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ABSTRACT
Shared entanglement is a resource available to parties com-
municating over a quantum channel, much akin to public
coins in classical communication protocols. Whereas shared
randomness does not help in the transmission of informa-
tion, or significantly reduce the classical complexity of com-
puting functions (as compared to private-coin protocols),
shared entanglement leads to startling phenomena such as
“quantum teleportation” and “superdense coding.”

The problem of characterising the power of prior entan-
glement has puzzled many researchers. In this paper, we
revisit the problem of transmitting classical bits over an
entanglement-assisted quantum channel. We derive a new,
optimal bound on the number of quantum bits required for
this task, for any given probability of error. All known
lower bounds in the setting of bounded error entanglement-
assisted communication are based on sophisticated informa-
tion theoretic arguments. In contrast, our result is derived
from first principles, using a simple linear algebraic tech-
nique.

Categories and Subject Descriptors
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and Problem Complexity
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1. INTRODUCTION
Consider two parties solving a distributed task by com-

municating with each other. Remarkably, it has been shown
that if the two parties are equipped with a quantum com-
puter and can communicate by exchanging quantum states,
they can solve certain tasks at a significantly smaller com-
munication cost, when compared to classical protocols [6, 1,
18]. This is especially surprising since an early result due to
Holevo [10] (later explained in simpler terms by Nayak [16])
rules out obvious methods of compressing classical infor-
mation into succinct quantum messages—Holevo’s theorem
implies that n quantum bits of communication are necessary
to transmit n classical bits of information.

An additional resource that is available to parties commu-
nicating over a quantum channel is “shared entanglement”:
the two parties may be given some number of quantum bits
jointly prepared in a fixed superposition, prior to communi-
cating with each other. For example, they may jointly hold
some number of EPR pairs.1 The quantum channel is then
said to be “entanglement-assisted.”

Shared randomness does not help in the transmission of
information from one party to another, or significantly re-
duce the classical complexity of computing functions vis-
a-vis private-coin protocols [14, Section 3.3]. On the other
hand, prior entanglement leads to startling phenomena such
as “quantum teleportation” [2] and “superdense coding” [4].
In particular, superdense coding allows us to transmit n clas-
sical bits with perfect fidelity by sending only n/2 quantum
bits. The problem of characterising the power of prior en-
tanglement has baffled many researchers [7, 12], especially in
the setting of bounded-error protocols. It is open whether it
leads to more than a factor of two savings (using superdense
coding) or more than an additive O(log n) savings (when
used to create shared randomness). Few lower bounds are
known for communication problems in this setting [8, 15,
11, 13], and are all derived using sophisticated information-
theoretic techniques.

In this paper, we focus on the most basic problem in

1An EPR pair consists of two qubits prepared in the maxi-
mally entangled state 1√

2
(|00〉 + |11〉).
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the setting of communication over an entanglement-assisted
quantum channel, that of transmitting classical bits from
one party to another. We derive optimal bounds on the
number of quantum bits required for this task, for any given
probability of error.

Theorem 1.1. Suppose one party, Alice, wishes to com-
municate n bits to the other, Bob, over an entanglement-
assisted quantum channel. For any choice of the entangled
state, and any protocol such that the total number of qubits
sent by Alice to Bob (over all the rounds of communication)
is mA, let Y be the random variable denoting Bob’s output,
when Alice wishes to convey X. If X is distributed uniformly
over {0, 1}n, the probability that Bob correctly recovers X is
is bounded as

Pr[Y = X] ≤ 22mA

2n
,

irrespective of the number of qubits sent by Bob to Alice, or
the number of rounds of communication.

Thus, for protocols with probability of success δ > 0, we get
the optimal lower bound of mA ≥ 1

2
(n − log 1

δ
). This im-

proves over the lower bound of mA ≥ 1
2
(δn−H(δ)) implied

by a result of Cleve et al. [8, Theorem 2], when combined
with Fano’s inequality [9, Section 2.11].

