
Approximate Clustering via Core-Sets

Mihai Bădoiu
�

Sariel Har-Peled† Piotr Indyk‡

19/02/2002 18:53

Abstract

In this paper, we show that for several clustering problems one can extract a small set of
points, so that using those core-sets enable us to perform approximate clustering efficiently.
The surprising property of those core-sets is that their size is independent of the dimension.

Using those, we present a
�
1 � ε � -approximation algorithms for the k-center clustering and

k-median clustering problems in Euclidean space. The running time of the new algorithms has
linear or near linear dependency on the number of points and the dimension, and exponential
dependency on 1 � ε and k. As such, our results are a substantial improvement over what was
previously known.

We also present some other clustering results including
�
1 � ε � -approximate 1-cylinder

clustering, and k-center clustering with outliers.

1 Introduction

Clustering is one of the central problems in computer-science. It is related to unsupervised learn-
ing, classification, databases, spatial range-searching, data-mining, etc. As such, it received a lot
of attention in computer-science in the last twenty years. There is a large literature on this topic
with numerous variants, see [DHS01, BE97].

In this paper, we present several results on clustering of a set of points P in � d , where the
dimension d is large. All our results rely on a new technique that extract a small subset of points
that “represents” this point-set ε-well as far as specific clustering problems are concerned. The
surprising property of those sets is that their size is independent of the dimension. The existence
of such core-sets for various approximation problems was known before, but their size depended
polynomially or exponentially on the dimension [MOP01, ADPR00, Har01, HV01, IT00].

Using this new technique, we present the following results in this paper:
�
MIT Laboratory for Computer Science; 545 Technology Square, NE43-371; Cambridge, Massachusetts 02139-

3594; mihai@theory.lcs.mit.edu
†Department of Computer Science, DCL 2111; University of Illinois; 1304 West Springfield Ave.; Urbana, IL

61801; USA; http://www.uiuc.edu/˜sariel/; sariel@uiuc.edu
‡MIT Laboratory for Computer Science; 545 Technology Square, NE43-373; Cambridge, Massachusetts 02139-

3594; indyk@theory.lcs.mit.edu

1

� In Section 2, we show that one can extract a core-set of size O
�
1 � ε2 � , so that the minimum

enclosing ball of the sample is an
�
1 � ε � -approximation to the minimum enclosing ball of

a set of points P � � d . Using this core-set, we present a 2O ��� k logk �
	 ε2 ��� dn time algorithm
that computes an

�
1 � ε � -approximate k-center clustering of P, i.e., finds a set of k points in

� d such that the maximum distance of points in P to their closest center is minimized. No
algorithm for this problem has been previously known, although (as pointed out in [Ind01])
by using the techniques of [OR00] one could achieve a much slower algorithm with running
time nO � k2 	 ε2 � . For lower dimension, Agarwal and Procopiuc [AP98] showed a O

�
n logk � ��

k � ε � O � dk1 1 � d � time algorithm for this problem.

For k � 1, the core-set technique yields an algorithm with running time O � dn � ε2 � �
1 � ε � O � 1 ��� .

This significantly improves previously known bounds (obtained via ellipsoid algorithm) of
O

�
d 3n log

�
1 � ε ��� [GLS88].

� In Section 3, we show that by using random sampling, one can find an O
�
1 � εO � 1 ��� -size set of

points R, such that the flat spanned by those points contains a point ε-close to the 1-median
of the point-set. The only previous result of this type [IT00] used a sample of size linearly
dependent on the dimension. Using the sampling technique, we present a

2 � k 	 ε � O � 1 � dO � 1 � n logO � k � n

expected time algorithm that computes a
�
1 � ε � -approximation to the optimal k-median for P

(i.e., finds k points-medians in � d , such that the sum of the distances from all points P to their
closest medians is minimized). Previously, the fastest known algorithm with polynomial
dependence on d was due to Ostrovsky and Rabani [OR00] and it ran in n � k � 1 	 ε � O � 1 � time.
For relevant results, see [ARR98].

� In Section 5, we present an
�
1 � ε � -approximation algorithm for the problem of comput-

ing the minimum radius cylinder that covers P. The running time of the new algorithm is
nO � log � 1 	 ε �
	 ε2 � . The fastest algorithm previously known run in O

�
n � 1 � εO � d � � time [HV01],

which is exponential in the dimension. The algorithm combines the use of a core-set for 1-
center, dimensionality reduction (to reduce the search space, in a manner similar to [OR00])
and convex programming.

� Section 4 we present an efficient algorithm for solving k-center problem with outliers.

Concluding remarks are given in Section 6.

2 k-center clustering

In this section, we present an efficient approximation algorithm for the k-center problem.

Definition 2.1 For a point-set P in � d , let rcen
�
P� k � denote the radius of the k-center clustering of

P. Here one wishes to find the k centers (i.e., points), so that the maximum distance of a point to a
center is minimized. This distance the radius of the clustering.

2

���
��� ���

�

���

	

Figure 1: If the two centers ci � 1 � ci are far, then the radius of the min-enclosing ball must grow.

We start from restating the following lemma, proved originally in [GIV01]. For completeness,
we give the proof here.

Lemma 2.2 Let B � Ball
�
cB � r � be a minimum enclosing ball of a point-set P

� � d , then any
closed half-space that contains the center of B, must also contain at least a point from P that is at
distance r from the center of B.

Proof: Suppose there exists a closed half-space H that contains the center of B and does not contain
any point of P of distance r from the center cB. Since H is closed, there exist an ε � 0 such that
the minimum distance between the points of P H and H is � ε. Also, fix ε such that the distance
between any of the points in P � H and cB is at most r � ε. This means we can translate the ball
B in the direction perpendicular to H by ε � 2. After we translate B, none of the points of P will lie
exactly on the boundary of the translated ball, which means we can shrink the ball radius by δ and
we have found a smaller ball that contains our point-set. A contradiction.

Now we proceed with the core-set result.

Lemma 2.3 There exist a subset of points S
�

P, � S � � O
�
1 � ε2 � , such that the radius of the mini-

mum enclosing ball of S is at least 1 � �
1 � ε � the minimum enclosing ball of P.

