Finding Nearest Neighbors in Growth-restricted Metrics

David R. Karger Matthias Ruhl

MIT Laboratory for Computer Science
Cambridge, MA 02139, USA

{karger,ruhl }@theory.lcs.mit.edu

ABSTRACT and deletion of points frors.

Most research on nearest neighbor algorithms in the literature has These problems are quite hard for general metrics, ewdgr)ced
been focused on the Euclidean case. In many practical search prob-t?y the fa&that known data structures perform poorly (requiring
lems however, the underlying metric is non-Euclidean. Nearest tlm_eh%(n) fcr)lr ran%e quehrles with no_n-trlwal,l or folr ?eafrest .
neighbor algorithms for general metric spaces are quite weak, which€1ghoor S?ar:g es w e“re It edC]uerychtJ)lnlt IS re atrl]_/ey ar _rorln |'ts
motivates a search for other classes of metric spaces that can b earest neighbor (See. related work® be ow). This seemingly is
tractably searched. ecause general metrics do not provide enough structure to solve
In this paper, we develop an efficient dynamic data structure these prqblems efficiently. o .

for nearest neighbor queries gmowth-constrainednetrics. These In the mstancgs Wher?‘ search problems arise in pract|ce,_ h.OW'
metrics satisfy the property that for any poqand distancel the ever, the underlying metric usually is far from general, but satisfies
number of points within distancedf q is at most a constant fac- additional constraints. Developing efficient search data structures
tor larger than the number of points within distartteSpaces of for thes_e metric spar::es |sh§1n |mgfrtar;]t pr?blem.d h lid
this kind may occur in networking applications, such as the Inter- Pre‘,"O;; ieslgfj‘rf on ;],'ShPrO em IaT ocused on the Euclidean
net or Peer-to-peer networks, and vector quantization applications,case’ e = (R", Lp), which is particularly important since many

where feature vectors fall into low-dimensional manifolds within Practical app Iicatio.ns deal with *feature vectors® that are naturally
high-dimensional vector spaces embedded in Euclidean space. A large number of data structures

have been developed that perform very well (with logarithmic time

per operation) inow dimensionaEuclidean spaces. There is, how-
1. INTRODUCTION ever, a significant number of problems where the data cannot eas-

Finding the nearest neighbor of a point in a given metric is a clas- ily be embedded into low-dimensional Euclidean space, or such an
sic algorithmic problem with many practical applications. Some embedding results in the loss of information.
such applications are database queries, in particular for complex In this paper, we are concerned with sample sthat have
data such as multimedia data or biological structures, e.g. on pro-a certain smooth-growth property. Throughout this paper, we let
tein structures or genome data. Other uses are in lossy data ComBy(r) := {s€ S| d(p,s) < r} be the ball of radius aroundpin S.
pression, where data can be encoded by the closest representative
from a fixed set of representatives. The common characteristic of pefinition 1 (Expansion Rate)
these examples is that comparing two elements is costly, SO Onewe say that S has (p, c)-expansioniff for all pe M and r > 0,
would like to develop data structures that allow for nearest neigh-
bor searching with a small number of comparisons. Bp(r)| = p = [Bp(2r)| < c:[Bp(r)|.
In the formal setting, one is given a metric spake= (M,d) In the bulk of this paper, we will set p= O(log|S]|) and refer to C as

(whered is symmetric and satisfies the triangle-inequality), and a pe expansion ratef S. [
subsetS C M of n points in the space. Allowing for some pre-
processing one wants to efficiently answer queries of two kinds: Intuitively, for any space satisfying this property, points fr@n
) “come into view” at a constant rate when we expand a ball around
(i) Nearest Neighbor: Given a poigte M, return the point irt any pointp € M.
_ thatis closest tq among all points ir& _ The factor 2 in the expansion definition can be replaced by any
(i) Range Query: Given a poinfe M andr > 0, return all points gther constant with a corresponding change iFor intuition, con-

p € Sthat satisfyd(p,q) <r. sider the set of points in a uniforchdimensional grid under thie;
metric. Balls in this metric are-dimensional hypercubes. Mul-
tiplying the ball radius by 2 corresponds to increasing each side
length by this amount, which increases the volume of the cube, and
thus the number of points in it, b)ﬂZ Thus, theL; metric on the
Permission to make digital or hard copies of all or part of this work for 9rid has(1,2)-expansion.
personal or classroom use is granted without fee provided that copies are Based on this grid intuition, we can consider the expansion rate
not made or distributed for profit or commercial advantage and that copies to be a kind of “dimensionality” measurement for our metric space.
bear this notice and the full citation on the first page. To copy otherwise, to Expansion rate is incomparable to standard dimension, however:
reput_)lls_h, to post on servers or to redistribute to lists, requires prior specific a balanced binary tree, which can be embedded in 2 dimensions
permission and/or a fee. h h L te. A low di - | ifold i hiah ’
STOC'02May 19-21, 2002, Montreal, Quebec, Canada. as a huge expansion rate. ow dimensional manitold in a hig
Copyright 2002 ACM 1-58113-495-9/02/0005$5.00. dimensional space can have a very low expansion rate (as in the

It is also desirable that the data structure support efficient insertion

applications discussed below). Under standard dimensionality, a A second application comes from machine learning. A current
subset of points has no higher dimension than its containing set; thread of machine learning research [9, 8] postulates that the feature
this powerful fact is not true for the expansion rate. However, we vectors representing points being analyzed form a low-dimensional
will see below that a weaker and still useful result does hold: a manifold of a high dimensional space. There is no a-priori spec-
randomsubset of points from a low-expansion metric space has ification of the manifold; rather, a large set of example points is
low expansion. Thus, for example, a collection of points randomly provided. The distance metric on these points is given in the high
distributed in ad-dimensional Euclidean cube has expansion rate dimensional space. Identifying near neighbors among the example

o(d).

The expansion property, applied recursively, shows that the num-

ber of points in a ball of radius is at most polynomial im. The

points is useful — for example, to implement the standanéarest
neighbors algorithm for classification, or to identify neighborhoods
in the manifold in order to construct local parameterizations of the

converse is not true, however: the expansion property requires thismanifold. Under assumptions of limited curvature (which are also

growth to be reasonably smooth — it rules out the possibility (con-
sistent with the polynomial bound) that as the ball grows, we en-
counter a few points, then a long period with no points, then sud-
denly a tremendous number of points.