Remark: A bound for non-uniform distributions over
the inputs also follows from the proof of Theorem 1.1, as
in [16]. Note also that an optimal bound of n − log 1

δ
for

the total number of quantum bits exchanged, including the
communication required to create the prior entanglement, is
implied by [16, Theorem 2.4].

All known lower bounds for bounded-error communication
using prior entanglement are based on complex information-
theoretic arguments. In fact, one might be lead to believe
that such techniques are inevitable—any lower bound proof
necessarily depends on the property that the prior shared
state contains no information about the inputs. Contrary
to this, our results are derived from first principles, using
a linear algebraic technique that has its roots in the work
of Nayak [16]. In order to prove Theorem 1.1, we give a
new characterisation of the joint state at the end of a quan-
tum protocol that complements the characterisation due to
Yao [20]. It greatly clarifies the role of shared entanglement
in communication, and we expect that it will further enhance
our conceptual understanding of quantum communication.

Putting Theorem 1.1 together with a reduction due to
Cleve et al. [8], we get a new lower bound of 1

2
(n−2 log 1

1−2ǫ
)

for the ǫ-error entanglement-assisted communication com-
plexity of the inner product function. The previous best
lower bound was 1

2
((1− 2ǫ)2n− 1) due to [8]. Since there is

a classical n− log 1
1−2ǫ

+1 bit public-coin protocol for Inner

Product, and hence a 1
2
(n − log 1

1−2ǫ
+ 1) qubit quantum

protocol with shared EPR pairs, our lower bound is near-
optimal. Our results thus provide more examples where
shared entanglement leads to at most a factor of two savings
in communication.

The lower bound of 1
2
(n − 2 log 1

1−2ǫ
) for Inner Product

stated above was independently discovered by van Dam and
Hayden [19] in the case of communication with shared EPR
pairs. However, they follow an information-theoretic ap-
proach that provably breaks down in the presence of arbi-
trary prior entanglement.

1.1 Organisation of the paper
The quantum communication model, and the associated

terminology and notation are described in Section 2. We
begin by analysing quantum encoding of classical bits in the
presence of entanglement in Section 3. In fact, we first con-
sider a very restricted kind of encoding, where the shared
state consists of EPR pairs, and no ancillary qubits are used
in the encoding (Section 3.1). This contains the basic ele-
ments of the proof for general encoding as well, which is the
subject of Section 3.2. Building on the insight gained from
the study of quantum encoding, we extend our results to the
case of interactive communication in Section 4.

2. PRELIMINARIES

2.1 The communication model
In the quantum communication model of Yao [20], two

parties Alice and Bob hold qubits. When the game starts
Alice holds a superposition |x〉 and Bob holds |y〉, repre-
senting the input to the two players. The initial joint state
is thus |x〉A ⊗ |y〉B, where a subscript indicates the player
holding that set of qubits. Furthermore each player has an
arbitrarily large supply of private qubits in some fixed basis
state, say |0̄〉. The two parties then play in turns. Sup-
pose it is Alice’s turn to play. Alice can do an arbitrary
unitary transformation on her qubits and then send one or
more qubits to Bob. Sending qubits does not change the
overall superposition, but rather changes the ownership of
the qubits, allowing Bob to apply his next unitary trans-
formation on the newly received qubits. At the end of the
protocol, one player measures one or more qubits in some
basis, and declares those as the result of the protocol. (In
cases where a specific player is required to know the answer,
that player makes the measurement.) In a classical prob-
abilistic protocol the players may only exchange messages
composed of classical bits.

Note that there is no loss of generality in not allowing
the players to measure a subset of their quantum bits in
the intermediate steps of a protocol. This is because all
measurements may be postponed to the end by the principle
of safe storage [5]. We also assume, w.l.o.g., that the players
do not modify the state of the qubits containing their inputs.