Proof: Start with an arbitrary point x � P and let y be the furthest point in P away from x.
Clearly, � x � y ��� ∆ � 2, where ∆ denotes the diameter of P.

Set S0 ��� x � y � . In the following, we maintain a set Si of points and their minimum enclosing
ball Bi � Ball

�
ci � ri

� of Si, where ci � ri denotes the center and radius of Bi, respectively. Clearly,
r0 � ∆ � 4.

There are two possibilities:

� If there is no point p � P, such that � p � ci ��� �
1 � ε � ri, then we are done, as the current

enclosing ball Bi is a
�
1 � ε � -approximation.

� There exist a point p � P, such that � p � ci ��� �
1 � ε � ri

In this case we set Si � 1 � Si � � p � .

3

Claim 2.4 ri � 1 �
�

1 � ε2

16 � ri.

Proof: If � ci � ci � 1 ��� �
ε � 2 � ri, then by the triangle inequality, we have

� p � ci � 1 � � � p � ci � � � ci � ci � 1 ��� �
1 � ε � ri � ε

2
ri � � 1 � ε

2
� ri �

Otherwise, if � ci � ci � 1 ��� �
ε � 2 � ri then let H be the

�
d � 1 � -dimensional

hyperplane that passes through ci and is orthogonal to cici � 1. Let H � be
the open half-space having p inside it. See Figure 1.
Using Lemma 2.2 we know that there exist a point x at distance ri from ci

that is not in H � . Therefore

ri � 1 � � ci � 1 � x ����� r2
i � ε2

4
r2

i �
�

1 � ε2

16 � ri �
as 0 � ε � 1.

Since r0 � ∆ � 4, and at each step we increase the radius of our solution by at least
�
∆ � 4 � ε2 � 16 �

∆ε2 � 64, it follows that we cannot encounter this case more than 64 � ε2 times, as ∆ is an upper
bound of the radius of the minimum enclosing ball of P.

Theorem 2.5 For any point-set P � � d and 1 � ε � 0, there is a subset S � P, � S � � O
�
1 � ε2 � ,

such that if o is the 1-center for S, then o is a
�
1 � ε � -approximate 1-center for P. The set S can be

found in time O
�
dn � ε2 � �

1 � ε � 10 log
�
1 � ε � � .

Proof: The algorithm follows the proof of Lemma 2.3. This requires computing M � O
�
1 � ε2 �

times
�
1 � ε � -approximate enclosing ball of at most N � O

�
1 � ε2 � points in D � O

�
1 � ε2 � dimen-

sions. This can be done in O
�
MD3N log

�
1 � ε ��� � O

�
1 � ε10 log

�
1 � ε � � time, using convex program-

ming techniques [GLS88]. This also requires scanning the points M times, which takes O
�
nd � ε2 �

time overall.

Theorem 2.6 For any point-set P � � d and 1 � ε � 0, a
�
1 � ε � -approximate 2-center for P can

be found in 2O � 1 	 ε2 � dn time.

Proof: We start from two empty sets of points S1 � S2. At each stage let B1 � B2 denote the
smallest enclosing ball for S1 and S2. In the i-th iteration, we pick the point pi furthest away
from B1 and B2. To decide whether to put pi in S1 or in S2, we read a bit from a guessing oracle.
Clearly, by Theorem 2.5, after O

�
1 � ε2 � iterations we would be done, assuming our guessing oracle,

classified the required points correctly. Thus, the running time of this algorithm is O
�
dn � ε2 ��

1 � ε � 10 � .
To remove the guessing oracle, we exhaustively enumerate all possible guesses. This would

require running this algorithm 2O � 1 	 ε2 � times, once for each guess sequence. Overall, resulting in
dn2O � 1 	 ε2 � running time.

Theorem 2.7 For any point-set P � � d and 1 � ε � 0, a
�
1 � ε � -approximate k-center for P can

be found in 2O �
� k logk �
	 ε2 � dn time.

4

Proof: Follows by a straightforward extension of the algorithm of Theorem 2.6, where each
guess now is a number between 1 and k, and we have to generate O

�
k � ε2 � guesses.

3 k-median clustering

In this section, we present an efficient approximation algorithm for the k-median problem.

Definition 3.1 For a set X and a point y in � d , let dist
�
X � p � � minx � X � x � p � . For a set P of n

points in � d , let
medopt

�
P� k � � min

K ��� d ���K � � k
∑
p � P

dist
�
K � p �

denote the optimal price of the k-median problem. Let

AvgMed
�
P� k � � medopt

�
P� k � � �P �

denote the average radius of the k-median clustering.
For any sets A � B � P, we use the notation

cost
�
A � B � � ∑

a � A � b � B

� a � b � �
If A � � a � , we write cost

�
a � � � instead of cost

� � a � � � � ; similarly for b. Moreover, we define cost
�
x �

y � A � � ∑a � A min
� � a � x � � � a � y � � .

For a set of points X
� � d , let span

�
X � denote the affine subspace spanned by the points of X .

We refer to span
�
X � as the flat spanned by X .

Theorem 3.2 Let P be a point-set in � d , 1 � ε � 0, and let X be a random sample of O
�
1 � ε3 log1 � ε �

points from P. Then with constant probability, the following two events happen: (i) The flat
span

�
X � contains a

�
1 � ε � -approximate 1-median for P, and (ii) X contains a point in distance	

2AvgMed
�
P� 1 � from the center of the optimal solution.

Proof: Let medopt � medopt
�
P� 1 � be the price of the optimal 1-median, R � AvgMed

�
P� 1 � ,

β � ε � 16, and s1 � � � � � su be our random sample. In the following, we are going to partition the
random sample into rounds: A round continues till we sample a point that has some required
property. The first round continues till we encounter a point si, such that

 si � copt

	
2R, where

copt is the center of the optimal 1-median. By the Markov inequality, for any sample si we have

 si � copt

	
2R, with probability � 1 � 2, as E �

 si � copt

� � R.
Let’s assume that si is a sample that just terminated a round, and we start a new sampling

round, and Fi is the flat spanned by the first i points in our sample: s1 � � � � � si. Observe that if
dist

�
Fi � copt

� 	 εR, then we are done, as the point proj
�
copt � Fi

� is the required approximation,
where proj

�
copt � Fi

� denote the projection of copt into Fi.
Note, that the distance from copt to Fi is monotone decreasing. That is di � 1 � dist

�
Fi � 1 � copt

� 	
di � dist

�
Fi � copt

� . We would next argue that either after taking enough sample points, di is small
enough so that we can stop, or otherwise almost all the points of P lie very close to our spanned
subspace, and we can use it to find our solution.

