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ABSTRACT
We consider the problem of estimating the tour length and
finding approximation algorithms for the asymmetric travel-
ing salesman problem arising from the disk scheduling prob-
lem. Given N requests, we show that if the seek function
has positive derivative at 0 the tour length is concentrated
in probability around the value Cf,pN

1/2 for an explicit con-
stant Cf,p dependent on the seek function and the distribu-
tion of requests. For linear seek function we provide even
tighter bounds and provide an O(Nlog(N)) time algorithm
for finding the optimal tour. The proof uses several results
on the size and location of maximal increasing subsequences.
To handle more general seek functions we introduce a more
general concept of increasing subsequences. we provide or-
der of magnitude estimates on the tour length for a wide
class of seek functions with vanishing derivative at 0. For
general seek functions we use some geometric information on
the location of maximal generalized increasing subsequences
obtained via Talagrand’s isoperimetric inequalities to pro-
duce a probabilistic 1 + ε approximation algorithm. These
results complement the results on guaranteed approximation
algorithms for this problem presented in [?].

1. INTRODUCTION
Modern disk drives have the ability to queue incoming

read and write requests and to service them in an out of
order fashion. In the Batched disk scheduling problem we are
given a batch of N queued requests and we wish to service
them in an order which minimizes the total service time, or
equivalently, the number of disk rotations required to service
all N requests.

In order to be more specific we have to characterize the
geometric properties of mechanical disk motion. Mechani-
cal motion in the disk consists of two components the first is
the inward/outward radial motion. The time spent by the
disk head performing the first component of motion between
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successive requests is known as seek time. The second com-
ponent of motion is the rotational motion of the disk around
its axis, the time it takes between the arrival of the disk head
to the proper radial location and the time the wanted data
passes under the disk head is known as (rotational) latency
time . Given radial and angular distance units r and θ the
function f(θ) is defined to be the radial distance which the
disk head can travel starting and finishing at rest (in the
radial direction), while the disk rotates through an angular
distance θ. The mechanics of disk head motion dictate that
the function f is convex. The choice of units and f charac-
terize our model of the physical disk. Given this model we
can define using f the distance from a request P to a request
Q as the time required to move the disk head from location
P to location Q, with no radial velocity at the beginning
and end of the movement.

In reality there are some other time components involved
in servicing a request such as head switch time and data
transfer time. the contribution of these elements to the total
service time is often small and can be treated separately.

The main goal of this paper is to present average case
analysis of the number of rotations required to optimally
service N batched requests.

We assume that we are given a continuous density func-
tion p(r) on the space of disk locations, which depends only
on r, a restriction which will later be justified. We assume
that the N requests are drawn in accordance with this dis-
tribution density. If the seek function satisfies f ′(0) > 0 We
show that the number of disk rotations needed to service
all N requests is with high probability asymptotic to C

√
N ,

as N approaches infinity. The constant C is given explicitly
in terms of the physical characteristics of the disk and the
density p(r).

If f ′(0) = 0 then the asymptotics are different but the
distribution of the number of rotations still concentrates
around a certain value for which we provide order of mag-
nitude estimates.

As a byproduct of the analysis techniques we will also
obtain a probabilistic polynomial time 1 + ε approximation
algorithm.

The estimate on the number of rotations in the f ′(0) > 0
case is analogous to the BHH theorem for the Euclidean
traveling salesman problem, see [?], that states that the
length of an optimal tour between N randomly chosen points
in the unit square, equipped with the standard Euclidean
metric, is with high probability asymptotic to C1

√
N . How-



ever the constant C1 is analytically unknown. The 1 + ε ap-
proximation algorithm is analogous to Karp’s famous prob-
abilistic approximation algorithm for the Euclidean TSP
which is derived from the BHH theorem, see [?]. thus our
results provide yet another example of the powerful link be-
tween knowledge of the distribution of the size of a geometric
functional and approximation algorithms for the functional.

We note however that the maximal length of an optimal
tour in the Euclidean case has order of magnitude Θ(

√
N)

while in our case it is easy to construct examples in which
the optimal tour has length Θ(N) (pick all requests to be
on the same ray emanating from the center of the disk).
This simple observation implies that our problem does not
satisfy the subadditivity property which is common to the
Euclidean TSP, Euclidean minimal spanning tree and the
Euclidean minimal matching functionals, see [?] for a thor-
ough account of the research on these geometric functionals.
As a result the methods which are required in our case are
somewhat different from those which are used in analyzing
the other functionals. It also explains how we get asymp-
totics which are not of the form C

√
N in the case where

f ′(0) = 0.
We establish the tour length estimate for the case of a lin-

ear seek function, f(θ) = cθ (seek distance is proportional to
seek time), by showing that the length of the optimal tour
in this case is very close to the length of the largest increas-
ing subsequence in a particular geometric setting which was
studied in [?].

When the seek function satisfies f ′(0) = 0, the length of
the optimal tour is closely related to the length of a maxi-
mal generalized increasing subsequence, a notion which we
introduce in the paper.

Previous work Disk scheduling was studied extensively
during the seventies and eighties, see [?], [?] and [?] among
others. At the time, after the head seeked to a certain track
it spent there an entire revolution of the disk, hence opti-
mization involved only seek minimization and latency was
not considered. The first papers which discuss seek+latency
optimization are [?] and [?]. In particular it is noted in [?]
that the problem of minimizing the total service time of a
batch of requests is a particular instance of the asymmet-
ric shortest Hamiltonian path problem. Further experimen-
tal studies which utilized certain heuristic methods for con-
structing tours are contained in [?]. The scheduling problem
was then studied analytically for the first time in the beauti-
ful paper [?]. The authors show that for general convex seek
functions f the problem is NP-complete. The main result
of [?] is a 3/2-approximation algorithm for this problem.
For the case of a linear seek function they actually present
a polynomial time algorithm which services the requests op-
timally.

We note that in the recent preprint [?], the length of the
optimal tour is also studied, for batches of requests which
are confined to a very small radial annulus of the disk. This
assumption completely eliminates The seek component from
the problem and the computation involves latency estimates
only. In completely practical terms one might say that we
study the estimated optimal tour length when the activity to
the disk is spread over a data region of size 500MB or more,
while [?] explores activity which is confined to an address
space of 100MB or less. In that sense the two studies are
complementary and together provide an almost complete
analysis over almost all ranges.

Finally we note that in an amusing twist of faith the next
generation of magnetic storage technology known as MEMS
based storage devices will most likely resemble the seek only
devices studied in the seventies, see [?] thus completing the
cycle of research on this subject.

organization of the paper: In section 2.1 we intro-
duce the problem and many related definitions. In particular
we introduce some relaxations which are easier to analyze.
Much of this material is based on [?] section 2. In section
2.2 we introduce the probabilistic setting and state all the
results on increasing subsequences which will be used.