In the classical model we can also define a public-coin ver-
sion, in which the players are also allowed to access a shared
source of random bits without any communication cost. The
classical public and private-coin models are strongly related
(see [14, Section 3.3]). In the quantum analogue of the
public-coin model, Alice and Bob may initially share an ar-
bitrary number of quantum bits which are in some pure state
that is independent of the inputs. This is known as commu-
nication with prior entanglement [8, 7], or in information-
theoretic terms, as communication over an entanglement-
assisted quantum channel [3].

The complexity of a quantum (or classical) protocol is the
number of qubits (respectively, bits) exchanged between the
two players. We say a protocol computes a function f : X×
Y 7→ {0, 1} with ǫ ≥ 0 error if, for any input x ∈ X, y ∈ Y ,
the probability that the two players compute f(x, y) is at
least 1−ǫ. Qǫ(f) (resp. Rǫ(f)) denotes the complexity of the
best quantum (resp. probabilistic) protocol that computes f
with at most ǫ error. We will use the notation Q∗

ǫ (f) for
entanglement-assisted quantum communication of the func-
tion f .



On occasion, we will concentrate on communication in one
round, since this often sheds light on fundamental properties
of protocols for certain problems. The message in a one-
round protocol in which only one player gets an input is
called an encoding of the input. The operations done by the
other player, and her measurement are together referred to
as decoding .

2.2 Miscellanea
A mixed state over a set of qubits is a probability distribu-

tion {pi, |φi〉} over superpositions (or pure states), where the
state |φi〉 occurs with probability pi. We will sometimes use
the notation {|φi〉} for a mixed state, where the states |φi〉
are in general unnormalised, and are such that

∑

i ‖φi ‖2 =
1.

The following theorem gives a useful characterisation of
bi-partite quantum states (see [17, Section 2.5]).

Theorem 2.1 (Schmidt decomposition theorem).
Any unit vector |φ〉 in a bi-partite Hilbert space H⊗K may
be represented as

|φ〉 =
∑

i

√
λi |ei〉|fi〉,

where {|ei〉} and {|fi〉} are orthonormal sets of states in H
and K respectively, and the λi ≥ 0 are such that

∑

i λi = 1.

We denote the identity operator on states over k qubits
by Ik.

3. BOUNDS FOR ENCODING
In this section we concentrate on one-way protocols, or

encoding , by which one party, Alice, wishes to send some
number of classical bits to Bob.

3.1 Encoding over EPR pairs, without ancilla
We first prove our results in the case where Alice does

not use any ancillary qubits in the encoding process, and
Alice and Bob share some number of EPR pairs. This moti-
vates the proof in the more general case, and illustrates its
essential elements.

We start with a simple property of maximally entangled
states, such as EPR pairs. This allows us to analyse the
encoding process easily.

Lemma 3.1. For any unitary transformation U on E qu-

bits, and any orthonormal set
{

|φa〉 : a ∈ {0, 1}E
}

over E′ ≥
E qubits,

∑

a∈{0,1}E
U |a〉|φa〉 =

∑

a∈{0,1}E
|a〉Ũ |φa〉,

where Ũ is any transformation on E′ qubits such that for
all a, a′ ∈ {0, 1}E, 〈φa|Ũ |φa′〉 = 〈a′|U |a〉.

Proof. Observe that for b, c ∈ {0, 1}E ,

〈b|〈φc|
∑

a∈{0,1}E
U |a〉|φa〉 = 〈b|U |c〉

= 〈φc|Ũ |φb〉
= 〈b|〈φc|

∑

a∈{0,1}E
|a〉Ũ |φa〉.

The lemma follows.

We can now characterise the encoding process (without
ancilla) as follows.

Lemma 3.2. Suppose that Alice performs a unitary trans-
formation on her share of E EPR pairs, and then sends m of
the E qubits to Bob. Then, Bob has E+m qubits in a mixed
state that can be represented as {pl, |φl〉} (l ∈ {0, 1}E−m)
with {|φl〉}l orthonormal, and pl =

1
2E−m .

