (thus, no
task Tk exists such that k > i and r(Tk) < D(Ti)). In the rest of the proof, we assume that b(Ti) = 1.

Since D(Ti) denotes the group deadline of Ti and r(Tk) < D(Ti), by definition of a group deadline, we have
|w(Tj)| = 2 and b(Tj) = 1 for all j ∈ {i + 1, . . . , k − 1}. Note that |w(Tj)| = 2 implies that d(Tj) = r(Tj) + 2.
Because the total flow for a subtask is one, this implies the following:

for all j ∈ {i + 1, . . . , k − 1}, f
(
Tj , r(Tj)

) + f
(
Tj , d(Tj) − 1

) = 1. (A.1)

Because b(Ti) = 1, we have b(Tj) = 1 for all j ∈ {i, . . . , k − 1}. Therefore, by (B1), f (Tj , d(Tj) − 1) +
f (Tj+1, r(Tj+1)) = wt(T). Therefore,

∑k−1
f (Tj , d(Tj) − 1) + f (Tj+1, r(Tj+1)) = (k − i) × wt(T). Rewriting,
j=i

1116 A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117
we get f (Ti, d(Ti) − 1) + f (Tk, r(Tk)) + ∑k−1
j=i+1(f (Tj , r(Tj)) + f (Tj , d(Tj) − 1)) = (k − i) × wt(T). By (A.1),

this implies that

f
(
Ti, d(Ti) − 1

) + f
(
Tk, r(Tk)

) + k − i − 1 = (k − i) × wt(T).

Therefore, f (Ti, d(Ti) − 1) + f (Tk, r(Tk)) = wt(T) + (k − i − 1)(wt(T) − 1). Because k � i + 1 and wt(T) � 1 for
all T , we have f (Ti, d(Ti) − 1) + f (Tk, r(Tk)) � wt(T). �
(B4) Let Ti be a subtask of a heavy GIS task T and let Tk (k > i) be a subtask such that r(Tk) < D(Ti). Then,

f (Ti, d(Ti) − 1) + f (Tk, r(Tk)) � wt(T).

Proof. Because T is a GIS task, there is an IS task U such that wt(U) = wt(T), all subtasks between Ui and Uk

are present, and r(Uk) = r(Tk). Hence, r(Uk) < D(Ui). By (B3), f (Ui, d(Ui) − 1) + f (Uk, r(Uk)) � wt(U). Corre-
sponding subtasks in T and U have identical flows. Thus, f (Ti, d(Ti) − 1) + f (Tk, r(Tk)) � wt(T). �
(F2) Let Ti be a subtask of a GIS task and let Tk be its successor. If b(Ti) = 1 and r(Tk) � d(Ti), then

flow(T , d(Ti) − 1) + flow(T , d(Ti)) � wt(T).

Proof. If k = i + 1, then by (B2), flow(T , d(Ti) − 1) + flow(T , d(Ti)) � wt(T). Also, if r(Tk) > d(Ti), then
flow(T , d(Ti)) = 0. Hence, by (F1), flow(T , d(Ti) − 1) + flow(T , d(Ti)) � wt(T).

In the rest of the proof, we assume that k > i + 1 and r(Tk) = d(Ti). We first show that T must be heavy. If
T is light, then by (L), we have d(Ti+1) > d(Ti) + 1. By (7), we also have r(Tk) � d(Ti+1) − 1 and therefore,
r(Tk) > d(Ti), which contradicts r(Tk) = d(Ti).

Thus, T is heavy. Because b(Ti) = 1, by the definition of D, D(Ti) > d(Ti). Hence, because r(Tk) = d(Ti), we
have r(Tk) < D(Ti). Thus, by (B4), flow(T , d(Ti) − 1) + flow(T , r(Tk)) � wt(T). Because r(Tk) = d(Ti), we have
flow(T , d(Ti) − 1) + flow(T , d(Ti)) � wt(T). �
(F3) Let Ti be a subtask of a heavy GIS task T such that b(Ti) = 1 and let Tk be the successor of Ti . If

u ∈ {d(Ti), . . . ,D(Ti) − 1} and u � r(Tk), then flow(T , d(Ti)) + flow(T ,u) � wt(T).

Proof. Since b(Ti) = 1, by the definition of D, D(Ti) > d(Ti). Since u � d(Ti) and Tk is Ti ’s successor, if r(Tk) > u,
then flow(T ,u) = 0. Thus, by (F1), flow(T , d(Ti)−1)+flow(T ,u) � wt(T). The other possibility is r(Tk) = u, which
implies r(Tk) < D(Ti). In this case, by (B4), f (Ti, d(Ti) − 1) + f (Tk, r(Tk)) � wt(T). Thus, flow(T , d(Ti) − 1) +
flow(T ,u) � wt(T). �
References

[1] J. Anderson, S. Baruah, K. Jeffay, Parallel switching in connection-oriented networks, in: Proceedings of the 20th IEEE Real-Time Systems
Symposium, IEEE, December 1999, pp. 200–209.