In section 3 we estimate the size of a relaxed version of
our problem which is equivalent to a problem on increasing
subsequences.

In section 4 we relate the relaxed version to the disk
scheduling problem again using knowledge on the location
of maximal increasing subsequences.

Section 5 states our main results which are for the most
part easy consequences of the discussion in sections 3 and 4.

Finally section 6 briefly discusses a problem related to the
online disk scheduling problem.

2. STATEMENT OF THE PROBLEM, DEF-
INITIONS AND PRELIMINARIES

In this section we describe the batched disk scheduling prob-
lem and briefly survey some results on increasing sequences
which are used later on. The batched disk scheduling prob-
lem and the associated disk graph were formally introduced
in [?] section 2 which we follow closely in the next subsec-
tion.

2.1 The disk graph
A computer disk has the shape of an annulus. For con-

venience we let the radial distance between the inner and
outer circles be 1. Each point on the disk is then repre-
sented by polar coordinates, R = (r, θ) where 0 ≤ r ≤ 1 is
the radial distance from the inner circle and 0 ≤ θ ≤ 1 is
the angle relative to an arbitrary but fixed ray. A complete
circular angle is chosen to be of 1 unit instead of 2π as in
[?] for the convenience of future computations. We denote
the coordinates of a point R by r(R) and θ(R) respectively.

Associated with the disk is a reachability function f(θ).
The function f(θ) represents the maximum radial distance
the disk head can travel starting and ending with no radial
motion, while the disk rotates through an angle θ. The ac-
celeration and deceleration involved in disk head motion dic-
tates that f is a convex function. We will assume throughout
the paper that the seek function f is convex and furthermore
that f(θ) > 0 for θ > 0 unless otherwise stated.

We denote the number of rotations needed for a full radial
stroke by ts which by definition equals f−1(1), were f−1

denotes the inverse function of f .
given two requests for disk data at locations Ri = (ri, θi),

i = 1, 2, we may define the distance between the two requests
R1 and R2 to be

d(R1, R2) = Min {Integers k : f(θ2 − θ1 + k) ≥ |r1 − r2|}

The distance is the number of times the head must cross
the line θ = 0 when traveling from R1 to R2. Note that the
distance function is asymmetrical.

Following section 5 in [?] we define a partial order on the
requests. We say that Ri ≤ Rj iff d(Ri, Rj) = 0. It is easy



to verify that ≤ is indeed a partial ordering of the requests.
We denote by mc(G) the size of a minimal decomposi-

tion of the vertices in G into chains with respect to ≤. By
Dilworth’s theorem, see [?], mc(G) is also the size of the
maximal independent subset of G with respect to ≤.

Given N requests, R1, ..., RN , consider their associated
disk graph, G = Gf , which is a weighted complete directed
graph whose vertices are the requests and the weight of the
directed edge (Ri, Rj) is d(Ri, Rj).

We consider the operator T which is defined by T (r, θ) =
(r, θ + 1). Consider the infinite stripe given by 0 ≤ r ≤ 1
We say that R′ is an extended request if there exists an in-
teger l and a request R such that R′ = T l(R). We say that
such R and R′ are equivalent It is convenient to think of ex-
tended requests in terms of space-time coordinates. equiv-
alent extended requests correspond to the space (disk) lo-
cation but in space-time R′ is the same location l disk ro-
tations later (or earlier). We can extend the relation ≤ to
extended requests. We say that R′1 ≥ r′2 iff θ(R′1) ≥ θ(R′2)
and f(θ(R′1) − θ(R′2)) ≥ |r(R′1) − r(R′2)|. It is easy to see
that this definition agrees with the previous one on requests.
Intuitively R′1 ≥ R′2 if there is a feasible disk head motion
which starts at the space-time point R′2 (with no radial mo-
tion) and reaches the space-time point R′1 (again with no

radial motion). We define the extended disk graph Ĝ to be
the directed graph whose vertices are the extended requests
and with an edge (R′1, R

′
2) iff R′2 ≥ R′1.

A cycle in G is an ordered set of distinct requests R0 =
(r0, θ0), ..., Rk−1 = (rk−1, θk−1). The predecessor of a re-
quest Ri in a cycle is Ri−1 with Rk−1 being the predecessor
of R0. We denote the predecessor of Ri by p(Ri). Let L be a

cycle. l(L), the length of L, is defined as
Pk−1
i=0 d(Ri, Ri+1),

where i+ 1 is understood to be Mod k, if k > 1. If the cycle
is a singleton then we define its length to be 1. By abuse
of notation we let L also denote the concatenated cycle of
paths P (R0, R1), P (R1, R2), ..., P (Rk−1, R0).

Denote by st(G) the length of the shortest Hamiltonian
cycle in G. st(G) is the minimal number of rotations re-
quired to service all N requests starting from one of the
requests and returning to it at the end of the service, hence
the notation st(G) for service time.

Our goal is to provide average case analysis for st(G).

If L is a cycle a path P = PL is a function P : [0, l(L)] −→
[0, 1] such that for all 0 ≤ i ≤ k−1 we haveP (

Pi−1
j=0 d(Rj , Rj+1)+

θi) = ri, P (0) = P (l(c)) and which describes a physically
feasible disk head motion which visits request R0 in it’s first
rotation, stops at request Ri,

Pi−1
j=0 d(Rj , Rj+1) rotations

later, returning to R0 after l(C) rotations. Such a path ex-
ists by the definition of d.

Let L1, ..., Lm be a cover of the vertices of G by cycles.
The length of the cycle cover is

Pm
i=1 l(Li). Let cc(G) denote

the length of a minimal cycle cover of G. Obviously cc(G) ≤
st(G) it is also easy to verify that mc(G) ≤ cc(G).

2.2 The probabilistic setting and increasing
subsequences

To discuss average case analysis, we need a probabilistic
model for the requests. Our probabilistic model assumes
that the N requests are chosen independently in the (r, θ)
unit square, 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 1 according to some con-

tinuous density distribution p(r, θ). The density p(r, θ) is a
measure of the activity of the data residing at location (r, θ).
When laying out data on a disk logically linked data is usu-
ally placed at radially adjacent locations although in some
systems there is no such connection. Such a relation will
imply density differences along the radial axis. It is unlikely
on the other hand that such differences will be displayed in
the angular direction. Therefore we assume in this paper
that p the density does not depend on θ, hence p = p(r).

In this context the phrase “with high probability”, w.h.p
for short refers to an event that occurs with probability ap-
proaching 1 on the probability space of all sets of N requests
as N approaches infinity.