5

�������
�	�
 �� � � � �

 ���� �

�
���

Figure 2: A round terminates as soon as we pick a point outside Ui.

Indeed, let ci � proj
�
copt � Fi

� , and let

Ui � �
x ��� x � � d s.t. π � 2 � β 	��

coptcix
	 π � 2 � β � �

be the complement of the cone of angle π � β emanating from ci, and having cicopt as its axis. See
Figure 2. Let Hi be the

�
d � 1 � -dimensional hyperplane passing through ci and perpendicular to

cicopt . For a point p � P, let xp be the distance of p to the line � i passing through copt and ci, and
let yp be the distance between p and Hi.

If p � Ui, then

yp
	

xp tanβ 	
xp

sinβ
cosβ

	
4βxp

	 εxp

4
	 ε

4

 p � copt

 �

as β � 1 � 16. In particular,

� p � ci � 	
xp � yp

	 �
1 � ε � 4 �

 p � copt

 �

Namely, if we move our center from copt to ci, the error generated by points inside Ui is smaller
than medoptε � 4.

Thus, if the number of points in Qi � P Ui is smaller than nε � 4, then we are done, as the
maximum error encountered for a point of Qi when moving the center from copt to ci is at most 2R.

Thus, it must be that �Qi � � nε � 4. We now perform a round of random sampling till we pick a
point that is in Qi. Let s j � Qi be this sample point, where j � i. Clearly, the line l connecting ci

to s j must belong to Fj, as ci � Fi � Fj. Now, the angle between l and � i � line
�
ci � copt

� is smaller
than π � 2 � β. Namely,

dist
�
Fj � copt

� 	
dist

�
l � copt

� 	

 copt � ci

 sin
�
π � 2 � β � �

 copt � ci

 cos

�
β �

	 �
1 � β2 � 4 �

 copt � ci

� �
1 � β2 � 4 � dist

�
Fi � copt

� �
Thus, after each round, the distance between Fi and copt shrinks by a factor of

�
1 � β2 � 4 � . Namely,

either we are close to the optimal center, or alternatively, we make reasonable progress in each
round.

In the first round, we picked a point su such that

 su � copt

	

2R. Either during our sampling,
we had dist

�
Fi � copt

� 	 εR, or alternatively, we had reduced in each round the distance between our
sample flat and copt by a factor of

�
1 � β2 � 4 � . On the other hand, once this distance drops below

6

εR, we stop, as we had found a point that belongs to Fi and provide a
�
1 � ε � -approximate solution.

Furthermore, as long as �Qi � � εn � 4, the probability of success is at least ε � 4. Thus, the expected
number of samples in a round till we pick a point of Qi (and thus terminating the i-th round) is�
4 � ε � . The number of rounds we need is

M ��� log1 � β2 	 4
ε
2 � ��� log

�
ε � 2 �

log
�
1 � β2 � 4 ��� � O

�
1
ε2 log

2
ε � �

Let X be the random variable which is the number of random samples till get M successes. Clearly,
E � X � � O

�
1 � ε3 log1 � ε � . It follows, by the Markov inequality, that with constant probability, if

we sample O
�
1 � ε3 log

�
1 � ε ��� points, then those points span a subspace that contains a

�
1 � ε � -

approximate 1-median center.
We are next interested in solving the k-median problem for a set of points in � d . We first

normalize the point-set.

Lemma 3.3 Given a point-set P in � d , and a parameters k � ε, one can can scale-up space and
compute a point-set P 	 , such that: (i) The distance between any two points in P 	 is at least one.
(ii) The optimal k-median cost of the modified data set is at most nb for b � O

�
1 � , where n � �P � .

(iii) The costs of any k-median solutions in both (old and modified) data sets are the same up to a
factor of

�
1 � ε � 5 � . This can be done in O

�
nkd � time.

Proof: Observe that by using Gonzalez [Gon85] 2-approximation algorithm to the k-center
clustering, we can compute in O

�
nkd � time a value L (the radius of the approximate k-center

clustering), such that L � 2
	

medopt
�
P� k � 	

nL.
We cover space by a grid of size Lε � �

5nd � , and snap the points of P to this grid. After scaling,
this is the required point-set.

From this point on, we assume that the given point-set is normalized.

Theorem 3.4 Let P be a normalized set of n points in � d , 1 � ε � 0, and let R be a random sample

of O
�
1 � ε3 log1 � ε � points from P. Then one can compute, in O � d2O � 1 	 ε4 � logn � time, a point-set

S
�
P� R � of cardinality O � 2O � 1 	 ε4 � logn � , such that with constant probability (over the choice of R),

there is a point q � S
�
P� R � such that cost

�
q � P � 	 �

1 � ε � medopt
�
P� 1 � .

Proof: Let’s assume that we had found a t such that t � 2
	

AvgMed
�
P� 1 � 	

t. Clearly, we can
find such a t by checking all possible values of t � 2i, for i � 0 � � � � � O �

logn � , as P is a normalized
point-set (see Lemma 3.3).