Proof. Suppose that Alice applies a transformation V
to her part of the state. By Lemma 3.1, the resulting state
is

1

2E/2

∑

a∈{0,1}E
V |a〉A|a〉B =

1

2E/2

∑

a∈{0,1}E
|a〉AV T|a〉B.

After the communication, Alice and Bob’s joint state may
be written as (w.l.o.g., Alice sends the rightmost m qubits
to Bob):

1

2(E−m)/2

∑

l∈{0,1}E−m

|l〉A 1

2m/2

∑

r∈{0,1}m

|r〉BV T|lr〉B .

Consider the mixed state on Bob’s side obtained when Alice
measures her qubits in the standard basis. The probabil-
ity pl of Alice observing any given l is 1

2E−m . The state of
Bob’s E +m qubits when Alice gets outcome l is

|φl〉 =
1

2m/2

∑

r∈{0,1}m
|r〉V T|lr〉.

We may easily verify that these are orthonormal for differ-
ent l:

〈φl|φl′〉 =
1

2m

∑

r

〈lr|V ∗V T|l′r〉

=
1

2m

∑

r

〈lr|l′r〉

= δl,l′ .

Note that the above measurement by Alice does not af-
fect the decoding process; Bob’s density matrix remains un-
changed by it (see [17, Section 2.4], especially Section 2.4.3).
Nonetheless, it allows us to express Bob’s mixed state in a
convenient form.

This proves the lemma.

By a simple dimensional argument, can now get an alter-
native proof of the fact that the superdense coding scheme
of [4] is optimal (in the case of encoding without ancilla).
We omit the proof.

In general, we can tolerate a little error in the decoding
process. This opens up the possibility of Alice being able
to reduce the communication significantly. The following
theorem places limits on the savings achieved.

Theorem 3.3. If Alice encodes messages x ∈ {0, 1}n over
EPR pairs without ancilla, and sends m qubits to Bob, the
probability of correct decoding of a message chosen uniformly

at random is bounded as Pr[correct decoding] ≤ 22m

2n
.

Proof. Suppose that the number of EPR pairs Alice
and Bob share initially is E. Let {px,l, |φx,l〉}l be Bob’s



mixed state when Alice has input x ∈ {0, 1}n, as given by
Lemma 3.2.

We may view the entire decoding procedure used by Bob
as measuring the encoded state with some ancillary qubits
(w.l.o.g., assumed to be initialised to state |0̄〉) with the
projection operators {Py}. Here, the outcome y ∈ {0, 1}n
corresponds to Bob’s guess for the encoded message. We
will omit the ancilla from the expressions below, for clarity
of exposition.

Let C be the event that Bob decodes a message correctly,
Cx (Cx,l) that he does so on receiving the encoding of x
(|φx,l〉, respectively). Let x be the event that Alice encodes
message x, and xl that |φx,l〉 is prepared given that x is
encoded. Then

Pr[C] =
∑

x

Pr[Cx] · Pr[x]

=
∑

x

Pr[Cx]

2n

=
∑

x,l

Pr[Cx,l] · Pr[xl]

2n

=
∑

x,l

Pr[Cx,l]

2E−m2n
. (1)

It thus suffices to bound
∑

x,l Pr[Cx,l]. Observe that

Pr[Cx,l] = ‖Px|φx,l〉 ‖2 . (2)

We introduce some notation. For each x, let Hx be the
space spanned by {|φx,l〉}l. Note that {|φx,l〉}l is an or-
thonormal basis for Hx. Let Rx be the projection onto Hx.
Since we allow a little error in the decoding process, the
different spaces Hx may not be orthogonal.

Let H be the space spanned by all the vectors {|φx,l〉}x,l,
and Q the projection operator onto H . For each x, let the
set {|ex,j〉}j be an orthonormal basis for the range of Px.