In the next section we will show that the disk scheduling
problem is intimately connected to problems on increasing
subsequences. In the course of the paper we will repeatedly
use the following result of Deuschel and Zeitouni, see [?], on
increasing subsequences.
We say that a set of points z1 = (x1, y1), ..., zk = (xk, yk) in
the plane is increasing if xi ≥ xj iff yi ≥ yj for all 1 ≤ i, j ≤
k.

theorem 1. Let Q(x, y) be a continuous density distri-
bution on the unit square and let S be a set of N points in
the unit square chosen with respect to Q. Denote by K the
largest increasing subset of S. Then

1) For all ε > 0, w.h.p, |K − C
√
N | < ε

√
N . Here C is

given by the formula

C = Maxφ2

Z 1

0

p
φ′(x)Q(x, φ(x))dx

Where φ runs through all nondecreasing functions on
the unit interval with boundary conditions φ(0) = 0
and φ(1) = 1.

2) For any ε, δ > 0, w.h.p, an increasing subset of size

K − ε
√
N can be found in a δ neighborhood of φ if φ

maximizes the above functional. here a δ neighborhood
refers to all points which are at a distance less then δ
from a point of the form (x, φ(x)).

Theorem 1 relies on a more basic result which was shown
independentally by Vershik and Kerov and by Logan and
Shepp, see [?] and [?], which solves the problem for the
uniform distribution.

theorem 2. If, in the notation above Q(x, y) = 1, then
w.h.p

K − 2
√
N < ε

√
N

for all ε > 0.

The appearance of the constant 2 in theorem 2 is a deep
result. As we shall see later on in theorem 3 the asymptotics
of K − 2

√
N have recently been the focus of intense study,

we refer the reader to [?] for an excellent survey.
We will need theorem 1 in a slightly more general context

in which the requests are locally distributed with respect to
the density Q in some fundamental domain of a group ac-
tion and then translated by the action. We briefly explain
how theorem 1 is derived from theorem 2. One can verify
that only local calculations are needed in the process. More-
over the group action that we use is horizontal consisting of



translations in the θ coordinate hence as will be seen below
the required calculations are never correlated.

The interval [0,1] is subdivided into many intervals of a
small fixed length dx. Given a nondecreasing function φ,
and 1 ≤ i ≤ 1

dx
an integer, we consider the rectangles

(idx, φ(idx)), (idx, φ((i+ 1)dx)),
((i + 1)dx, φ(idx)), ((i + 1)dx, φ((i + 1)dx)). This rectangle
has approximate area φ′(idx)(dx)2 and hence contains ap-
proximately φ′(idx)(dx)2Q(idx, φ(idx))N points. It is shown
in [?], that the small variance in the density Q(x, y) over the
rectangle does not affect the asymptotics of theorem 2 and
hence the size of the maximal increasing subset contained
in the rectangle is according to theorem 2 approximately
2
p
φ′(idx)Q(x, φ(x))dx

√
N . Taking the union of all increas-

ing subsets from all the rectangles, which is trivially seen to
form an increasing subset, we obtain in an ε neighborhood
of φ an increasing subset of the desired size.
Conversely, any increasing subset can be ordered according
to its x coordinate. By definition this also orders the y co-
ordinate. By adjoining (0,0) and (1,1) to the subset and
linearly extrapolating between the points of the subset we
obtain a nondecreasing φ for which we can apply the pre-
ceding calculation.

In [?] Baik, Deift and Johansson proved the following
very deep refinement of theorem 2

theorem 3. Let q(x) be the Painleve II function solving
the differential equation q′′(x) = xq(x) + 2q3(x) which is
asymptotic to the Airy function as x −→∞ and let

F (x) = Exp(−
Z ∞

x

(x− t)q2(t)dt)

Where Exp refers to the natural exponential function. Let
LN denote the random variable describing the length of the
longest increasing subsequence among N uniformly chosen
points in the unit square, then

P (
LN − 2

√
N

N1/6
≤ x) −→ F (x)

as N −→∞ for all x.

The following definition and theorem are taken from [?]
Consider a probability space Ω. In our case Ω will be the
unit square equipped with a probability density function p.

A Configuration function LN is a function from ΩN to the
non negative integers with the following property. Given
any z = (z1, ..., zN ) ∈ ΩN there exists a subset Jz of the set
{1, ..., N} of size LN (z) such that for each y ∈ ΩN LN (y) ≥
Card {i ∈ Jz | yi = zi}. The following is a deep theorem of
M.Talagrand.

theorem 4. Let LN be a configuration function and let
M be it’s median then

P (|LN −M | ≥ u) ≤ 2e−
u2

4M

Theorem 4 states that the distribution of values of a con-
figuration function concentrates rather strongly around it’s
mean.

We note that log() always refers to the natural logarithm
function

Finally we also note that in several of the proofs some
technical details have been omited, they will be detailed in
the full version of the paper.

2.3 Strategy
We want to estimate st(G), but we first estimate mc(G)

using part 1 of theorem 1. Then we will show that w.h.p
mc(G) is equal to cc(G) and that cc(G) is approximately
equal to st(G). in the later case the approximation will be up
to a bounded additive factor while in the more general cases
the approximation will only be in the asymptotic sense. As
a result we can use the estimate for mc(G) for st(G) as well.
We also establish stronger combinatorial relations between
mc(G), cc(G) and st(G) under various assumptions.

3. ESTIMATING MC(G)
We estimate mc(G). In the case of a linear seek function

the estimates are fairly tight. For seek functions of the form
f(θ) = cθa we present order of magnitude estimates.

3.1 The linear case

theorem 5. With high probability

|mc(G)− (

r
2

c

Z 1

0

p
p(r)dr)

√
N | < ε

√
N

Proof. We first apply to the (r, θ) unit square the linear
transformation V : (r, θ) −→ (r/c, θ). On the new rectan-
gle we use the induced measure preserving density and we
define the induced partial order ≤V by V (Ri) ≤V V (Rj)
iff Ri ≤ Rj . V transforms f into V (f)(θ) = θ, hence
denoting the coordinates of V (Ri) by (rV,i, θV,i) we have
V (Ri) ≤V V (Rj) iff |rV,j − rV,i| ≤ θV,j − θV,i.
We now compose V with an affine transformation W which
shrinks (expands) our rectangle by a factor of

√
2 1
c+1

, then
rotates it clockwise by a 45 degree angle and finally shifts it
upwards by 1

c+1
.