Our result. Our main result is a randomized data structure, the
metric skip list that allow for nearest neighbor queries in spaces
with constant expansion rates£ O(1)). The data structure can
answer nearest neighbor querie©iftogn) time, and range queries

in time O(logn+ k) (wherek is the number of returned elements)
with high probability. The data structure can be constructed in
O(nlogn) time, useD(nlogn) space and allows for the addition
and deletion of points in expecté€d(lognloglogn) time. The as-
sumption that is constant simplifies notation; more generally, the
running time is logarithmic im, but polynomial in the expansion

made in the Al literature) and random selection of example points
from the manifold, the low-expansion property will hold (as it does
for low dimensional Euclidean spaces) and our near-neighbor struc-
ture could be applied.

Related Work. As mentioned previously, most research on near-
est neighbor search has focused on the case of vector spaces and/or
Euclidean metrics [1, 2]. There has been a growing interest in
general metrics, however. In a recent survey [4]a@z et al.
give an overview on the data structures developed for these ap-
plications. The most frequent approach is by “pivoting” [10, 11],
i.e. the space is partitioned into two halves by picking a random
pivot, and putting points into either half of the partition according
to their distance to the pivot element. Variations use multiple piv-
oting elements per split [3]. While these structures answer queries

ratec.!’ The data structure is Las Vegas, i.e. always returns the in O(logn) time for a point that is actually in the s&f they can-
correct result regardless of our random choice. The structure worksnot be used efficiently to find nearest neighbors, or perform range
even if the metric space does not have a bounded expansion ratequeries unless the radii involved are very small. This is because in

although its running time bounds degrade.

Our data structure is quite simple, deducing from the low expan-
sion property that a random sample of a few points in a given ball
around the query pointis likely to yield a point inside a much closer
ball.

Applications. Clearly, the main motivation for looking at spaces

with low expansion rates is because they actually appear in real
problems. We are aware of at least two applications where this is

the case.
In Internet applications, it is often important for nodes to find

other nodes that are “near” each other with respect to distance a
measured by latency or bandwidth. This paper was motivated by

work on the Chord system [7] which provides routing infrastructure

for various peer-to-peer applications. In many such applications, it
is useful for clients of the system to find a nearest Chord node that

can proxy for them in the application. In data caching applications,
it is useful to solve the more general problem of finding a nearby

node that actually has a copy of the desired data. Plaxton et al. [6]

S

general the search ranges can split at every pivoting step, requiring
the exploration of a significant part of the search tree. (Comparable
to the performance guarantee of nearest neighbor searches using
quad-trees, which i©(y/n).) Also, dynamic maintenance of the
trees, in particular deletion, is difficult.

Clarkson [5] developed two data structures for non-Euclidean
spaces. He assumes that the samglaadq are drawn from the
same (unknown) probability distribution. While his data structures
apply to the low-expansion spaces that we consider (as long as
the non-trivial assumption of random inputs is satisfied), they have
super-logarithmic query times, and do not allow for insertion or
deletion of elements.

The already mentioned paper by Plaxton et al [6] contains a data
structure for low expansion spaces that allows for locating data ob-

jects in a shared network in that space. The data structure cannot be

directly used for nearest neighbor search, as it returns only approx-
imately closest data items. Moreover, the construction makes addi-
tional crucial assumptions on the space, sudBg&2r)| > 8|Bp(r)|

for all p e Sandr > 0, so does not necessarily work on all spaces

tack]ed this prqblem. They Qescrlbe a distributed system that storesWith low expansion.
replicated copies of a data item, and a protocol that lets any node

retrieve a “nearby” copy of the data item — more precisely, their Outline. The paper is structured as follows. First, we will de-
randomized scheme finds a copy whose expected distance is closeive some additional properties of spaces with low expansion rates.
to that of the nearest copy. Their scheme makes the same “con-We then describe and discuss our data structure for searching in
stant expansion” assumption as we make here. In fact, they requirelow expansion metrics, describe an application to a peer-to-peer
more: that ratio of points in the larger ball to that in the smaller ball networking protocol, and conclude the paper with describing some
must be uppeand lower bounded by constants exceeding one. We directions for future research.

require only the upper bound. In an additional improvement, when

data is replicated by the Chord protocol, our scheme can be used t02 CONSEQU ENCES OF LOW EXPANSION

find the closest (rather than just close in expectation) copy of a data]))) i
Let us begin by introducing notation, and proving a few facts

item.
about spaces with low expansion that show why sampling is a good
way to find nearest neighbors in these spaces.
We begin by proving the fact claimed in the introduction.

1Recall that on a grid the expansion ratés exponential in the standard
dimensiond; thus being polynomial i fits the outcome, common in geo-
metric algorithms and data structures, of being exponential in the standard
dimension.

Lemma 2

A random subset of m points from a metric space with (p, C)-expansion
will have (max(cp, O(logm)), 2c)-expansion with high probability
(in the size of the subset).

Proof: We prove(max(cp, W), 2c)-expansion for somg= O(logm).
Let Z be the sample from the metric spa@eConsider a particular
ball By(r) for some poinf in the sample. Let us now condition on
the numbek of points inZNBp(2r). If k < cp then the expansion
property is vacuously satisfied. Similarlykf< pwe are done.

So we can assume> cp andk > . This impliesBp(2r) con-
tains at leask > cp points inZ and thus irS. From the expansion
property forSwe know thatBp(2r) has at most times as many
points asBp(r) in S. Conditioned ork, the set of points included
in the sample is chosen at random fr&n Bp(2r); thus, each such
point is inBp(r) with probability at least Aic. Thus, the expected
number of pointk’ in ZNBy(r) is at leastk/c. Sincek >, a
standard Chernoff bound implies thdt> k/2c with probability
1—e W, By choosingu = O(logm) (varying the constant ac-

Proof: This follows from the Sandwich Lemma. Let=|Bq(r/2)|

be the number of “good” points. Sin@y(r/2) C By(r) € Bp(2r)

by the Sandwich Lemma, all good points are possible results in our
sampling. Also due to the Sandwiching Lemma, we Hwg2r)| <
|Bq(4r)| < c3|Bqy(r/2)| = c3-k, the lastinequality due to the limited
expansion rate. Thus, the probability that one sample is good is at
leastk/(c3k) = 1/c. The probability that® samples are all bad is

at most
1\ /q1\3
- = <(=) <o0.05
(1 0°’) *(e> =008

Thus, we succeed with probability more than 90 %. Because the
sample space had at least logarithmic size, the effect of sampling
without replacement vs. with replacement is negligifale.