[2] J. Anderson, A. Block, A. Srinivasan, Quick-release fair scheduling, in: Proceedings of the 24th IEEE Real-Time Systems Symposium, IEEE,
December 2003, pp. 130–141.

[3] J. Anderson, A. Srinivasan, Early-release fair scheduling, in: Proceedings of the 12th Euromicro Conference on Real-Time Systems, June
2000, pp. 35–43.

[4] J. Anderson, A. Srinivasan, Pfair scheduling: Beyond periodic task systems, in: Proceedings of the Seventh International Conference on
Real-Time Computing Systems and Applications, December 2000, pp. 297–306.

[5] J. Anderson, A. Srinivasan, Mixed Pfair/ERfair scheduling of asynchronous periodic tasks, J. Comput. System Sci. 68 (1) (February 2004)
157–204.

[6] S. Baruah, N. Cohen, C.G. Plaxton, D. Varvel, Proportionate progress: A notion of fairness in resource allocation, Algorithmica 15 (1996)
600–625.

[7] S. Baruah, J. Gehrke, C.G. Plaxton, Fast scheduling of periodic tasks on multiple resources, in: Proceedings of the 9th International Parallel
Processing Symposium, April 1995, pp. 280–288.

[8] A. Block, J. Anderson, G. Bishop, Fine-grained task reweighting on multiprocessors, in: Proceedings of the 11th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications, August 2005, pp. 429–435.

[9] A. Chandra, M. Adler, P. Goyal, P. Shenoy, Surplus fair scheduling: A proportional-share CPU scheduling algorithm for symmetric multi-
processors, in: Proceedings of the Fourth Symposium on Operating System Design and Implementation, OSDI 2000, ACM, October 2000,
pp. 45–58.

A. Srinivasan, J.H. Anderson / Journal of Computer and System Sciences 72 (2006) 1094–1117 1117
[10] A. Chandra, M. Adler, P. Shenoy, Deadline fair scheduling: Bridging the theory and practice of proportionate-fair scheduling in multiprocessor
servers, in: Proceedings of IEEE Real-Time Technology and Applications Symposium, IEEE, June 2001, pp. 3–14.

[11] U. Devi, J. Anderson, Fair integrated scheduling of soft real-time tardiness class on multiprocessor platforms, in: Proceedings of the 10th
IEEE Real-Time and Embedded Technology and Applications Symposium, IEEE, May 2004, pp. 554–561.

[12] U. Devi, J. Anderson, Schedulable utilization bounds for EPDF fair multiprocessor scheduling multiprocessor scheduling, in: Proceedings of
the 10th International Conference on Real-Time and Embedded Computing Systems and Applications, August 2004, pp. 261–280.

[13] U. Devi, J. Anderson, Improved conditions for bounded tardiness under EPDF fair multiprocessor scheduling, in: Proceedings of 12th Inter-
national Workshop on Parallel and Distributed Real-Time Systems, IEEE, April 2004 (on CD ROM).

[14] K. Jeffay, S. Goddard, A theory of rate-based execution, in: Proceedings of the 20th IEEE Symposium on Real-Time Systems, IEEE, December
1999, pp. 304–314.

[15] C. Liu, J. Layland, Scheduling algorithms for multiprogramming in a hard real-time environment, J. ACM 30 (January 1973) 46–61.
[16] A.K. Mok, Fundamental design problems of distributed systems for the hard-real-time environment, Technical Report MIT/LCS/TR-297,

Massachusetts Institute of Technology, 1983.
[17] A. Srinivasan, Efficient and flexible fair scheduling of real-time tasks on multiprocessors, PhD thesis, University of North Carolina, Chapel

Hill, NC, 2003.
[18] A. Srinivasan, J. Anderson, Optimal rate-based scheduling on multiprocessors, in: Proceedings of the 34th ACM Symposium on Theory of

Computing, ACM, May 2002, pp. 189–198.
[19] A. Srinivasan, J. Anderson, Efficient scheduling of soft real-time applications on multiprocessors, in: Proceedings of the 15th Euromicro

Conference on Real-Time Systems, July 2003, pp. 51–59.
[20] A. Srinivasan, J. Anderson, Fair scheduling of dynamic task systems on multiprocessors, in: Proceedings of the 11th International Workshop

on Parallel and Distributed Real-Time Systems, IEEE, April 2003 (on CD ROM).
[21] A. Srinivasan, P. Holman, J. Anderson, S. Baruah, J. Kaur, Multiprocessor scheduling in processor-based router platforms: Issues and ideas,

in: Proceedings of the Second Workshop on Network Processors, February 2003, pp. 48–62.