It is easy to verify that the image of our rectangle is a rect-
angle, which we call Ic, whose vertices are

(
1

c+ 1
, 0), (0,

1

c+ 1
), (

c

c+ 1
, 1), (1,

c

c+ 1
)

We also note that further inducing the relation ≤ now
with respect to the composition WV produces the relation
WV (Ri) ≤WV WV (Rj) which holds iff rWV,j ≤ rWV,i and
θWV,j ≥ θWV,i. Stated otherwise, a set of points form an
independent set with respect to ≤ iff their images under WV
form an increasing subsequence

We are now in a position to use theorem 1. Let us first
assume that p(r) is the constant function 1. Since the area
of Ic is 2c

(c+1)2
the induced density after applying WV is

Q(x, y) = 2c
(c+1)2

χIc . Here χ simply denotes the character-

istic function of the set Ic.
The convexity of the square root function and Jansen’s

inequality easily imply that for Q of the form aχB where a
is a constant and B is a convex set in the unit square, the
functional of theorem 1 achieves it’s maximum on a curve
φ which when restricted to B forms a straight line (this is
essentially stated already in [?] section 4).

Among the lines passing through Ic it is easy to verify that
we only need to consider those whose one boundary point
(x1, y1) lies on the segment A = ( 1

c+1
, 0), (0, 1

c+1
) and whose

second boundary point (x2, y2) lies on the segment B =
( c
c+1

, 1), (1, c
c+1

) . Considering only nondecreasing lines we

define ∆x = x2 − x1 and ∆y = y2 − y1 and then φ′(x) =



∆y
∆x

and hence we must maximize
√

∆x
√

∆y. Since both
segments A and B are inclined by 45 degrees sliding the
boundary point will not change ∆x + ∆y and hence the
maximum is obtained when they are equal. This means
that φ(x) = x maximizes the functional for all c.

Consider now the case of a general density p(r). Consider
the densities of the following form. Let 0 = r0 < r1 < r2 <
... < rn−1 < rn = 1 and let ci i = 1, ..., n be arbitrary non
negative coefficients with

Pn
i=1 ci(ri−ri−1) = 1. Let P have

the form
Pn
i=1 ciχIri−1,ri

where χIri−1,ri
is the characteris-

tic function of the interval [ri−1, ri].
Since it is known that finite linear combinations of char-

acteristic functions of intervals are dense in the space of
Lebesgue measurable functions it is enough to prove the
theorem for such densities.

Consider now the rectangular stripe Ji in the unit square
consisting of points (r, θ) with ri1 ≤ r ≤ ri. The image of Ji
under WV is up to expansion and a shift by a point of the
form (x, x) isometric to Ic′ for an appropriate c′. In addition
P is constant on Ji and hence φ(x) = x will maximize the
functional onWV (Ji) with the induced density. Obviously if
a function φ optimizes the functional on all the Ji separately
then it is optimal (the problem could have been that the
functions that optimize each piece separately would not have
matched at the boundary conditions), hence φ(x) = x is
optimal for all densities and the formula in the statement of
the theorem is obtained by plugging φ into the formula in
theorem 1.

Let ε > 0 be some positive number. We say that an
independent set I is nearly maximal (with respect to ε) if
Card(I) ≥ mc(G)(1− ε).

We say that a seek function f has the weak vertical prop-
erty if for all ε, δ > 0 and every line φb of the form θ = b
one can find w.h.p a nearly maximal independent set for
Iε,δ of Gf in a δ neighborhood of φb. We say that f has the
strong vertical property if in addition any continuous curve
satisfying the above condition is of the form φb.

It follows from the proofs of theorem 1 and theorem 5 that
linear seek functions are strongly vertical.

Using (in a rather crude manner) theorem 3 we can
strengthen theorem 5 in the case of the uniform distribution
as follows

theorem 6. If f(θ) = cθ and p is the uniform distribu-
tion then w.h.p

Blog(N)2/3 < mc(G)−
r

2

c

√
N < Alog(N)2/3

with A = 1
4
(2c)1/6 − ε and B = 52/3A+ ε.

Sketch of proof: The first order approximation to mc(G)
is given by theorem 5. The main difference between the
unit square for which theorem 3 holds and the rectangle Ic
constructed in theorem 5 is that the optimal curve in the
unit square case is unique (the diagonal) while there are
many optimal solutions (the images of φb) in the case of Ic.
Therefore in the Ic case the longest increasing subsequence
is obtained as the maximum over dependent trials Xb one for
each ε neighborhood of φb of the random variable described
in theorem 3. The problem then becomes one of estimating
the effective number of “independent” trials.

We recall that the Airy function is asymptotically equal to
Exp(2x3/2/3)

2
√
πx1/4 . Denote by G(x) the exponent in the expression

for F (x) in theorem 3, then it follows that

Exp(−(4/3 + ε)x3/2 < G(x) < Exp(−(4/3− ε)x3/2)

Consider the pair of points S = (0, b), T = (1, b) and add
them as “virtual requests” to the graph G, we denote the
resulting graph Gb. Let I(Gb) be the size of the maximal
independent set inGb containing S and T . We denote the set
itself Zb. Using the notation of theorem 3 and the techniques
of proof of theorem 5 it can be verified that I(GB) is equal
as a distribution to LN/2c Let

H(x) = P (
I(Gb)−

q
2
c

N1/6
< x)

then by theorem 3

H(x) = P (
LN − 2

√
N

N1/6
< x(2c)1/6) = F (x(2c)1/6)

we further claim that Zb is contained in a N−ρ neighborhood
of φb for all ρ < 1/6. The method of proof is similar to the
argument in theorem 1. Let U = (r, θ) be a point of Zb not
in the neighborhood and assume for simplicity that c = 1.
Let Y = (r, b), consider the two rectangles A and B whose
pairs of diagonal vertices are S,U and T,U respectively. Let
C and D be the two rectangles whose pairs of diagonal ver-
tices are S,Y and Y,T respectively. Let Z ′b be the maximal
independent set in C ∪D which is the union of maximal in-
dependent subsets of C and D whose sizes we denote by IC
and ID. Similarly Zb is the union of maximal independent
subsets of A and B whose sizes are denoted by IA and IB .
Since µ(B) ≤ µ(D) we have by theorem 3 IB−ID ≤ N1/6+δ

for all δ > 0. On the other hand µ(A)
µ(C)

< 1−βN−2ρ for some

constant β hence w.h.p the number of points in A is smaller

then the number of points in C by at least N1−2ρ−δ′ for all
δ′ > 0, applying theorem 3 to A and B now yields w.h.p

IC − IA > αN1/2−2ρ−δ′′ for all δ′′ > 0. Comparing the
estimates we find that Zb is not maximal.