2.1 A simple local search algorithm

The Sampling Lemma immediately suggests a nearest neighbor
search algorithm.

cording to the precise desired probability bound) we deduce that let p be an arbitrary point it

k' > k/2c with high probability inm.

Our analysis has shown that regardles&,athe ball obeys the
expansion property with high probability m. Thus, the same high
probability result holds without conditioning.

This outcome holds with high probability for any particupae Z
and any particular. It thus holds with high probability im for
any of the(7) pairwise distances between pointsZinSince these

particular distances are the only ones where ball-sizes change, th

claim is proven]

As can be seen in the proof, sampling creates a sizea logjgh-
borhood of a point within which expansion fails to be preserved;
this motivated the parameterthat excepts small balls from the
expansion-rate bound.

Now we turn to developing our data structure. In the following,
we will assume that the metric spa@é is normalized (by scaling)
such that the maximum distance between any two poin&isnl.

As before, len be the size of the subst

while pis not the nearest neighbor gin S
let X = random sample of& elements 0Bp(2d(p,q))
let p= element ofX U {p} of minimal distance ta

Let us briefly discuss this algorithm. For simplicity, we ana-
lyze this scheme in terms of the rat®between maximum and
minimum pairwise distances between points in the metric space,

eand assume that the set h@dsc)-expansion (as opposed to the

(O(logn), c)-expansion considered in the rest of the paper).

Theorem 5
The local search algorithm completes with high probability in O(logR)
time.

Proof: We start with a point at distance at most 1 from the query
point (recall that we normalized our space this way). By the sam-
pling lemma, each local search step (iteration of the while loop)
will halve our distance tg with probability at least 910 (and will

All the algorithms we describe below can be viewed as random never increase it). It follows that the expected number of iterations
walks on the se§. To find q, we start at an arbitrary poime S to halve our distance tqis at most 199, and the expected num-
and step through a sequence of points that quickly converggs to ber of iterations to produce Id&ghalvings is(10/9) logR. But after
In fact, in each step we expect to halve the number of points closer logR halvings, we will have a point at distance at mogRrom g.
to g than our current position, resulting irG{logn) query time. Since by definition oRthere are no points at this small a distance,

The steps in the random walk are performed by sampling points We must terminate sooner with the nearest neighbay of
from Sin a ball around our current poit We will now show how A standard Chernoff bound on the expectation yields the high
this yields good performance. First, we state a simple claim about probability result[]

inclusions of balls around a pair of points. A Space-Inefficient Structure

The local search algorithm relies on a random-sampling prim-
itive which we have yet to implement. We provide a data struc-
ture that supports the necessary sampling. We saw above that local
search takes onl®(logR) time with high probability. It follows
trivially that with high probability, we will need to examine only
O(logR) samples from a ball around any particular pgirit our
search. Our data structure simply chooses ti@$egR) samples
in advance for alh points in the metric space.

Of course, we do not have advance knowledge of the query points,
so we cannot predict the distance between a pointd the query
point. Without such knowledge, we do not know what radius of ball
aroundp to sample from. We get around this problem by choosing
from a set of balls with power-of-two radii. One such ball will have
radius within twice the current distance to the query point, and we
can use the in-advance samples from that ball.

More precisely, for each integét each pointp chooses a set
of 3c®logR level k finger pointsiniformly at random from the set

Lemma 3 (Sandwich Lemma)
Ifd(p,q) <r, then By(r) € Bp(2r) C By(4r).

Proof: For the first inclusion, i € By(r), thend(p,s) < d(p,q) +
d(g,s) <r+r = 2r. For the second inclusion, &€ Bp(2r), then
d(g,s) <d(q,p)+d(p,s) <r+2r <4r.0

This simple observation leads us to the sampling lemma which
is the basis for our algorithms.

Lemma 4 (Sampling Lemma)
Let M be a metric space, and SC M be a subset of size n with
(p,c)-expansion, where p = Q(logn). Then for all p,q € S and
r > d(p,q) with [Bg(r/2)| > p, the following is true.

When selecting 3¢ points in Bp(2r) uniformly at random, with
probability at least 9/10, one of these points will lie in Bq(r /2).

Bp(2*k) of points within distance 2 of p. Denote this set of the corresponding poirg. For each nods;, we will storefinger
fingers adw(p). This selection is done for eag&up tok = logR, lists.

since there are no points closer than this distange thlote also o

that the level O fingers are simply random points in the metric space. Definition 7

Given these finger points, we use the following algorithm. Forr > 0 the radiusr finger listfor s, denoted F (S), contains the
indices of the first 24c3 elements after S in the ordering that have
QUERY(Q) a distance < r to §. If we reach the end of the ordering, we wrap
let p be any point inS around to the beginning, and if there are less than 24c® elements of
while pis not the nearest neighbor gf this kind in S, then F (S) just contains all of them.
let k be maximum such that(p,q) < 27X The lengthk finger listsare defined analogously, with the con-
let p= closest point tay in F_1(p) stant 24c3 replaced by k.
return p

In the remainder of this section we will analyze the space re-
We can analyze this algorithm using the Sampling Lemma. Given quirements of the data structure, prove that it can be used to find
some poinip at distance from g, with 2~ (k1) ~r < 27K we use nearest neighbors in tim@(lognloglogn), and give an off-line
samples (fingers) from the ball of radius*2< 2r. The Sampling ~ O(nlognloglogn) construction algorithm. We defer the problem
Lemma thus applies, telling us that we halve the distance of the of dynamic updates (addition and removal of points fi§nto the
current point tog with constant probability. The analysis of the ~following section. Later in section 4.2 we will also improve the
previous section therefore applies to tell us the following theorem. funning time of the FuD-algorithm toO(logn).