Next, by Theorem 3.2, we know that with constant probability, there is a point of R with
distance

	
2AvgMed

�
P� 1 � 	

2t from the optimal 1-median center copt of P. Let H � span
�
R �

denote the affine subspace spanned by R.
Note, that by Theorem 3.2, with constant probability, the flat H contains a point x such that

cost
�
x � P � 	 �

1 � ε � 4 � medopt
�
P� 1 � . We next use exponential grids to find a point on H close to the

(unknown) x.
For each point of p � R, we construct a grid Gp

�
t � of side length εt � �

10 �R � � � O
�
tε4 log

�
1 � ε ���

centered at p on H, and let B
�
p � 3t � be a ball of radius 2t centered at p. Finally, let S 	 � p � t � �

Gp
�
t ��
 B

�
p � 3t � . Clearly, if t � 2

	
AvgMed

�
P� 1 � 	

t, and

 p � copt

	

2t, then there is a point
q � S 	 � p � t � such that cost

�
q � P � 	 �

1 � ε � medopt
�
P� 1 � .
7

Let S
�
P� R � � O � logn ��

i � 0

�
p � R

S 	 � p � 2i � . Clearly, S
�
P� R � is the required point-set, and furthermore,

� S �
P� R � � � O

� �
logn � �R � � 1

ε4 log
1
ε � O � �R � ���

� O � 2O � 1 	 ε3 log2 � 1 	 ε �
� logn � � O � 2O � 1 	 ε4 � logn � �
Theorem 3.5 For any point-set P � � d and 0 � ε � 1, a

�
1 � ε � -approximate 2-median for P can

be found in

O
�
2 � 1 	 ε � O � 1 � dO � 1 � n logO � 1 � n �

expected time, the results are correct with high-probability.

Proof: In the following, we assume that the solution is irreducible, i.e., removing a median
creates a solution with cost at least 1 � Ω

�
ε � times the optimal. Otherwise, we can focus on

solving the 1-median instead.
Let c1 � c2 be the optimal centers and P1 � P2 be the optimal clusters. Without loss of generality

we assume that �P1 � � �P2 � . The algorithm proceeds by considering whether P2 is large or small
when compared with the size of P1. In both cases the algorithm return an approximate solution
with constant probability. By exploring both cases in parallel and repeating the computation several
times we can achieve arbitrarily large probability of success.
Case 1: �P1 � � �P2 � � �P1 � ε. In this case we sample a random set of points R of cardinality
O

�
1 � ε4 log1 � ε � . We now exhaustively check all possible partitions of R into R1 � P1

 R and
R2 � P2

 R (there are O
�
2O � 1 	 ε4 log1 	 ε � � such possibilities). For the right such partition, Ri is a ran-

dom sample of points in Pi of cardinality Ω
�
1 � ε3 log1 � ε � (since E � �R
 Pi � � � Ω

�
1 � ε3 log1 � ε �). By

Theorem 3.4, we can generate point-sets S1 � S2 that with constant probability contains c 	1 � S1 � c 	2 �
S2, such that cost

�
c 	1 � c 	2 � P � 	 �

1 � ε � medopt
�
P� 2 � . Checking each such pair c 	1 � c 	2 takes O

�
nd �

time, and we have O
� � S1 � � S2 � � pairs. Thus the total running time is O � nd2O � 1 	 ε4 log1 	 ε � log2 n � .

Case 2: �P1 � ε � �P2 � . In this case we proceed as follows. First, we sample a set R of λ �
O

�
1 � ε3 log1 � ε � points from P1. This can be done just by sampling λ points from P, since with

probability 2 � O � 1 	 ε3 log1 	 ε � such a sample contains only points from P1; we can repeat the whole
algorithm several times to obtain constant probability of success. Next, using Theorem 3.4, we
generate a set C1 of candidates to be center points of the cluster P1. In the following, we check all
possible centers c 	1 � C1. With constant probability, there exists c 	1 � C1 such that cost

�
c 	1 � P1

� 	�
1 � ε � 3 � cost

�
c1 � P1

� .
Let

�
P 	1 � P 	2 � denote optimal 2-median clustering induced by median c 	1 (as above), and let

c 	2 denote the corresponding center of P 	2. We need to find c 	 	2 such that cost
�
c 	1 � c 	 	2 � P � 	 �

1 �
ε � 3 � cost

�
c 	1 � c 	2 � P � 	 �

1 � ε � medopt
�
P� 2 � . In order to do that, we first remove some elements from

P1, in order to facilitate random sampling from P2.
First, observe that cost

�
c 	1 � P 	2 � 	 �P 	2 � � � c 	2 � c 	1 � � cost

�
c 	2 � P 	2 � and therefore we can focus on

the case when �P 	2 � � � c 	2 � c 	1 � is greater than O
�
ε � � cost

�
c 	1 � c 	2 � P � , since otherwise c 	2 � c 	1 would

be a good enough solution.

8

We exhaustively search, for the right values of two parameters t � U, such that t � 2
	 � c 	1 � c 	2 � 	

t and U � 2
	

medopt
�
P� 2 � 	 U. Since P is normalized this would require checking O

�
log2 n � possi-

ble values for t and U. If t � 4U, then t � 4medopt
�
P� 2 � and for any p � q � Pi we have � p � q � 	 U.

Moreover, for any p � P1 � q � P2 we have � p � q � � � c 	1 � c 	2 � � � c 	1 � p � � � c 	1 � q ��� 2U. Thus,
take all the points in distance

	
2U from c 	1 to be in P 	1, and take all the other points to be in P 	2.

The problem is thus solved, as we partitioned the points into the correct clusters, and can compute
an approximated 1-median for each one of them directly.

Otherwise, t
	

4U and let S � �
p ��� � p � c 	1 � 	

t � 4 � . Clearly, S � P 	1. Moreover, we claim that

�P 	2 � � ε �P 	1 S � , since otherwise we would have

�P 	2 �

 c 	2 � c 	1

	 ε �P 	1 S �

 c 	2 � c 	1

and

cost
�
c 	1 � P 	1 S � � t

4
�P 	1 S � � � c 	2 � c 	1 �

8
�P 	1 S � �

Thus, �P 	2 � � c 	2 � c 	1 � 	
8εcost

�
c 	1 � P 	1 � S � and thus cost

�
c 	1 � P � 	 �

1 � 8ε � cost
�
c 	1 � c 	2 � P � . This im-

plies that we can solve the problem in this case by solving the 1-median problem on P, and thus
contradicting our assumption.

Thus, �P 	2 � � ε �P 	1 S � . We create P 	 � P S � P 	 	1 � P 	2, where P 	 	1 � P 	1 S. Although P 	 	1 might
now be considerably smaller than P 	 	2 , and as such case 1 does not apply directly, we can overcome
this by adding enough copies of c 	1 into P 	 	1 , so that it would be of similar size to P 	2.