For i = 1, ..., Nρ we consider the random variables Xi =
I(GiN−ρ). After shifting to a Poissonized model, see [?]
for example, and by the above considerations the Xi are
independent samples of the random variable LN/2c. If x is

large then 1−H(x) = 1−F (x(2c)1/6) approximately equals

G(x(2c)1/6). by our estimates for G we have G(x(2c)1/6) >

N−ρ+δ if x ≤ [(ρ − δ) 4
3
(2c)1/4logN ]2/3 letting ρ approach

1/6 yields the desired lower bound. The upper bound is
proved similarly by examining the overlapping (dependent)

variables I(Gb), for where b = iN−5/6, i = 1, ..., N5/6 and
noting that w.h.p st(G) = MaxiI(Gb) up to an additive

factor of the order of magnitude N1/6.
Remark 1: It is tempting to conjecture that mc(G) will
behave very much like the extreme value distribution asso-
ciated with Nw independent trials of the distribution F (x),
where w is such that the expected width of a maximal in-
creasing subsequence is Θ(N−w). We hope to test this ex-
perimentally in the near future.

3.2 More general seek functions
Let f be an increasing function on the non negative real

numbers with f(0) = 0. a set of points z1 = (r1, θ1), ..., zn =
(rn, θn) is said to be a generalized increasing sequence w.r.t
f , or an f-sequence, if for all 1 ≤ i, j ≤ n |ri − rj | ≥ f(|θi −



θj |). we will always assume that an f-sequence is numbered
so that r1 ≤ r2 ≤ ... ≤ rn.

The relation to increasing sequences is obtained by choos-
ing f(θ) = θ and rotating the points by 45 degrees clockwise.

It is easy to verify that given a disk graph Gf , the notion
of an f-sequence coincides with the notion of an independent
set (antichain) and the notion of an f−1-sequence coincides
with the notion of a chain.

We also note that from this interpretation in terms of f-
sequences it is easy to verify that for a given f , mc(G) is a
configuration function in the sense of Talagrand, see section
2.2. This is seen simply by choosing Jz to be the longest
f-subsequence of z.

theorem 7. Let f be a seek function of the form f(θ) =
cθa. If a ≥ 1 There exist constants A and B, such that

w.h.p Ac
−1
a+1N

a
a+1 < mc(Gf ) < Bc

−1
a+1N

a
a+1 . The same

conclusion holds for all a > 0 if we allow B to depend on a.

Proof. Given some 0 < b < 1 consider the rectangles
Ei,b defined by

ic
1
a+1N

−a
a+1 < r < (i+ 1)c

1
a+1N

−a
a+1

b < θ < b+ (cN)
−1
a+1

for 0 < i < c
−1
a+1N

a
a+1 . It is easy to verify that the area of

Ei,b is 1/N , and that any point in Ei,b is independent with
respect to Gf from any point in Ej,b for all i 6= j both even.
The probability that Ei,b contains a point is 1− e−1, hence
we obtain w.h.p an independent set of size

1− e−1

2
c
−1
a+1N

a
a+1

We note that actually A is independent of a. To prove the
upper bound, we estimate the probability that a set of size
k+ 1 is independent w.r.t f . Given a set of k+ 1 points, we
may sort them by their r coordinate. Let Pi = (ri, θi) be the
i’th point after the sort. Pi+1 is by definition independent

of Pi if |θi+1−θi| < c−1/a(ri+1−ri)
1
a , hence the probability

of that event is at most 2c−1/a(ri+1−ri)
1
a . These events for

different i are independent of each other. Let ∆m,t denote
the m-1 dimensional simplex of points (x0, ..., xm−1) which
satisfy

Pm−1
i=0 xi = t. The volume of the simplex ∆m,1 is

1
m!

. Denote by Pa,c,k the probability that k + 1 points are
independent with respect to Gf . By the discussion above
we have

Pa,c,k ≤ 2kk!c−k/aG(k, 1)

where

G(k, t) =

Z

∆k,t

(x0x1...xk−1)
1
a dx0...dxk−1

This is seen by setting xi = ri+1 − ri. By the change of
variables xi → txi, we have G(k, t) = tkG(k, 1).

This Dirichlet integral is known and can be computed
inductively, indeed
G(k, 1) =

R
∆k,1

(x0...xk−1)1/adx0...dxk−1

=
R 1

0
x

1/a
k−1

R
∆k−1,1−xk−1

(x0...xk−2)1/adx0...dxk−2

Hence
G(k, 1) =

R 1

0
x

1/a
k−1G(k − 1, 1− xk−1)dxk−1

=
R 1

0
x

1/a
k−1(1− xk−1)k−1dxk−1G(k − 1, 1)

= β(a+1
a
, k)G(k − 1, 1)

=
Γ( a+1

a
)Γ(k)

Γ( a+1
a

+k)
G(k − 1, 1)

where we have used the definition of the β function and
it’s relation to the Γ function. Multiplying out the induction
we obtain

G(k, 1) = (Γ(
a+ 1

a
))kΠk

i=1
Γ(k)

Γ(a+1
a

+ k)

It is well known, see [?] that (k − 1)sΓ(x) ≤ Γ(k + s) ≤
Γ(k)ns for all s. As a result we obtain the asymptotic value

of (Γ( a+1
a

))k(k!)
−(a+1)

a for G(k, 1). Returning to the proba-
bility we obtain an upper bound of

Pa,c,k ≤ 2kc−k/aΓ(
(a+ 1)

a
)k(k!)−1/a

Denote the left hand side by Qa,c,k. The expected number
of independent sequences of size k + 1 in a set of size N is
given by Ea,c,k,N =

`
N
k

´
Pa,c,k ≤

`
N
k

´
Qa,c,k. Using Stirling’s

formula to estimate the right hand side one shows that given
a, c,N , the right hand side approximately equals 1 when k
is approximately

e2a/(a+1)Γ(
a+ 1

a
)a/(a+1)c−1/(a+1)Na/(a+1)

and becomes exponentially small once we multiply this ex-
pression by 1 + ε. since the expected number of sequences
of length k is obviously greater then the probability for such
a sequence we are done.

We see that choosing B = 2e provides an upper bound
for all a ≥ 1 since a+1

a
then ranges between 1 and 2 and

Γ(x) ≤ 1 in that range.

4. FROM MC(G) TO ST(G)
In this section we show that the quantities mc(G) and

st(G) are approximately equal. The procedure will be ef-
fective in the sense that we will provide a polynomial time
procedure that converts a minimal chain decomposition of
G into a Hamiltonian cycle whose length is approximately
the same.

4.1 From mc(G) to cc(G)
We will show that w.h.p mc(G) and cc(G) are approxi-

mately equal by comparing both to the intermediate quan-
tity mc(Ĝ). For linear seek functions we will obtain the
much finer estimate cc(G)−mc(G) < 1

c
.

We first must eliminate the arbitrary choice of the angle
θ = 0 involved in the construction of the disk graph. To
that end we consider the extended disk graph Ĝ.

lemma 1.

1) If f has the strong vertical property then w.h.p

mc(G) = mc(Ĝ).