3.1 Space requirements

At first glance, it seems that the number of finger IG5t) we
have to store at a node is not bounded. But it actually turns out that
with high probability onlyO(logn) of the finger lists are distinct,
Proof: There are lo distinct powers of 2 between the maximum as we will show now. Thus, it is enough to just store these, indexed
and minimum distances in the metric spaces. For each such powery r. This leads td(logn) storage per node, @(nlogn) for the
of 2, we need)(logR) fingers for each of oun points.O whole data structure.

The problem with this approach, however, is the fact that draw-
ing samples uniformly at random from prescribed spheres is not
easy. In particular, if we demand that all these samples are inde-
pendent of each other, efficient dynamic maintenance of the data
structure seems difficult.

If we do not require dynamic maintenance of the data structure, Proof: We give an algorithm that outputs all the elements in any
however, this approach can be developed into a data structure by (p), and analyze its behavior. Consider the following algorithm:
independently choosing the samples in “advance” during construc-
tion time. This scheme produces a data structure we call a “metric 16t j =0,F = {s1,%,..., %}
search tree” with the same time bounds as our current structure thaffor i =k+1to ndo
can be analyzed by an application of branching processes. We omit if d(p,s) < maxcr d(p,s) then// new element closer

Theorem 6
There is a data structure of size O(hlog2 R) that answers near-
neighbor queries with high probability in O(logR) time.

Lemma 8

Let S={s1,...,5} be a randomly ordered subset of a metric space
M = (M,d), ke N, and p € M. Then with high probability, there
are only O(klogn) distinct length K finger lists for each .

the details in this version of the paper. let j=j+1, o
Instead, we concentrate on a data structure where the “pre-chosen” fj = elements € F maximizingd(p,s),
samples are not completely independent. While allowing for easier F=F\{fihu{s}

insertion and deletion, this makes the analysis more complicated,output FU{f1, f2,.... fj}.

we will
aswe see We claim that this algorithm outputs all elements that appear in

any lengthk finger list of p. Clearly, an elemerg will not be in a

3. METRIC SKIP LISTS finger list, if there ar& elements before it in the ordering which are

We now describe thenetric skip listdata structure that solves all closer topthans. The seF maintained by the algorithm always
the nearest neighbor search problem in metric spaces with constantontains thek closest element tp among{s, s, ...,S-1}. Using
expansion rates. It follows the sampling paradigm described in the this invariant, we see that no elements besides the ones output at
last section. To avoid the problem of creating (and maintaining) the end can appear in a finger list.
completely independent samples, we use a trick previously applied We will now show that the number of elements in the output is
to the design ofreaps(a dictionary data structure). To construct O(klogn) with high probability. To be output, an element must
our data structure, we introduce a random ordering on the pointsfirst enterF. An elements entersF if and only if it is one of
in the sample spac& The construction of the data structure will thek closest elements tp among{s,,...,5}. These items are a
then be deterministic given the ordering. But, using the fact that the random permutation of (some subset 8f)sos is one of thek
ordering is truly random, we will show good performance guaran- closest top with probability k/i. It follows immediately that the

tees. expected number of points enterifrgis S k/i = O(klogn). For
For simplicity, we will assume in the following that all pair-wise the high probability bound, consider generating the{lsst ..., sn}
distances of points i8 are distinct (via perturbation). backwards from the end by repeatedly choosing a random element
We impose a random total order 8= {s1,S,...,Sn}. We call not yet in the list. From this framework it can be seen that the
s.+1 the successor &f, and lets; be the successor &f, so one can probability ofs becoming a finger is independent of all other such
actually imagine the points arranged on a circle. events. Thus, the number of fingers is a sum of independent indi-

The data structure consists of sets of pre-chosen samples for ev-cator random variables with me&tklogn), and thus i©O(klogn)
ery points € S We will refer to those samples as being “stored at” with high probability by the Chernoff bound.

Finally, note that the number of elements output upper-bounds probability it is onlyO(logn). But “high probability” implies that

the number of distinct lengtk finger lists, since the sét (which

the bound is true for any starting point, in particular the point where

enumerates all finger lists) changes once each time we produce ave end up after processing the first third of the points. This allows

new output element in the above algorithim.

3.2 TheFIND-operation

The FND-operation on our data structure is the “obvious” ap-
plication of the sampling search strategy given in section 2. The
algorithm is defined as follows:

FIND(q) (finds nearest neighbor dfin S)
leti =1//iis current position
let m=1//mis minimum so far
while i < ndo
letr =d(s,q)
if 3 j € Fx(s) such that
d(sj,q) < d(sm,q) ord(sj,q) <r/2then
leti be the smallest index Fy () with that property
if d(s,q) < d(sm,q) then letm=
else leti = maxFy (s)
output sm.

Let us first prove the correctness of the algorithm. For this we
will not need the fact thas has low expansion, i.e. the algorithm
will work correctly (if not particularly efficiently) on any metric
space.

Lemma 9
The FIND -algorithm always returns the nearest neighbor to q in S.

Proof: We only move forward in the ordering, i.e. is strictly
increasing. An invariant of the algorithm is thet is always the
point closest ta among{sy,...,S}. Assume, for contradictions
sake, that after moving froito j, this condition did not hold. Then
there must be a poimst (i < k < j) with d(s¢,q) < d(s,q) =r. This
implies d(sx,S) < 2r. But such ars should have been included
in the finger listk (s), and would not have been skipped. The
contradiction shows the correctness of the algorithim.

3.3 Running time analysis forFIND
In the following running time analysis, we will make a simplify-

us to process the second (and eventually last) third of the points
again inO(logn) each, yielding at total time bound 6f(logn).

So consider the first thir&, 3. Suppose that our search is cur-
rently at itemsy, having passed the s& = {s,...,5%-1}. The
setS— & is (thanks to our random ordering) a random subset of
S, of size at least2/3. It follows from Lemma 2 thab— S is a
metric space with{O(logn), 2c)-expansion. In other words, with
high probability, for allr > 0 such tha{Bq(r)| = Q(logn), we have
[Bq(2r) N (S\ S| < 2¢- [B(r) N (S\ |-

We briefly defer the case ¢Bq(r)| = O(logn). For larger balls,
we have just argued that the elements in the finger list are drawn
at random from a space with expansion rate Zhus drawing
24c® = 3(2¢)® of them will yield one with distance at mosit/2
with probability at least 810, by Lemma 4. This tells us that tife
test in the FND algorithm will be satisfied with probability at least
9/10 in each iteration.