To carry that out, we again perform an exhaustive enumeration of the possible cardinality of P 	2
(up to a factor of 2). This would require checking O

�
logn � possibilities. Let V be the guess for

the cardinality of P 	2, such that V 	 �P 	2 � 	 2V .
We add V copies of c 	1 to P 	 	1 . We can now apply the algorithm for the case when the cardinali-

ties of both clusters are comparable, as long as we ensure than the algorithm reports c 	1 as one of the
medians. To this end, it is not difficult to see that by adding copies of c 	1 to P 	 	1 we also ensured that
for any 2 medians x and y, replacing at least one of them by c 	1 yields better solution. Therefore,
without loss of generality we can assume that the algorithm described above, when applied to P 	 ,
reports c 	1 as one of the medians. The complexity of the algorithm is as stated.

Theorem 3.6 For any point-set P � � d , ε � 1, and a parameter k, a
�
1 � ε � -approximate k-median

for P can be found in

2 � k 	 ε � O � 1 � dO � 1 � n logO � k � n

expected time, the results are correct with high-probability.

Proof: We describe the extension of the algorithm of Theorem 3.5 for k � 2. The general ideas
used in the algorithm are as in the case k � 2, but are applied in a recursive fashion.

Let the optimal clusters be C1 � � � Ck, and let their centers be c1 � � � ck. Assume �C1 � � � � � � �Ck � .
We can assume that we know �Ci � up to any constant factor (by exhaustive enumeration of O

�
logn � k

possibilities). In the following, for simplicity of exposition we will assume we know �Ci � ’s exactly.
The algorithm proceeds by performing at most k reductions. Each reduction reduces the num-

ber of remaining clusters to compute (by finding an approximate cluster center for one of them,
or by observing that one of the clusters is unnecessary to consider) as well as the total number of
points to consider. Moreover, each reduction will induce an increase in the total clustering cost by

9

a factor
�
1 � O

�
ε � � k � . Thus, the cost of the final clustering will be at most

�
1 � O

�
ε � � times larger

than the optimal cost.
The algorithm proceeds by considering the following cases.

Case 1: �Ci � 1 � � εb � kb �Ci � , for a certain constant b � 1. In this case we know that �Ci � � n � εb � kb � k

for all i � 1 � � � k. Thus, we can solve the problem by sampling � kb

εb
� k

kO � 1 � � εO � 1 � points, then guess-

ing (by enumeration) which points belong to which clusters, and applying the 1-median sampling
theorem for the sample of points of each cluster.

Case 2: �Ci � 1 � � �
εb � kb � �Ci � , for some i. Assume that i is the smallest index with this property.

Note that ∑ j � i �C j � 	 2εb � kb � 1n.
In this case, we choose a random sample of size at most n � ∑ j � i �C j � and not greater than

the one in Case 1. Observe that with constant probability the sample contains only points in
C1 � � � � � Ci, and moreover it contains enough of them so that

�
1 � ε � k � -approximate medians for

the first i clusters can be computed as in Case 1. We will keep these i medians till the end of the
computation, and compare the cost of our solution to the cost of the best clustering with the same
first i medians. We will denote the optimal solution medians (again) by c1 � � � ck, and the induced
clusters by C1 � � � Ck.

Since we know c1 � � � ci, it remains to find the remaining cluster centers. Let AvgMed �
AvgMed

�
C1 � � � � � Ci � i � . If the distance from any c j, j � i to the nearest c1 � � � � � ci is less than

AvgMed, then we ignore (i.e., not compute) such median c j. Note that the additional cost incurred
in this way is at most AvgMed � 2εn � k, which is at most O

�
ε � k � times the optimal cost. Thus, we

reduced the number of clusters to at most k � 1, and we apply the clustering procedure again, this
time for the smaller number of clusters.

Assume now that the distance from all c j, j � i to the nearest c1 � � � � � ci is at least AvgMed.
In this case we apply the “shrinking” approach, similar to the argument used in Theorem 3.5, to
show that we can shrink C1 � � � � � Ci to make their sizes comparable to Ci � 1. In particular, let t be the
distance between ci � 1 and its closest points in c1 � � � ci. We can estimate t up to any constant factor
by guessing one out of O

�
logn � approximations. As before, for simplicity, assume t is the exact

distance.
We know that all points within distance � t � 2 to c1 � � � � � ci belong to clusters C1 � � � � � Ci. There-

fore, we can remove them from the set to cluster. Note that this does not change the medians
c1 � � � ck. However, the number of points with distance � t � 2 from c1 � � � � � ck is comparable to the
size of Ci � 1, or otherwise ci � 1 is redundant. Specifically, assume that the number of such points
is m. Then the cost of the clustering is at least mt � 2. If we removed ci � 1, the cost would increase
by at most t �Ci � 1 � . Thus, if m � 2k � ε �Ci � 1 � , then we could reduce the number of clusters by 1 and
proceed recursively. If this is not the case, it means that m � 2k � ε �Ci � 1 � . At the same time we can
enforce �C j � � �Ci � 1 � for j

	
i by adding copies of c j (as for the case k � 2). We can now apply

the algorithm recursively to find the remaining medians. Observe that this particular recursive step
can be applied at most k times, since after the step the minimum value of i s.t. �Ci � 1 ��� �Ci � is
increased by 1.

This is yields a recursive algorithm, that gets rid one one cluster in each recursive call. Thus, the

algorithm has the running time stated. Note, that we need to rerun this algorithm O � 2O � k � logn �

10

times to get high probability of correctness.

4 k-center clustering with outliers

In this section, we extend our algorithm from Section 2 to handle outliers.

Definition 4.1 For a point-set P in � d , let rcen
�
P� k � α � denote the minimal radius clustering with

outliers; namely, we allow to throw out α �P � outliers. Computing this value is the
�
k � α � -center

problem. Formally,
rcen

�
P� k � α � � min

S � P��� S � � � 1 � α � �P � rcen
�
S � k � �

The problem of computing k-center with outliers is interesting, as the standard k-center clus-
tering is very sensitive to outliers.