2) If f has the weak vertical property then w.h.p

mc(Ĝ)−mc(G)

mc(G)
< ε



Proof. We first treat the first statement. Even though
Ĝ is an infinite graph it is easy to verify from the periodic-
ity of the graph construction that the maximal independent
set is always finite and can be computed by considering the
subgraph induced by the extended requests in a rectangle
given by 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 1 + ts. Although the ex-
tended requests in such a rectangle are not randomly located
(they are periodic) an examination of the proof of theorem
1 reveals that only local randomness is needed and hence
the theorem still holds. In particular by the strong vertical
property of f a maximal independent set will w.h.p reside
in an ε neighborhood of a line of the form φb for some b.
Since ε can be made arbitrarily small, w.h.p. the interval
[b− ε, b+ ε] will not contain an integer. We can then find a
copy (shift by an integer in the θ coordinate) of the maximal
independent set in G as required.

The second assertion is proved similarly using almost max-
imal independent subsets instead of maximal independent
subsets.

theorem 8.

1) mc(Ĝ) ≥ cc(G).

2) If f is linear or ts < 1 then mc(Ĝ) = cc(G).

Proof. Let I be a maximal independent set in Ĝ and
let Ij = T j(I) be the maximal independent set obtained
by shifting all the elements of I by j in the θ coordinate.
For each extended request R = (r, θ) ∈ I we consider the
set YR = {Q | R ≤ Q} and XR = YR − T (YR). Consider
X = ∪R∈IXR ∪ I1. X is a fundamental domain with re-
spect to the operator T in which each request not in I is
uniquely represented up to equivalence and requests R ∈ I
are also represented in I1. Let Ri, i = 1, ..,mc(Ĝ) be an
enumeration of the elements of I. Consider a minimal chain
cover of Ĝ restricted to X. We construct a directed graph H
whose vertices are the Ri. I is a maximal independent set,
hence each chain must pass through a single point Rj ∈ I.
We denote such a chain by C ′j . Since I1 is also a maximal
independent set, C ′j must also pass through a point of the

form T (Rk) ∈ I1. We let (Rj , Rk) be an edge of H. We also
denote by Cj the chain C ′j − {T (Rk)}. By construction the
in degree and out degree of each vertex in H is one hence H
decomposes into a union of edge disjoint cycles (or loops).
Let Sn, n = 1, .., r be the cycles of H. For a given cycle
Sn = (Ri1 , ..., Rik ), Consider Ln the concatenated chain in

Ĝ formed from the chains T j−1(Cij ), j = 1, ..., k − 1. Also

let L′n be formed by appending T k(Ri1) to Ln. Both Ln
and L′n are indeed chains by the construction of the graph
H. Also by construction of X one verifies that each request
in G is equivalent to a unique extended request in ∪nLn
hence each Ln induces through equivalence a cycle Un of G
and the Un from a cycle cover for G. Moreover it is easy to
verify from the construction that the length of Un is equal
to the number of times the chain L′n crosses a line of the
form θ = j for some integer j. Since the last element and
first element of L′n differ by k in the theta coordinate the
length of Un is k which is also the size of the cycle Sn. Since
the in degree of elements in H is 1 summing up over all n
yields that the cycle cover length of Un is simply the size of
I as required for the first statement of the theorem.

We will prove the second statement only under the as-
sumption that f is linear. Let C1, ..., Ck be a chain cover
of G whose total length is cc(G). Assume that l(Ci) > 1
for some i. Let P = PCi : [θ0, θ0 + l(Ci)] −→ [0, 1] be an
extended path corresponding to Ci. Consider the function
P̃ (θ) = P (θ)−P (θ− 1). If P attains a minimum at θ0 then

P̃ (θ) ≤ 0 and P̃ (θ+ 1) ≤ 0 hence for some angle θ1 we have

P̃ (θ1) = 0. Consider the paths P ′ and P ′′ which are ob-
tained from P by restricting it to [θ1 − 1, θ1] and [θ1, θ1− 1]
respectively.

As already noted in [?] the crucial property of linear
seek functions which makes P ′ and P ′′ feasible paths is the
property that the disk head is allowed to stop at any point
along a feasible path while maintaining the feasibility of the
path (the reachability property in the language of [?]). this is
the case since a linear seek function involves no acceleration
and deceleration (stopping and resuming motion are instan-
taneous in this model). By adding (θ1, P (θ1)) as a stopping
point (a virtual request) and using the reachability property
we see that P ′ and P ′′ correspond indeed to feasible disk
head motions. By considering the equivalence classes of ex-
tended requests in P ′ and P ′′ we obtain a decomposition of
Ci into two cycles C ′ and C ′′ with l(C ′), l(C ′′) < l(C) and
l(C ′)+l(C ′′) = l(C). Repeating this process we may assume

that l(Ci) = 1 for all i. Consider the chain Ĉi obtained by
the concatenation of Ci, T (Ci), T

2(Ci), ... since the Ci con-
sidered as chains form a chain cover of the unit square (since

l(Ci) = 1) Ĉi form a chain cover of Ĝ as desired.

corollary 1. If f is strongly vertical then w.h.p
mc(G) = cc(G)

We will show in theorem 13 that all seek functions are
weakly vertical however we make the following stronger con-
jecture

conjecture 1: All seek functions are strongly vertical

4.2 From cc(G) to st(G)
We now show that w.h.p we can tie together the cycles

that we produced in the previous theorem into one large cy-
cle without adding many rotations. We treat the linear case
for which we obtain a very precise combinatorial estimate
first.

theorem 9. Let f(θ) = cθ be a linear seek function then

st(G) ≤ cc(G) + 2(1 + [
1

c
])

where [x] denotes the integral part of x.

Proof. Consider a cycle C of requests R1, ..., Rk and it’s
path PC . Projecting the graph of PC into the unit square
by π(θ, PC(θ)) = (θ Mod 1, PC(θ)), the image will con-
sist of the union of the graphs of l(C) continuous functions
ρ1(θ), ..., ρl(C)(θ). Denote this union by ρC . Let c′ = 1

1+[ 1
c

]
.