To outline our argument, we make two assumptions that must
be revisited later. First, we assume any record-breakingadsep
reduces the distance by half. Second, we assume that the outcomes
of the iterations arendependentUnder these two assumptions, we
can analyze our algorithm as a random walk.

Let (dq,dp,...) be the distances tq of the elements; visited
during the execution of IKD on the first third of the elements. We
will model (d;) as a random walk. The analysis above (and our
assumption about record events) means that with probabjit9 9
theif test succeeds and we halve our distanag When thdf test
fails, by definition and the Sandwich Lemma, we hdve < 4d;.

It follows thatE[logd; 1] <logd; —9/10+2-1/10=logd; —7/10.
In other words, the random walk has negative drift.

Such a random walk has the property thaBGflogn) moves, it
will move O(logn) times to a value below any previous encoun-
tered value. Such a move discovers a record breaking item. Since
by Lemma 8 there are oni®(logn) record-breakers, we will have
found them all withinO(logn) time steps.

We must now revisit our assumptions. Our argument that the dis-
tance halves with probability 9/10 per iteration ignored two cases.
First, if we are on one of thp = O(logn) closest points ta, then

ing assumption to be removed later. When we access a finger list,the expansion rate need not hold. Second, in iterations where we

we do so by the corresponding radiusThe unbounded number
of possible values far prevents us from storing the finger lists in-
dexed byr, however. Therefore we store the finger lists in an array
ordered byr. The most straightforward way of locating the correct
list is therefore binary search opwhich leads to an additional cost
of O(loglogn) per finger list access. Later, we will reduce this time
to constant per finger list.

Theorem 10

The FIND-algorithm with high probability accesses only O(logn)
finger lists. Thus, its running time is O(lognloglogn) with high
probability.

Proof: First observe that theiRD-algorithm actually steps through
all the elements that would appear in the length 1 finger listg of

(hadqg been inserted where we start the search). In particular, any

time we take an elemest with d(s,q) < d(sm,q), we are taking
a 1-finger-list element. We will refer to these as “record” items.
Note from Lemma 8 that there a@logn) record items with high
probability. However, the algorithm will also encounter nodes that
arenotrecord items. We must bound this work.

We consider the running time of the algorithm on the first third
Sh/3 = {s1,%....,Sy/3} of the elements, and prove that with high

encounter a record breaker, the distance need not halve. Note that
each outcome (being on a close point, or encountering a record
breaker) happens oniy(logn) times. We model this by letting an
adversary “cancelO(logn) of the distance-halving steps that oc-
cur in our algorithm. The random walk analysis generalizes to this
case and still shows th&(logn) record-breakers will be encoun-
tered withinO(logn) steps.

Finally, it remains to justify our assumption above that the ran-
dom walk steps are independent. We use the principle of deferred
decisions. In an iteration starting gt our algorithm selects the
closest itensj € Fx () that satisfies thé test. We can identify
sj by walking forward on the list fronfj, adding valid items to the
finger list until the finger list is full or we encounter an appropriate
sj. In this variant of the algorithm, we reash before examining
anynode followings; in the list. Thus, by the principle of deferred
decisions, the fingers sf are independent of all our previous steps.
O

3.4 Range Queries

In a range query we want to find all elementsSithat are within
a distance of a query pointy. These queries can be answered by a
variant of our FND-algorithm in timeO((logn+ k) loglogn) with

high probability, wheré is the number of returned points. tain aradiudx(s) > 0 such thatlogn < |Bs (R(s))| < 3clogn,

We simply modify the FnD-algorithm to never query finger lists and a listNN(s) of the points inBs (R(s)).
with a radius of less thanr2 This ensures that we will never miss)]))
any of the points within the required ball arougdSimilar to the Query Lists Qr(s): For each finger lisk: (s) we store an associ-
original FIND, the behavior of this algorithm can be analyzed as a ated list of all elements; that queried (s) when construct-
random walk, where the points within distancef q are considered ing their own finger lists. The exception to this is that we do
to be one set at distancéo q. It takes at most tim@(logn) for the not records;j’s queries for its finger lists with radius less than
random walk to get within distanaeof g, and thenO(k) time to R(sj)-

visit all points in the query radius, since it takes expected constant
time between visiting successive elements in the ball. This yields
a total bound o©O(logn+ k) finger list accesses, for@((logn+

k) loglogn) running time.

These additions do not change Bénlogn) space requirement
of the data structure. The nearest neighbor lists redqD{fegn)
space per node. And since the number of queries performed when
constructing an element’s finger lists@logn) with high proba-
3.5 Offline construction bility, the total number of entries in the query list<$nlogn).

Before considering dynamic updates to the data structure, we4q 2 A faster FIND

first present a simpl®(nlognloglogn) off-line construction algo-))
rithm for our data structure. It turns out that with only small changes, thenB-algorithm

Suppose we truncate all finger liss(s), so that they do not can be moo!ified to run tim®(logn) with high probability, with a
“wrap around” at the end of the ordering, but rather only include corresponding bound @(logn + k) for the range search. We will
elements aftes in the ordering. This data structure would still USe these bounds from now on to compute running times.
support searches, as long as they stast at the beginning of the _ We chan.ge the IND-algorithm so that once it queries a finger
ordering. list Fr (s) with r < R(s), we stop the random walk, and just return

Constructing this data structure can be done by starting with an the closest elt_ament to the query poinNIN(s), which takes time
empty data structure, and repeatedly ad@ii§n_1,S_2,...,S1 tO O(logn) by alinear pass. .
the beginning of the previously constructed data structure. This 11€ only reason that we incurred an additiodglog logn) fac-
way, when we insers, we only have to computg’s finger lists, tor in the running time of the IKD-algorithm so far is that this was
while the finger lists of already inserted elements remain the same the time per accessed node to find the correct finger list. Suppose
(since, by definition, they will not contai). At each step, the data NoW that we further augment our data structure such that for each
structure so far is a metric skip list on the (random) subset of items | € Fr(8) there is an associated pointerids;), and also pointers

{S+1,....Sn}. This random sample has low expansion (Lemma 2) _from F(s) tp For (5). Maintaining these pointers can be subsumed
so the finger list computations ferare fast. in the total time taken forNSERTand DELETE.