Theorem 4.2 For any point-set P � � d , parameters 1 � ε � α � 0 � µ � 0, a random sample R of
O

�
1 � �

εµ ��� points from P spans a flat containing a
�
1 � ε � 1 � µ � α � -approximate solution for the

1-center with α-outliers for P. Namely, there is a point p � span
�
R � , such that the ball of radius�

1 � ε � rcen
�
P� 1 � α � centered at p, contains at least

�
1 � α � µ � points of P.

Furthermore, we can compute such a cluster in O
�
f
�
ε � µ � nd � time, where f

�
ε � µ � � exp � O � 1

εµ log2 1
εµ

� �
Proof: Let copt denote the center of the optimal solution, ropt � rcen

�
P� 1 � α � denote its radius,

and Bopt � Ball
�
copt � ropt

� . Let s1 � � � � � si be our random sample, Fi � span
�
s1 � � � � � si

� , and ci �
proj

�
copt � Fi

� , and we set β � � ε, and

Ui � �
x ��� π � 2 � β 	��

coptcix
	 π � 2 � β � �

be the complement of the cone of angle π � β emanating from ci, and having cicopt as its axis.
Let Pi � Ui

 P
 Bopt. For any point p � Pi, we have

� p � ci � 	��
x2

p � y2
p
	

ropt
�

1 � 4β2 � ropt
�
1 � O

�
ε ��� �

Namely, as far as the points of Pi are concerned, ci is a good enough solution.
Let Qi � P Pi. As long as �Qi � � �

α � µ � �P � , we have a probability of 1 � µ to sample a random
point that is in Qi and is not an outlier. Arguing as in the proof of Theorem 3.2, in such a case, the
distance of the current flat to copt shrank down by a factor of

�
1 � β2 � 4 � . Thus, as in the proof of

Theorem 3.2, we perform the random sampling in rounds. In our case, we need O
���

1 � ε � log
�
1 � ε � �

rounds, and each round requires in expectation 1 � µ random samples. Thus, overall, if we sam-
ple M � O

���
1 � �

εµ ��� log
�
1 � ε � � points, we know that with constant probability, span

�
s1 � � � � � sM

�
contains a point in distance εropt from copt .

As for the algorithm, we observe that using random sampling, we can approximate ropt
�
P� 1 � α �

up to a factor of two in o
�
dn � time. Once we have this approximation, we can generate a set of

candidates, as done in Theorem 3.4. This would result in

f
�
ε � µ � � O

� �
10 �R �

ε � �R � � �R � � � 2O �
� 1 	 � εµ �
� log2 � 1 	 � εµ �
� �
11

candidates. For each candidate we have to spend O
�
nd � time on checking its quality. Overall, we

get f
�
ε � µ � nd running time.

Remark 4.3 Theorem 4.2 demonstrates the robustness of the sampling approach we use. Al-
though we might sample outliers into the sample set R, this does not matter, as in our argumen-
tation we concentrate only on the points that are sampled correctly. Essentially, dist

�
Fi � copt

� is a
monotone decreasing function, and the impact of outliers, is only on the size of the sample we need
to take.

Theorem 4.4 For any point-set P � � d , parameters 1 � ε � α � 0 � µ � 0 � k � 0, one can compute a�
k � α � µ � -center clustering with radius smaller than

�
1 � ε � rcen

�
P� k � α � in 2 � k 	 εµ � O � 1 � nd time. The

result is correct with constant probability.

Proof: Let P 	 be the set of points of P covered by the optimal k-center clustering C1 � � � � � Ck,
with αn outliers. Clearly, if any of the Cis contain less than

�
µ � k � n points of P 	 , we can just skip it

altogether.
To apply Theorem 4.2, we need to sample O

�
k � �

εµ ��� points from each of those clusters (we
apply it with µ � k for the allowed fraction of outliers). Each such cluster, has size at least

�
µ � k � n,

which implies that a sample of size O
�
k2 � �

µ2ε � � would contain enough points from Ci. To im-
prove the probabilities, we would sample O

�
k3 � �

µ2ε � � points. Let R be this random sample. With
constant probability (by the Markov inequality), �R
 Ci � � Ω

�
k � �

εµ � � , for i � 1 � � � � � k. We exhaus-
tively enumerate for each point of R to which cluster it belongs. For such partition we apply the
algorithm of Theorem 4.2. The overall running time is 2O �
� k 	 � εµ � O � 1 � �
� nd.

5 The 1-cylinder problem

Let P be a set of n points in � d , we are interested in finding a line which minimizes the maximum
distance from the line to the points. More specifically, we are interesting in finding a

�
1 � ε �

approximation to the problem in polynomial time.
In the following, let � opt denote the axis-line of the optimal cylinder, ropt � radius

�
P� � opt

� �
maxp � P

 � opt � p

 denote its radius, and Hopt denote the hyperplane perpendicular to � opt that
passes through the origin.

In this section, we prove the following theorem:

Theorem 5.1 Given a set of n points in � d , and a parameter ε � 0, one can compute, in nO � log � 1 	 ε �
	 ε2 �
a line l, such that radius

�
P� l � 	 �

1 � ε � ropt , where ropt is the radius of the minimal 1-cylinder that
contains P.

5.1 The Algorithm

First, observe that one can compute a 2-approximation to the 1-cylinder problem by finding the
furthest away 2 points p � q � P (i.e., the diameter) and taking the minimum cylinder having pq as
its axis that contains P. It is easy to verify that the radius R of this cylinder is at most 2ropt , where
ropt is the radius of the smallest cylinder. Computing R takes O

�
n2d � time.

12

Let l be the center line of an optimal solution with cost ropt . We will assume that the value
of ropt is known to us (up to a factor very close to 1), as we can enumerate all potential values of
ropt in the range R � 2 � � � R. The high-level idea of the algorithm is to compute a

�
1 � ε � distortion

embedding of the n points from � d into � log n 	 ε2
, “guess” the solution to the problem there and

then to retrieve the solution in the original space. However, a simple application of this method
is known to not work for continuous clustering problems (and 1-cylinder in particular), due to the
following problems:

� The optimal solution found in the low-dimensional space does not have to correspond to any
solution in the original space.