Then {|ex,j〉}x,j is an orthonormal basis for the entire de-
coding space.

Now,

∑

l

‖Px|φx,l〉 ‖2 =
∑

l,j

|〈ex,j|φx,l〉|2

=
∑

j

‖Rx|ex,j〉 ‖2

≤
∑

j

‖Q|ex,j〉 ‖2 , (3)

since the length of the projection of |ex,j〉 onto Hx is at most
the length of its projection on the space H (of which Hx is
a subspace).

From equation (3),

∑

x,l

‖Px|φx,l〉 ‖2 ≤
∑

x,j

‖Q|ex,j〉 ‖2

=
∑

x,j

〈ex,j |Q|ex,j〉

= Tr Q = dimH

≤ 2E+m, (4)

since the space H is generated by states over E +m qubits.

Combining equations (1), (2), and (4), we get

Pr[C] ≤ 2E+m

2E−m2n
=

22m

2n
,

as claimed.

Encoding with EPR pairs and ancilla leads to states very
similar to those in Lemma 3.2, and Theorem 3.3 holds in
that case as well. We will however skip ahead to encoding
where Alice uses extra space, and an arbitrary entangled
state.

3.2 Encoding with general prior entanglement
In general, in trying to transmit information, Alice and

Bob may share an arbitrary entangled state (independent of
their inputs) before they interact. In this section we show
that the results in the previous section apply irrespective of
which initial entangled state Alice and Bob share.

The main difficulty here is that the property of messages
encoded over EPR pairs embodied in Lemma 3.2 may fail
to hold. However, we show a simple connection between
encoding with EPR pairs and encoding with an arbitrary
entangled state that allows us to conclude an identical result.

We start by observing that we need only consider proto-
cols which make use of a special kind of shared state.

Observation 3.4. In any quantum communication pro-
tocol with prior entanglement, we may assume, without loss
of generality, that the initial shared state is of the form

∑

a∈{0,1}E

√
λa |a〉A|a〉B ,

where λa are non-negative reals, and
∑

a λa = 1.

Proof. This follows directly from the Schmidt decom-
position theorem (Theorem 2.1). Consider a protocol P in
which the quantum state shared by Alice and Bob has EA

qubits on Alice’s side and EB qubits on Bob’s side. For
concreteness, assume that EA ≤ EB . By Theorem 2.1, the
shared state may be expressed as

∑

b∈{0,1}EA

√
µb |φb〉A|ψb〉B,

where the µb are non-negative reals summing up to 1, and
the sets {|φb〉} and {|ψb〉} are orthonormal. We may mod-
ify the protocol to a new protocol P ′, which has the same
behaviour as P on each input, but where the shared state
is of the form in stated in the observation above. Consider
any unitary transformations U,V on E = EB qubits such
that for every b ∈ {0, 1}EA ,

U : |0̄, b〉 7→ |0̄〉|φb〉
V : |0̄, b〉 7→ |ψb〉.

Let λ0̄b = µb, for b as above, and let the rest of the λa be 0.
The protocol P ′ begins with the shared state

∑

a∈{0,1}E

√
λa |a〉A|a〉B ,

and then Alice and Bob apply U and V to their qubits
respectively. Thereafter, the protocol proceeds exactly as
in P . By construction, the protocols behave the same way
for each input.



We make another simplifying observation about the pro-
tocols that we need consider.

Observation 3.5. In any quantum communication pro-
tocol with prior entanglement, we may assume, without loss
of generality, that neither Alice nor Bob uses any ancillary
qubits in their local unitary operations or measurements.

This is because all the ancillary qubits used may be consid-
ered as part of the initial shared state.

The above observations allow us to relate the encoding
with a general entangled state to the encoding obtained
when EPR pairs are used instead.