Thus, we can find the next finger list in theN®-procedure in

Constructing the new element's finger lists constant time if the radius we query is “not too far off” the previous
The construction of the new elemesis finger lists can be done one. But this is true in the case of thenB algorithm. The query
by a modification of the lND algorithm. We start a search farat radius never increases more than frot 2r, and we can find that

S+1, the successor of. But instead of just maintaining the closest finger list in timeO(1). From that point, we can seek through de-
elementsy encountered so far, we keep thec24losest elements creasing for the correct radius finger list. Each drop in radius takes
seen so far, dropping the furthest element of that set as soon as @(1) time, but can be “charged” against the improved distance—in
closer element becomes available. As seen in the proof of Lemmathe AnD algorithm, we can basically think of this as a random walk
8, this yields all elements &f's finger lists. step which improves with probability 1 rather than 9/10. Thus the
The running time analysis of this search is virtually identical to analysis goes through unchanged, shov@ilpgn) steps, but now
the one given for the IkD-algorithm. The main change is that the the “steps” bound not only the number of nodes visited but also the
number of finger elements is nowimes as large, which causes work at each node.
the random walk on the distances to be slower by that factor. Butit A similar change can be made to the range query procedure given
still yields aO(lognloglogn) bound with high probability. in section 3.4, yielding a running time 6f(logn+Kk).
Thus, we can construct our data structure in tielognloglogn). . .
The problem is that this approach does not immediately lend itself 4.3 Range queries revisited
to performing dynamic updates, because by always inserting atthe |n section 3.4, we considered the range query of reporting all
“beginning” of the ordering, we would not guarantee that the or- points within distance of a pointq. Now we consider the related

dering remains random. query, where given a numblkand a point, we are asked to output
thek closest points tg. This type of query will be useful to us for
4. DYNAMIC MAINTENANCE the INSERTprocedure.

In this section we describe how the metric skip list data structure ~ Unfortunately, this problem cannot be directly reduced to the one
can be maintained dynamically, i.e. how elements can added andWe already solved, as finding the correctuch tha{Bq(r)| = kis
deleted inO(lognloglogn) amortized expected time each. We will dlfflcglt. It would be considerably easier if in addition to the ex-
focus mostly on the NSERT-operation to add a new node to the ~Pansion property we also had a lower bound of the f{igi2r)| >
structure, as the analysis for the deletion of a node is very similar. € |Bq(r)| because that would relateandk very closely. However,

] it is still possible to solve the problem efficiently.
4.1 Augmenting the data structure

To make dynamic maintenance of the search data structure posLeémma 11 . . .
sible efficiently, we have to add two more pieces of data to the basic There is an algorithm that, given a point ¢ and a number K, outputs
structure described in the previous section. These are: the K closest neighbors of q in time O(logn+k). [J

Nearest Neighbor ListsNN(s),R(s): For every poing we main- Due to its technical nature, we defer the proof to the appendix.

4.4 ThelNSERT-Operation Due to the expansion property, any nagléor which g is among
We have seen in section 3.5 how to construct our data structurethe Zlogn closest nodes must be among tié|8gn nodes closest
in an offline manner, and in particular how to construct the finger t0 0. So this step of the algorithm suffices to maintain the correct
lists of any newly inserted elemeqt The main change for dynamic ~ values of theNN(s)).))
updates is that now insertions do not occur “at the beginning” ofthe ~ Using the list of the 8*logn nearest neighbors computed in
ordering, but rather at a random position in the middle. This means Step 3, we can check for each of then@itl) by comparingl(s;,)
that the new elementhas to appear on other elements’ finger lists. 0 R(S) to determine whetheg should be included ilNN(s)).
The main difficulty of making insertion efficient is to be able to ~ When this causes aNN(s) to grow beyond size dogn, we
quickly find the elements that should pointdo can recompute that element's finger list#N(s) andR(s) (such
How do we find the elements that should includeg in their that[NN(s)| = 2clogn) in time O(logn). Since it takelognin-
finger lists? An element could have computed different finger lists, Sertions to cause such a change, the amortized cost per insertion is

hadq been present, only if it queried a finger list that should have only O(1).

containedq as well during its construction. This observation is

only self-referential at first glance: to construct a fingerfigts)

of radiusr, 5 would query only finger lists with radiug 2r higher.
Using the query lists we introduced, the elemesgitthat have

Thus, the total amortized time of step 43¢logn).

Step 5: Following query pointers backwards
In the next step of the algorithm, we follow query pointers back-

wards to determine which finger lists have to be updated following

to point toqg can be found using a search backwards along query ine insertion ofy.

pointers. First, we know thafhas to be included in the distance 1
(the maximal distance) finger lists for thec®4lements preceding

it in the ordering. Then, recursively, whenever we add a finger

list, we check all elements mentioned in the associated query list
to determine which of these should change their finger lists, and so
on.

The correctness follows, since, as mentioned above, for con-
structing a finger list of radius the INSERTprocedure would only
query finger lists of radiusr2and higher. That means that by fix-
ing all radius 1 finger lists, we will inductively fix all other affected
lists.

4.4.1 The algorithm

In summary, the NSERT-procedure for a new elemenqtis the
following.

1. Insertq at a random position in the ordering.

2. Constructs finger lists by searching forward in the ordering
(cf. section 3.5)

3. Find 3?logn nodes closest tq, computeR(q), NN(qg) such
that|NN(q)| = 2clogn.

4. Includeq in NN(s) among the 8%logn nodess; closest to
g, as necessary.

5. Follow query pointers backwards to find all nodes thatcsee
in the construction of their finger lists. For these elements
and the 82logn closest neighbors:

(i) Update their finger lists as necessary to inclgde
(ii) Update the query list entries they caused, as necessary.

We will now bound the expected running time of thesSERT
operation, and give more details on the implementation.

4.4.2 The analysis

We perform the running time analysis step by step of the algo-
rithm. To do it, we introduce one more definition. Teank of
point p is the number of points closer tpthanp is.

Step 2: Constructingq's finger lists
Computing the finger lists can be done by a modifiedo~
operation as in section 3.5, using tir@élogn).

Step 3: Finding 3c2logn closest neighbors

We can do this using the procedure from Lemma 11 in time
O(logn). IntimeO(logn) we can find the element gfrank Zlogn
among these elements, which yield%)) andNN(q).