� Even if this was true, it is not clear how to retrieve the high-dimensional solution from the
low-dimensional one.

To overcome this difficulties, we proceed as follows:

1. In the first step, we find a point h lying on the � opt . To be more precise, we “guess” it (by
enumerating polynomially many candidates) instead of finding it; moreover, the point does
not lie on the line by only sufficiently close to it.

2. We remove from P all the points within distance
�
1 � ε � ropt from h. Since our final solution

line passes through h, it is sufficient to find a solution for the smaller set P.

3. We embed the whole space into a low-dimensional space, such that with high probability for
all points p � P, the angles

� � �
ph � opt are approximately preserved.

As we discuss later, such an embedding A is guaranteed by Johnson-Lindenstrauss lemma.

4. We guess (approximately) the low-dimensional image Al of the line l (again, by exploring
polynomially many possibilities). By the properties of the embedding A, we can detect which
points in P lie on the positive side of the

�
d � 1 � -dimensional hyperplane H passing through

h and orthogonal to l. We modify the set P by replacing each point p from the negative side
of the hyperplane by its reflection around h. Note that this operation does not increase the
solution cost by too much.

5. It is now sufficient to find an optimal half-infinite ray beginning at point h, to minimize the
distance from P to the ray. Moreover, we know that the points are on the same side of a�
d � 1 � -dimensional hyperplane that passes through h. This problem can be solved using

convex programming tools.

Thus, we use the low-dimensional image of l to discover the “structure” of the optimal solution,
namely which points lie on which side of the hyperplane H. Knowing this fact allows us to reduce
our (non-convex) problem to a convex one.

5.2 Detailed description of computing the approximate 1-cylinder

In the following, we elaborate on each step in computing the min-radius cylinder containing a
point-set.

13

5.2.1 Step 1: finding a point near the line

In order to find the point h, we will need to embed additional “helper” points. For each subset S of
P, M � � S � � O

�
1 � ε2 � , we compute an ε-net on the interior of the convex body spanned by them.

Definition 5.2 Let U be any set of points in � d , and ε � 0 be a parameter. We say that a subset
V of points is an ε-net for U if for any line � that intersects CH

�
U � , there is a v � V such that

dist
�
v � � � 	 ε

2ropt .

Lemma 5.3 Let U be a set of points in � d and ε � 0 be a parameter. We can compute an ε-net
A
�
U � for U in

� �U � 2 � 5 � ε � O � �U � � time. The cardinality of A
�
U � is

� �U � 2 � 5 � ε � O � �U � � .
Proof: Let H the

�
M � 1 � -dimensional affine subspace spanned by U (notice that M

	 �U �),
and let E �

H be an ellipsoid such that E � �
M � 1 � 2 � CH

�
U � � E , where E � �

M � 1 � 2 is the
scaling down of E around its center by a factor of 1 � �

M � 1 � 2. Such an ellipsoid exists (a stronger
version of this statement is known as John theorem), and can be computed in polynomial time
in �U � [GLS88, Section 4.6]. Let B be the minimum bounding box of E which is parallel to the
main axises of E . We claim, that B � � M is contained inside E . Indeed, there exists a linear
transformation T that maps E to a unit ball S . The point q � �

1 � � M � 1 � � M � � � � � 1 � � M � lies on
the boundary of this sphere. Clear, T � 1 �

q � is a corner of B � � M, and is on the boundary of E . In
particular,

∆
�
B � � �

M∆
�
B � � M � 	 �

M∆
�
E �

	 �
M

�
M � 1 � 2∆

�
E � �

M � 1 � 2 � 	 �
M

�
M � 1 � 2∆

�
U � �

For any line � , the same arguments works for the projection of those entities in the hyperplane
perpendicular to � . Let T P � denote this projection, we have:

∆
�
T P �

�
B ��� 	 �

M
�
M � 1 � 2∆

�
T P �

�
U ���

	
2
�

M
�
M � 1 � 2 dist

�
U � � � �

Next, we partition B into a grid, where each grid cell is a translated copy of Bε � �
ε � 2 � B � �

2
�

M
�
M �

1 � 2 � . This grid has V � �
M2 � 5 � ε � O � M � vertices, and let A

�
U � denote this set of vertices.

Let � be any flat intersecting CH
�
U � . We claim that one of the points in A

�
U � is in distance	 ε

2 dist
�
U � � � from � . Indeed, let z be any point in CH

�
U �
 � . Let B 	 	ε be the grid cell containing

z, and let v be one of its vertices. Clearly,

dist
�
v � � � 	 � T P �

�
v � T P �

�
z � � 	 ∆

�
T P �

�
B 	 	ε � �

� ε
2

� 1

2
�

M
�
M � 1 � 2

∆
�
T P �

�
B ��� 	 ε

2
dist

�
U � � � �

which establishes our claim.
Let G

�
S � � A

�
S � as defined by Lemma 5.3. Clearly, �G �

S � � � � � S � 2 � 5 � ε � O � � S � � , where � S � �
O

�
1 � ε2 � . We have

�G �
S � � � 2O � log � 1 	 ε ��	 ε2 � �

Lemma 5.4 Consider the points in G
�
S � for all sets S. At least one of those points is at most εropt

away from � opt .

14

Figure 3: Any point inside the convex body has at least 1 “helper” point at distance at most ε � 2ropt

after the embedding.

Proof: Project all the points into a hyperplane Hopt , and denote this set of points by P 	 . Let o
be the point corresponding to the line intersected with Hopt . Since all the points are at distance at
most ropt from l, all the points projected into H will be at distance at most ropt from o. Compute
the minimum enclosing ball of the point-set P 	 . It is easy to see that if the origin of the minimum
enclosing ball is not o, then we can come up with a solution for the minimum fitting line of cost
lower than ropt by just translating l to intersect the center of the ball. Therefore, it must be that
the minimum enclosing ball of P 	 has the origin in o. By Theorem 2.5, there exists a set S � P 	 ,
� S � � O

�
1 � ε2 � , such that the minimum enclosing ball of the S is at most

�
ε � 2 � ropt away from o

and since the center of any minimum enclosing ball of a set of points can be written as a convex
combination of the points, we conclude that there exists a point p, a convex combination of the
points of S such that D

�
p � o � 	 εropt . Also, distance from p to the closest point of G

�
S � is at most�

ε � 2 � ropt .
Therefore, there exists a point in our ε-net that is at most εropt away from the optimal fitting

line.