Lemma 3.6. Suppose that Alice performs a unitary trans-
formation on her share of the joint state

∑

a∈{0,1}E

√
λa |a〉A|a〉B ,

and then sends m of the E qubits to Bob. Then, Bob has E+
m qubits in a mixed state that can be represented as

{

2m/2(Im ⊗ Λ)|φl〉
}

l∈{0,1}E−m

with {|φl〉}l orthonormal, and Λ =
∑

a

√
λa |a〉〈a|.

Proof. Note that the shared state may be written as

(IE ⊗ Λ)
∑

a

|a〉|a〉.

Suppose Alice applies the transformation V to her E qubits.
The resulting joint state is

(V ⊗ IE)(IE ⊗ Λ)
∑

a

|a〉|a〉

= (IE ⊗ Λ)
∑

a

V |a〉|a〉

= (IE ⊗ Λ)
∑

a

|a〉V T|a〉 (5)

=
∑

l∈{0,1}E−m

|l〉 (Im ⊗ Λ)
∑

r∈{0,1}m

|r〉V T|lr〉,

where equation (5) follows from Lemma 3.1. Let, as in
Lemma 3.2,

|φl〉 = 2−m/2
∑

r∈{0,1}m

|r〉V T|lr〉.

Suppose Alice sends m of her qubits to Bob, and measures
the remaining qubits in the standard basis. The residual, un-
normalised, state with Bob is then 2m/2(Im ⊗ Λ)|φl〉, when
she observes l ∈ {0, 1}E−m. That the states |φl〉 are or-
thonormal is shown in the proof of Lemma 3.2.

We can now prove the equivalent of Theorem 3.3 when
Alice and Bob share an arbitrary entangled state.

Theorem 3.7. If Alice encodes 2n messages over her part
of an arbitrary (but fixed) shared entangled state and some
ancillary qubits, and sends m qubits to Bob, the probability
of correct decoding of a message chosen uniformly at random

is bounded as Pr[correct decoding] ≤ 22m

2n
.

Proof. We use the same notation as in the proof of The-
orem 3.3, adapted to the different encoding we get here due
to the more general entangled state.

By Observation 3.5, we may assume that Alice and Bob
operate only on their shared entangled state. We may fur-
ther assume that this state is of the special form described
in Observation 3.4.

Let
{

2m/2(Im ⊗ Λ)|φx,l〉
}

l
be Bob’s mixed state when Al-

ice encodes x ∈ {0, 1}n, as given by Lemma 3.6. Since no
ancilla is used in the decoding procedure (i.e., in Bob’s mea-
surement to extract x, cf. Observation 3.5), the projection
operators Py are over E +m qubits. Now,

Pr[C] =
∑

x

Pr[Cx]

2n
, and (6)

Pr[Cx] = 2m
∑

l

‖Px(Im ⊗ Λ)|φx,l〉 ‖2 . (7)

Furthermore,
∑

x,l

‖Px(Im ⊗ Λ)|φx,l〉 ‖2 =
∑

x,l,j

|〈ex,j |(Im ⊗ Λ)|φx,l〉|2

=
∑

x,j

‖Rx(Im ⊗ Λ)|ex,j〉 ‖2

≤
∑

x,j

‖ (Im ⊗ Λ)|ex,j〉 ‖2

=
∑

x,j

〈ex,j |(Im ⊗ Λ2)|ex,j〉

= Tr (Im ⊗ Λ2)

= 2m
∑

a

λa = 2m. (8)

Combining equations (6), (7) and (8), we get

Pr[C] ≤ 22m/2n.

4. EXTENSION TO INTERACTIVE
COMMUNICATION

4.1 The main lemma
In this section, we analyse the most general quantum pro-

tocols for exchanging information. In these protocols, Alice
and Bob share an arbitrary entangled state to begin with,
and exchange messages both ways in order to communicate.

The essential idea behind the results below is contained in
Lemma 3.6, and leads to a new characterisation of the joint
state in quantum protocols. In order to prove the lemma
from first principles, we focus on protocols in which there is
no prior entanglement. That it holds also for communication
with prior entanglement may be inferred from the lemma
itself by applying it to a protocol in which the prior shared
entanglement is generated by Bob creating the state to be
shared, and sending the appropriate part of it to Alice.