Step 4: Includeqin NN(s)

First, we will show that the number of nodes that we reach using

this search igO(logn) in expectation. Then, we will show that

each of these nodes is pointed to by only a constant number of
query pointers, so that the query pointer traversal takes total time
O(lognloglogn), the additionalO(loglogn) factor coming from
having to look up the correct finger and query lists.

Lemma 12
The expected number of elements that encounter q in the construc-
tion of their finger lists is O(logn).

Proof: Here and in the following we will use different methods to
bound the work spent on tridogn nodes closest tg and all the
other nodes.

In this case, we have to give no particular analysis forctiogn
closest nodes, since even if they all encounteréey would only
beO(logn) nodes.

For the remainingn — clogn nodes we are going to use a bound-
ing technique that we will also use repeatedly in the remaining run-
time analysis. Le$ be some fixed node in the structure, gel(r)
be the probability thag sees the element gfrankr during its fin-
ger list construction. This probabilitgsedr) has the property that
it is monotonically decreasing in This is because if an element
of rankr were replaced by an element of rarikvith r’ < r in the
same orderings would still see this element in its search, if it saw
the element of rank before. Thus’ <r = psedr’) > Psedr).
Also, since the finger list construction only depends on the ranks of
the elementspsedr) is actually independent of the element

Two more observations yield the desired bound. First, since the
number of nodes that are encountered in a finger list construction is
O(logn) in expectation, we havgl_; psedr) = O(logn). Second,
if an elements hasg-rankr > clogn, thenq has as-rank of at
leastr /c. This follows directly from the expansion property of the
metric space. Thus, we have

n
E[#elements that “seef] = z Prlelement ofg-rankr “sees”q]
r=1

n

<Ollogr)+ 3 pasdr/) < Ollogn) ¢ S Psedr) = Ollogn),
r=clogn r=1

proving the lemmal]

Lemma 13
Let s be any node. Then the number of finger lists that overlap q’s
position, that are queried in the construction of §’s finger lists, is at

most 24c3 = O(1). Thus, s can “see” q only a constant number of
times during the construction of its finger lists.

Proof: When constructing’s finger lists, the first time we access

a finger list that overlapg's position in the ordering, this finger list

by definition contains all elements befayehat we might include

into §'s finger list. This number is therefore at mosic34 If we
move to one of these points, then by the next time we access a
finger list overlappingy's position, their number has decreased by
one. So after seeingjs position at most 2&° times, we will move

past it.cd

The previous lemma implies that only &query pointers from
finger lists containingy can point to an elemery that “sees’q
during its finger list construction. Thus the running time for the
“query pointer search” part of step 5@&lognloglogn).

Step 5(i): Updating finger lists

The time taken to create the finger lists containipig at most
O(loglogn) times the number of these finger lists. T®@oglogn)
is taken to find the correct insertion point of the new finger list
among the other finger lists. We will now show tlggappears in an
expected number @(logn) finger lists, yielding a total bound for
this step ofO(lognloglogn).

We will first use a coarse bound that we will use for tegn
elements closest

Lemma 14
Let s be any node. Then the expected number of §’s finger lists
that q appears in is O(1).

Proof: Consider the construction sfs finger lists. If we imagine
s being at the beginning of an order nfelements, and inserting
g at a random position in that order, thgrcan only appear on the
finger lists that are created “after” its insertion point in the ordering.
Consider some positiokin the order. The 2¢8-rd smallests-
rank of the elements before tkeh position is expected to be close
to 24c3n/k = O(n/k). So since the remaining finger lists are con-
structed from onlyO(n/k) elements, the proof of Lemma 8 implies
that the expected number of finger lists created after this point is
O(log(n/K)).
If g gets inserted at a random position, the expected number of
finger lists created after that point is therefore on the order of
logn!

n
%kgllogg =logn— =logn— (logn—0(1)) = O(1),
as claimedd

Again, this bound is enough for thedogn elements closest to
g, as it yields an expected total number®@flogn) occurrences

among these elements, but we require a different approach for the

remaining elements.

If Eq(r) is the expected number times that an elemens of
rankr appears irg’s finger lists, then again we hagg"_; Eq (r) =
O(logn) andr’ < r = Eg(r') > Eg(r), by similar arguments as
in the proof of Lemma 12 fopsedr). Following the same proof

technique as above, this shows that the expected total number of

finger lists thag appears in i©(logn) among all elements.

Lemma 15
An element q appears in O(logn) finger lists in expectation. [J

Step 5(ii): Updating query lists
All the nodes that “seefj in the construction of their finger lists
might now take potentially different query paths than before the

insertion ofg. So we have to construct as much of the new query
paths as might be influenced by the insertiornjof

For a nodes that includesy in its finger lists, the queried finger
lists might be different as long @agemains among the closest®4
elements. For a nodgthat does not includgin its finger lists, the
queried finger lists might be different up to the next elementghat
doesinclude into its finger lists.

Lemma 16
The insertion of q causes O(logn) query list pointers to change in
expectation.

Proof: We will first treat the nodes separately for whiclg is one
of theclogn closest nodes tg (i.e. g € NN(s)). For each of these
nodes, the expected number of changed query point&#¢lis for
a total ofO(logn) for all theses.

This is because only 22 of the nodes oNN(s) appear irs’s
finger lists with radius> R(s)), and only these could result in a
change of query pointers. The probability tltais one of these
nodes is therefor®(1/logn). As the worst case number of changed
query pointers i©(logn), the expected number of pointer that have
to be changed i©(1/logn-logn) = O(1).

For all other elements, we are going to distinguish between the
cases that] does appear or does not appear on their finger lists.
First, the elements that includgn their finger lists.

Let E'(r) be the expected number of queries performed for the
finger list construction of an elemest, such thatg hass-rank
r, while g is among the elements of the current finger lists. As
there are always 24 elements in the current finger list, we end
up charging each query to 8%elements. Since the expected total
number of queries fos is O(logn), we therefore have

=}

E/(r) = 24c- O(logn) = O(logn).

r=1

As an element with a lower rank in the same position in the search
will stay as long or longer in the finger list during the search, we
have that’ <r = E'(r') > E/(r). A similar calculation as in
Lemma 12 gives that is expected to influence at most a total num-
ber ofO(logn) query pointers.