5.2.2 Step 2: Removing the points near h

For the simplicity of the exposition, we assume, from this point on, that h lies on the optimal line� opt . We remove from P all the points within distance
�
1 � ε � ropt from h.

The removal step can be clearly implemented in linear time. Observe that after this step, for
all points p, the angle between

� �
ph and � opt is in the range � 0 � π � 2 � ε � 2

� � � π � 2 � ε � 2 � π �
for small

enough ε. As we will see in the next section, this property implies that the angles do not change
the value from less than π � 2 to greater than π � 2 after applying the dimensionality reduction.

5.2.3 Step 3: Random projection

In this section we show how to find a mapping A : � d � � d � for d 	 � O
�
logn � ε2 � which pre-

serves all angles
� � �

hp � opt , p � P, up to an additive factor of ε � 3. For this purpose we use the
Johnson-Lindenstrauss lemma. It is not difficult to verify (e.g., see [EIO02]) that if we set the error

15

parameter of the JL lemma to ε � C for large enough constant C, then all the aforementioned angles
are preserved up to an additive factor of, say, ε � 4. This implies that for each p � P, the image of the
point p is on the same side of the (image of) the hyperplane H as the original points p. Moreover,
for any p � P the angle

� � � �
hp � � opt

� are in the range � 0 � π � 2 � ε � 4
� � � π � 2 � ε � 4 � π �

, i.e., are still
strictly separated from π � 2.

5.2.4 Step 4: Guessing the image of l

We now need to guess (approximately) the image A � opt , where A is the mapping generated by
the JL lemma. For this purpose, we need to know the direction of l, since we already know one
point through which the line A � opt passes through. Our approach is to enumerate all “different”
directions of a line A � opt . Obviously, the number of such directions is infinite. However, since we
use the line exclusively for the purpose of separating the points p � P depending on their angle� � �

hp � opt , and those angles are separated from π � 2 by ε � 4, it is sufficient to find a direction vector
which is within angular distance ε � 4 from the direction of l. Thus, it is sufficient to enumerate all
directions from an ε � 4-net for the space of all directions. It is known that such spaces of cardinality�
1 � ε � O � d � � � nO � log � 1 	 ε ��	 ε2 � exist and are constructible. Thus, we can find the right partition of points

in P by enumerating a polynomial number of directions.
After finding the right partition of P (say, into PL and PR), we replace each point in PL by

its reflection through h; call the resulting set P 	L � �
2h � p ��� p � P � . Note that there is a one-to-

one correspondence between the 1-cylinder solutions for P which pass through h and the 1-ray
solutions for P 	 � P 	L � PR; the 1-ray problem is defined as to find a ray r with an endpoint at
h which minimizes the maximum, over all input points p, of the distance from p to r. Thus, it
remains to solve the 1-ray problem for P 	 .
5.2.5 Step 5: Solving the 1-ray problem using convex programming

We focus on the decision version of this problem. Assume we want to check if there is a solution
with cost at most T . For each point p, define a cone Cp to be the set of all rays with endpoints in h
which are within distance T from p. Clearly, Cp is convex. The problem now corresponds to check-
ing if an intersection of all cones Cp is nonempty, which is an instance of convex programming and
thus can be solved up to arbitrary precision in polynomial time [GLS88].

6 Conclusions

In this paper, we presented several very fast algorithms for doing
�
1 � ε � -approximate clustering.

Our algorithm relied on the ability to compute small core-sets for those clustering problems. We
believe that the techniques presented in this paper might be useful for other clustering problems.
In particular, it would be interesting to extend the set of problems for which we know the existence
and construction of a small core-set.

16

References

[ADPR00] N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustering. In Proc. 41th Annu.
IEEE Sympos. Found. Comput. Sci., 2000.

[AP98] P.K. Agarwal and C.M. Procopiuc. Exact and approximation algorithms for clustering.
In Proc. 9th ACM-SIAM Sympos. Discrete Algorithms, pages 658–667, 1998.

[ARR98] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidean k-median
and related problems. In Proc. 30th Annu. ACM Sympos. Theory Comput., pages 106–
113, 1998.

[BE97] M. Bern and D. Eppstein. Approximation algorithms for geometric problems. In D.S.
Hochbaum, editor, Approximationg algorithms for NP-Hard problems. PWS Publish-
ing Company, 1997.

[DHS01] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley-Interscience, New
York, 2nd edition, 2001.

[EIO02] L. Engebretsen, P. Indyk, and R. O’Donnell. Derandomized dimensionality reduction
with applications. In Proc. 13th ACM-SIAM Sympos. Discrete Algorithms, 2002. to
appear.

[GIV01] A. Goel, P. Indyk, and K.R. Varadarajan. Reductions among high dimensional proxim-
ity problems. In Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pages 769–778,
2001.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin
Heidelberg, 2nd edition, 1988. 2nd edition 1994.

[Gon85] T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret.
Comput. Sci., 38:293–306, 1985.

[Har01] S. Har-Peled. Clustering motion. In Proc. 42nd Annu. IEEE Sympos. Found. Comput.
Sci., pages 84–93, 2001.

[HV01] S. Har-Peled and K.R. Varadarajan. Approximate shape fitting via linearization. In
Proc. 42nd Annu. IEEE Sympos. Found. Comput. Sci., pages 66–73, 2001.

[Ind01] P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In Proc.
42nd Annu. IEEE Sympos. Found. Comput. Sci., pages 10–31, 2001. Tutorial.

[IT00] P. Indyk and M. Thorup. Approximate 1-median. manuscript, 2000.

[MOP01] N. Mishra, D. Oblinger, and L. Pitt. Sublinear time approximate clustering. In SODA
12, 2001.

17

[OR00] R. Ostrovsky and Y. Rabani. Polynomial time approximation schemes for geometric
k-clustering. In Proc. 41st Symp. Foundations of Computer Science, pages 349–358.
IEEE, Nov 2000.

18