Lemma 4.1. Let P be any quantum communication pro-
tocol (without prior entanglement) in which the number of
qubits sent by Alice to Bob (Bob to Alice) is mA (respec-
tively, mB), and the final number of qubits with Alice (Bob)
is qA (respectively, qB). Then, the joint state of Alice and



Bob at the end of the protocol may be expressed as
∑

a∈{0,1}qA
|a〉A Λ|φa〉B ,

where

1. Λ is a linear transformation that maps qB+2mB qubits
to qB qubits, depends only on the unitary transforma-
tions of Bob, and satisfies Tr(ΛΛ†) = 22mA , and

2. {|φa〉} is an orthonormal set of states over qB + 2mB

qubits, and depends only on the unitary transforma-
tions of Alice.

Proof. The proof goes by induction on the number of
rounds t.

In the beginning (for t = 0), the joint state (w.l.o.g.)
is |0̄〉A⊗|0̄〉B, which represents all the qubits the two players
use during the protocol. This is of the form described in the
lemma, with Λ = Λ0 = |0̄〉〈0̄|.

Let qA,t, qB,t,mA,t,mB,t be the quantities corresponding
to qA, qB ,mA,mB after t ≥ 0 rounds of communication.
Assume that at this stage, the joint state of Alice and Bob
is

∑

a∈{0,1}qA,t

|a〉A Λt|φa,t〉B,

where Λt and {|φa,t〉} satisfy the conditions stated in the
lemma (in terms of qB,t,mA,t,mB,t). We look at two cases
for the (t+ 1)’th round of communication.

Case (a). Alice applies a unitary transformation U to
her qubits and sends p qubits to Bob.

The state after the unitary transformation is

(U ⊗ IqB,t
)(IqA,t

⊗ Λt)
∑

a∈{0,1}qA,t

|a〉|φa,t〉

= (I ⊗ Λt)
∑

a∈{0,1}qA,t

U |a〉|φa,t〉

= (I ⊗ Λt)
∑

a∈{0,1}qA,t

|a〉 Ũ |φa,t〉,

where Ũ is a unitary transformation on Bob’s qubits as given
by Lemma 3.1. Thus, after Alice sends p of her qubits to
Bob (w.l.o.g., these are the p rightmost qubits), the joint
state looks like

∑

l∈{0,1}qA,t+1

|l〉A (Ip ⊗ Λt)
∑

r∈{0,1}p

|r〉B Ũ |φlr,t〉B. (9)

Here, qA,t+1 = qA,t−p, qB,t+1 = qB,t+p,mA,t+1 = mA,t+p,
and mB,t+1 = mB,t.

Let

Λt+1 = 2p/2(Ip ⊗ Λt), and

|φl,t+1〉 = 2−p/2
∑

r

|r〉 Ũ |φlr,t〉.

Now,

Tr Λt+1Λ
†
t+1 = 2p Tr (Ip ⊗ ΛtΛ

†
t )

= 2p · 2p · 22mA,t

= 22mA,t+1 .

Moreover, for the same reasons as in the proof of Lemma 3.2,
the set {|φl,t+1〉} is orthonormal. Thus, the state in equa-
tion (9) is of the form stated in the lemma.

Case (b). Bob applies a unitary transformation V to his
qubits and sends p qubits to Alice. W.l.o.g., these are the p
leftmost qubits.

After the communication, the joint state looks like

∑

a∈{0,1}qA,t

∑

l∈{0,1}p

|a〉A|l〉A (〈l| ⊗ IqB,t−p)V Λt|φa,t〉B,

which may be recast as

∑

a,l

|al〉 Λt+1|φal,t+1〉, (10)

where

Λt+1 =
∑

b∈{0,1}p
(〈b| ⊗ IqB,t−p) V Λt (〈b| ⊗ IqB,t

),

|φal,t+1〉 = |l〉|φa,t〉.