Consider the graph of the function g(θ) = c′θ. Since c′ ≤ c
the head of the disk can trace the path between any two
points on the graph. We use the equivalence relation by T
to push the graph into the unit square. The result is the
union of 1

c′ = 1 + [ 1
c
] lines. Denote the union of the lines



by ∆. Note that ∆ is the graph of a (possibly discontin-
uous) function h(r). Let C1, ..., Cm be any cycle cover of
total length l =

Pm
i=1 l(Ci). For each cycle Ci let ri be the

minimal value of the r coordinate over all points in the in-
tersection ρ(Ci) ∩∆ and let Zi be the point of intersection
which realizes the minimal value. We assume for conve-
nience that r1 ≤ r2 ≤ ... ≤ rm. We now construct a feasible
motion path of the disk head which begins and ends at the
point (0, 0) and passes through all the requests of length
l + 2(1 + [ 1

c
]). Starting at (0, 0) we follow the graph of h to

the point Z1. Z1 lies on C1, we continue through the en-
tire path of C1 returning to Z1 l(C1) rotations later. Upon
return we proceed from Z1 to Z2 along the graph of h, re-
trace C2 and continue in the same fashion. Upon reaching
the point Zm after tracing the path of Cm we proceed to
the point (1, 1) along the graph of h and slide back to (0, 0)
along the graph of 1− h from r = 1 down to r = 0.

As in theorem 8 the reachability property ensures the fea-
sibility of the new path which is obtained from the old ones
by gluing the Ci and ∆ along the Zi. The length of the grand
tour is simply the sum of cycle lengths and two passes over
the graph of h as required.

theorem 10. If f is weakly vertical then for all ε > 0,
w.h.p st(G) < (1 + ε)cc(G).

Sketch of proof: Fix a large number m. Define also m′ =
[ 1
f−1(1/m)

]. By continuity of f , m′ tends to infinity along

with m. Consider the rectangles Ei =
˘

(r, θ) | i
m
≤ r ≤ i+1

m

¯
.

Let Gi be the disk graph for requests in Ei. Assume for the
moment that st(Gi) ≤ (1 + 4

m′ )cc(Gi). Since f is weakly
vertical, Theorem 1 and the proof of theorem 5 imply that
for any ε, w.h.p,

P
imc(Gi)−mc(G)

mc(G)
≤ ε

In fact we note that
P
imc(Gi) ≥ mc(G) always holds. If

in addition f is weakly vertical an ε neighborhood of φb will
contain a near maximal f-sequences for each Gi. These f-
sequences for the Gi can be concatenated into an f-sequence
in G after eliminating very few points from each sequence
since the ε neighborhoods of φb restricted to different Gi are
nearly f independent.

By the second statement of lemma 1 and by theorem 8
mc(G) and cc(G) are asymptotically equal for weakly verti-
cal f hence P

i cc(Gi)− cc(G)

cc(G)
< ε

Given cyclic permutations πi which service all the requests
in Gi in st(Gi) rotations we can consider the cyclic per-
mutation π which simply concatenates their cycles into one
large cycle. The distance between the last request in πi and
the first request of πi+1 is at most ts rotations and hence
st(G) ≤ Pi st(Gi) + mts. Putting these facts together we
obtain for any ε, w.h.p,
st(G)− cc(G) ≤ mts + (

P
i st(Gi))− cc(G)

≤ mts + εcc(G) +
P
i(st(Gi)− cc(Gi))

≤ mts + εcc(G) + 4
m′ (
P
i cc(Gi))

≤ mts + εcc(G) + 4
m′ (cc(G) + εcc(G))

= mts + (2ε+ 4
m′ )cc(G)

Choosing m large we obtain the desired conclusion.
It remains to show that w.h.p st(Gi) < cc(Gi)(1 + 4

m′ ).
This is a combinatorial fact which always holds. Informally

the idea is that the requests in Gi are confined to a very
narrow radial band. By the definition of m it takes only 1

m
of a rotation to cross the band from side to side, hence it is
possible to move from one cycle to the next at roughly that
cost.

Remark 2: We conjecture that in fact for all seek functions
f , for all N large enough and for all disk graphs G we have
st(G) ≤ (1+ε)cc(G). A polynomial time procedure for con-
verting a minimal cycle decomposition into a Hamiltonian
cycle of the same asymptotic size will immediately provide
us with a 1 + ε approximation algorithm for all f since the
minimal cycle decomposition problem is polynomial. The
result of [?] shows that st(G) ≤ 3/2cc(G) always (up to a
bounded additive factor).

5. APPLICATIONS
In this section we apply the results of the previous section

to prove our main theorems for various classes of seek func-
tions. In all the theorems we assume that the requests are
drawn with respect to a distribution of the form p(r) unless
stated otherwise.

theorem 11. Assume that f(θ) = cθ. Let

Cf,P =
q

2
c

R 1

0

p
p(r)dr, then

1) w.h.p |st(G)− Cf,p
√
N | < ε

√
N

2) Assume p(r) is the uniform distribution. Let

A = 1
4
(2c)1/6 − ε and B = 52/3A+ ε then w.h.p

A <
st(G)−

q
2N
c

log(N)2/3N1/6
< B

3) There is an algorithm which computes a Hamiltonian
cycle of length at most st(G)+2(1+[c]) whose running
time is O(Nlog(N))

Proof. all the statements of the theorem except the run-
ning time are an obvious corollary of theorems 6,9 and corol-
lary 1 which together state that w.h.p. G st(G)−mc(G) ≤
2([c] + 1). Following the proofs we see that the algorithm

must find a minimal chain cover of mc(Ĝ). This requires
some sorting operations on a set of size cN and then an ap-
plication of the patience sort procedure, see [?], which has
the same O(Nlog(N)) running time complexity. Translat-

ing the mc(Ĝ) chain cover into a cycle cover for G can be
accomplished in a linear number of steps and so can the
the lacing of the cycles into a Hamiltonian cycle. Both pro-
cedures involve finding the intersections, if they exist of at
most a linear number of pairs of line segments.

Remark 3: It is easy to show that The algorithm of [?]
which for linear seek functions finds an optimal tour has
worst case running time of Θ(N2). It’s average running

time is at most O(N3/2) and is likely to be even faster but
we have not analyzed it in detail.

theorem 12. Assume f satisfies f ′(0) > 0. Let g(θ) =
f ′(0)θ, then

1) f is strongly vertical



2) w.h.p |st(G)− Cg,p
√
N | < ε

√
N

3) There is a probabilistic algorithm with running time
O(Nlog(N)) which w.h.p outputs a 1+ε approximation
Hamiltonian cycle.

Proof. Since f is convex f ≥ g and hence mc(Gf ) ≤
mc(Gg). We bound mc(Gf ) from above by mc(Gg). To
bound mc(Gf ) from below, choose a small number δ such
that for all 0 < θ < δ, f(θ < (f ′(0) + ε)θ = fε. By theorem
A there is a nearly maximal independent set with respect to
the fε in the δ/2 neighborhood of any line of the form θ = b.
By the choice of δ such a set will also be independent with
respect to f . Since the sizes of the upper and lower bound
both tend asymptotically w.h.p to Cf,p

√
N , we conclude

that so does mc(Gf ), we also obtain strong verticality in
the process which allows us using theorem 10 and corollary
1 to deduce the same estimate for st(G). The algorithm for
finding w.h.p the 1+ε approximation is simply the algorithm
from the previous theorem applied to g. Since chains with
respect to g are also chains with respect to f and the gluing
procedure is legal with respect to g and hence f we obtain
the desired result.