Now mA,t+1 = mA,t, mB,t+1 = mB,t + p, qA,t+1 = qA,t + p,
and qB,t+1 = qB,t − p.

The states |φal,t+1〉 are orthonormal. Moreover,

Tr Λt+1Λ
†
t+1

= Tr
∑

b,b′

(〈b| ⊗ I)V Λt(〈b| ⊗ I)(|b′〉 ⊗ I)Λ†
tV

†(|b〉 ⊗ I)

=
∑

b

Tr
[

(〈b| ⊗ I) V ΛtΛ
†
tV

† (|b〉 ⊗ I)
]

=
∑

b

Tr
[

(|b〉〈b| ⊗ I) V ΛtΛ
†
tV

†
]

= Tr
[

(I ⊗ I) V ΛtΛ
†
tV

†
]

= Tr ΛtΛ
†
t = 22mA,t+1 .

Thus, the state in equation (10) is of the form described in
the lemma.

This completes the induction step, and the proof.

4.2 Implications for communication problems
We now sketch how our characterisation of quantum pro-

tocols enables us to prove Theorem 1.1.
Proof of Theorem 1.1. The proof is essentially the

same as for Theorem 3.7, and we use the same notation here.
Lemma 4.1 shows that Bob’s state remains of form similar

to that in Lemma 3.6 as he interacts with Alice during the
protocol. Let {Λ|φx,l〉}l be Bob’s mixed state at the end of
the protocol when Alice has input x ∈ {0, 1}n, as given by
Lemma 4.1. Note that Λ is independent of x.

Since we may assume that all the ancillary qubits used
by Bob are included in his state above (cf. the proof of
Lemma 4.1), the projection operators Py are over qB qubits.
Now, as before,

Pr[C] =
∑

x

Pr[Cx]

2n
=

1

2n

∑

x,l

‖PxΛ|φx,l〉 ‖2 .



Furthermore,
∑

x,l

‖PxΛ|φx,l〉 ‖2 =
∑

x,l,j

|〈ex,j |Λ|φx,l〉|2

≤
∑

x,j

∥

∥

∥
Λ†|ex,j〉

∥

∥

∥

2

= Tr ΛΛ† = 22mA .

Combining these, we get Pr[C] ≤ 22mA/2n.
Finally, we apply Theorem 1.1 to obtain an improved

lower bound for the entanglement-assisted quantum com-
munication complexity of the inner product function IPn.
(The function IPn : {0, 1}n × {0, 1}n → {0, 1} is defined
as IPn(x, y) = ⊕i(xi ∧ yi).) The connection between the
two is provided by the following reduction due to Cleve et
al. [8].

Theorem 4.2 (Cleve, van Dam, Nielsen, Tapp). If
Q∗

ǫ (IPn) = m, then there is an entanglement-assisted pro-
tocol for transmitting n bits with probability of success at
least (1− 2ǫ)2, such that the total communication from each
party to the other, over all the rounds of communication,
is m qubits.

Theorem 1.1 now implies

Corollary 4.3. Q∗
ǫ (IPn) ≥ 1

2
(n− log 1

(1−2ǫ)2
).

It is not hard to see that for any ǫ < 1/2, there is a public-
coin randomised protocol for IPn with communication cost
at most n− log 1

1−2ǫ
+1. Along with the superdense coding

scheme of [4], this means that

Theorem 4.4. Q∗
ǫ (IPn) ≤ 1

2
(n− log 1

1−2ǫ
+ 1).

Thus, our lower bound is close to optimal, and for constant
error, is within an additive O(1) term of the upper bound.
Since Q1/3(IPn) ≤ n, this provides more evidence that prior
entanglement does not give us a saving of more than a fac-
tor 2 (plus perhaps an additive term of O(log n)) in commu-
nication cost.
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