For a general seek function f we have the following weaker
result.

theorem 13. Let f be a general seek function then

1) f is weakly vertical.

2) Assume f is of the form f(θ) = cθa, a > 1. There
exist functions Ua(N) such that

1

2
(1− e−1) ≤ Ua(N) ≤ 2e

such that

Va,c,p(N) = Ua(N)(

Z 1

0

p(r)a/(a+1)dr)c−1/(a+1)

satisfies w.h.p

|st(G)− Va,c,p(N)Na/(a+1)| < εNa/(a+1)

3) There is an algorithm with running time O(N 3) which
w.h.p produces a Hamiltonian cycle which is a 1 + ε
approximation.

Sketch of proof: The second statement follows from theo-
rems 4 and 7 which provide the concentration property and
the size estimate respectively for mc(G).

The main issue is to show weak verticality. For a sub-
set A of the plane define d(A) = MaxR∈A|θ(R) − 1/2|
to be the maximal distance between any point in A and
the line φ1/2. Fix some ε > 0. Let z0 be a maximal f-

sequence. We will inductively define a sequence zj of f-
sequences which w.h.p will all be nearly maximal and such
that d(zj) ≤Max(ε, 1/2− jε) hence z1/2ε will be contained
in a ε neighborhood of φ1/2. We consider the following def-
initions
ηj = (−1)j

W j =
˘
i | ηjr(zji ) ≤ ηj(1/2 + ηjε/2)

¯

wj = (zi)i∈W j

ψj - reflection through the line φ1/2+ηjε/2

Γj =
˘

(r, θ) | wj ∪ {(r, θ)} is an f − sequence
¯

Ωj = Γj ∩
˘

(r, θ) | ηjθ ≤ 1/2 + ηjε/2
¯

tj - a maximal f-sequence in ψj(Ωj)
zj+1 = wj ∪ tj
We note that using the symmetry of the definition of

an f-sequence it is easy to verify that ψj(Ωj) is also con-
tained in Γj hence by induction zj+1 is an f-sequence. If
d(Ωj ∩ zj) ≤ ε we are done, otherwise the continuity of f
implies that µ(Ωj) ≥ hf,ε > 0 independently of N and the
size of the maximal f-function in Ωj concentrates. More-
over since the density function p(r) is invariant under ψ
Ωj and ψj(Ωj) with the probability measure induced from
p(r) are isomorphic hence by theorem 4 w.h.p tj which
is maximal in ψj(Ωj) is almost equal in size to zj − wj

which is nearly maximal in Ωj , we deduce by induction
that zj+1 is nearly maximal. Finally if d(Ωj) > ε then
d(ψj(Ωj)) ≤Max(ε, d(Ωj)−ε). Since d(wj) ≤ ε/2 for j ≥ 1
the same relation holds for d(zj) and d(zj+1) as required.

Once weak verticality has been established the second and
third statements follow from theorems 8 and 10. The run
time of the algorithm is dominated by the time required to
find a minimal chain cover of G. This can be reduced to the
problem of finding a minimal flow in a bipartite graph hence
the “generous” run time estimate.

We make the following conjecture which generalizes a well
known theorem of J.H.Hammersley, see [?].

Conjecture 2: Let Ua(N) be the constant defined in the-
orem 13, then Ua(N) may be chosen to be independent of
N .

We note that for a = 1, Ua =
√

2 by theorem 2. The
case a < 1 does not correspond to a seek function, but will
give the length of the longest chain for the seek function
f(θ) = θ1/a. This issue will be treated in the next section.

Our interest in the conjecture lies in the following gener-
alization of the estimate given in theorem 11. the proof is
similar to the proof of theorems 1 or 10.

proposition 1. If the conjecture holds, requests are dis-
tributed in accordance with a density p(r) and the seek func-
tion has the form f(θ) = cθa, then w.h.p the number of
rotations needed to service N requests is

(Uac
− 1
a+1

Z 1

0

p(r)
a
a+1 dr)N

a
a+1

6. THE ONLINE PROBLEM
In the online problem requests arrive to the request queue

of the disk. the requests are not grouped into batches hence
any request may be serviced at any time since it’s arrival.
The knowledge about newly arriving requests can be used
to construct more efficient tours of the ongoing stream of re-
quests. The batched problem that we have studied refers to
a particular class of algorithms which simply ignore the in-
coming requests until the current batch is completely served.

In [?] the authors suggest the following algorithm for the
online problem which is called the CHAIN algorithm:

CHAIN: Set the angle of the current head position to be 0.
Construct the longest chain in G starting with the current
head position. Move to the next request along the chain.
Repeat the process with the new request.



The authors show in [?] consider a version of the online
problem in which the size of the queue is always N , that is,
a new request arrives as soon as service is completed on an
old request. They show that CHAIN experimentally outper-
forms the greedy online algorithm which simply advances to
the nearest reachable request.

We are currently unable to analyze the online problem
however we briefly examine the following related problem.

The maximal chain problem: Given N requests drawn
from the uniform probability distribution, what is the length
of the longest chain starting from a point R with θ(R) = 0.

theorem 14. Let f(θ) = θa, a ≥ 1 be a seek function.
The length of the maximal chain constructed by the greedy al-
gorithm is w.h.p asymptotic to ( 2

a+1
)1/(a+1)Γ(1/(a+1))/(a+

1)N1/(a+1)

Proof. After Poissonizing with density 1/N it is easy
to see that we are trying to compute the reciprocal of the
expectation of the density function
h(t) = (2ta/N)Exp(−2ta+1/((a+1)N)) which is the prod-

uct of the probabilities of having a reachable request a dis-
tance t away and not having anyone closer. The expectation

is then seen to be equal to (
R∞

0
e−t

a+1

dt)(a+1
2

)1/(a+1)N1/(a+1)

which gives the desired conclusion using the identity
Z ∞

0

e−t
b

dt = Γ(1/b)/b

Note that for the linear seek function f(θ) = θ the greedy al-

gorithm constructs a chain of size
p

π
2

√
N while the longest

chain is of size
√

2N . If a > 1 then the size of the maximal
chain is unknown however one can easily convince oneself
that the size of the largest chain produced by the simple
greedy algorithm is asymptotically inferior to the greedy
algorithm which looks ahead a bit farther (concatenating
chains of length 3). The lengths of the chains which are pro-
duced by various algorithms in the maximal chain problem
serve as an upper bound on the efficiency of the online pro-
cess, it is doubtful though that these rates are sustainable.
We hope to study these issues further (at least experimen-
tally) in a future paper.
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