Second, we have to analyze the number of query pointers influ-
enced byg among the elements that sgaluring their finger list
construction, but do not actually includgamong their finger list
elements. The changes tlpmight necessitate are limited to the
finger list construction from seeirgyuntil the next finger list ele-
ment is found. We will bound this in a similar fashion as above: let
E”(r) be the expected number of elements sees lajter an ele-
ment of rankr, before the next element of its finger lists is found
(we bound this independent of whetligs actually a finger list ele-
ment itself, we only bound the number of search steps until the next
element is found). Again, we have<r = E"(r') > E”(r), be-
causes is more likely to see an element of lower rank in its finger
list construction.

We have
n O(logn) ,
E"(r)= E[X{/2,
rgl jzl .

where X is the number of elements seen between jtik and
the (j + 1)-st of §’s finger list elements that we find, searching
from 5. Since the variableX; are distributed geometrically with
a constant expectation, we also hﬁ:{e(jz} = 0O(1), and therefore
> 1 E"(r) = O(logn). So in this case alsa,is expected to influ-
ence at most a logarithmic number of query lisis.

Thus, the running time of theusERT-Operation is expected total 2. Find a locationp’ containing the item, so that there is no
time O(lognloglogn). Note that we did not analyze the cost to re- closer node with the item betwegrandp’ in the ordering.
move finger and query list entries now obsolete due to the insertion
of g. But since our work will be linear in their size, and the size of
the structure is expected to grow upon insertion of an element, the
above bounds dominate the insertion time.

3. Perform a D from p’ for g, keeping track of the closest
item containing node seen, and stop as soon asite ép-
eration moves beyong.

. Step 1 needs no explanation — if the item is already at our cur-
4.5 TheDELETE-operation rent location there is no need to look for it elsewhere. Step 2 is
For the DELETE-operation, we use the query lists to determine straightforward by a modification of the Chord lookup protocol—

all finger lists containingl. Essentially, we do the opposite of what that protocol does a binary search prand it can be modified to

we did for INSERT, and rebuild a node’s finger lists MN(s) be- report an “overshoot” if it encounters amthat contains the item.
comes smaller thaologn. Thus, the same time bounds apply, and Step 3 finds the closest copy of an item, assuming that the second
the operation takes tim@(lognloglogn). step completed successfully, because during the Bperation we

will see all elements that are closergthan the previously closest
element we saw, starting out wifti. So we cannot possibly miss
5. APPLICATION TO PEER-TO-PEERNET- seeing the closest elementddetweenp’ and p, which is the one
WORKS we are looking for. And obviously, we can terminate the search as
The nearest neighbor search structure described in this paper casoon as we have passpdaince the following elements do not con-
be used with only slight modifications in the Chord Peer-To-Peer tain the item. Both steps only take tini¥logn) (or rather access
network protocol co-developed by the first author [7]. We will now that number of nodes).
give a brief introduction to the relevant parts of the Chord data man-
agement protocol and describe how the nearest neighbor structured6. CONCLUSION

can be used in this context. o , We have introduced a new data structure for nearest neighbor
The Chord protocol allows for distributed data access by storing search in metric spaces with low expansion rates. The structure is

data items in multiple locations across the network. Every node gimple, efficient, and can easily be use in a distributed environment,
gets assigned a random identifier, and the nodes can be imagineq,, example if points correspond to nodes in a network.

ordered on a circle based on these IDs. If an data item is stored in =~ 5 interesting open problem is to make the data structure fault
the network, it has one primary location, where the original copy of (5|erant, in the following sense. If the data structure is actually dis-
the itemis stored. To speed up accesses, an item might be replicateghjp, ted on a set of nodes, such as a Peer-To-Peer network, then it
to be stored at other nodes besides the primary location. In Chord, s ot ynlikely that single nodes just “fail” without invoking a dele-
these copies are held on the nodes which immediately precede thgjqn procedure. Is it possible to augment the data structure to work
primary location in the order of IDs. I.e., the item copies propagate gyen when nodes (and their associated finger lists) just disappear?
backwards along t.he ordering, and the nodeg that hold the item Another interesting property of low expansion metrics is that
always form a continuous segment of the ordering of nodes_. _ they can be embedded into &/Togn)-dimensional Euclidean

In many applications of Peer-Tq-Peer netwqus, such asin wire- shace with low distortion (as opposed to thdogn)-dimensional
less networks, the cost of accessing an data item grows as the disgpace required for general metrics). This allows for approximate
tance to the item increases. Thus, it is advantageous to locate the,qarest neighbor searches by reduction to the Euclidean case. It

“closest” copy of a data item to speed up accesses and lower 0peryyqq pe interesting to see whether this avenue leads to other ap-
ating costs. We will now show how the data structure developed in proaches to this problem.

the previous sections can be used to this effect.
Observe that our data structure can easily be made “distributed”
by simply storing the finger and query lists at the node in the net- 7. REFERENCES
work that they are associated with. This requires dBdjogn)
additional storage for each node. As the nodes in Chord already
have random IDs and are therefore naturally ordered in a random
order, we can make use of the same ordering for our data structure. (2]
The FND, INSERT and DELETE protocols work as before, al-
though in practice it might not be possible to store pointers into

[1] J. Bentley. Multidimensional binary search trees used for
associative searchinGommunications of the ACM
18(9):509-517, 1975.

J. Bentley, B. Weide, and A. Yao. Optimal expected-time
algorithms for closest point problem&CM Transactions of
Mathematical Softwares(4):563—-580, 1980.

another node’s finger lists that allow f@{(1) lookups of the cor- [3] S. Brin. Near neighbor search in large metric spaces. In

rect lists. Thus, a list lookup cost @(loglogn) is more realistic, Proceedings VLDBpages 574-584, 1995. ,

and the operations become more costly by that factor. But since the [4] E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Mariioqu

cost of an operation in a Peer-to-peer network is dominated by the Searching in metric spaceSCM Computing Surveys

number of node-to-node communications (which st@ykgn)) 33(3):273-321, 2001.

and not by in-node computations, this does not seem to be a great [5] K. Clarkson. Nearest neighbor queries in metric spaces.

loss. Discrete Computational Geometr32(1):63—-93, 1999.
Suppose now that we want to find the closest copy to a node [6] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing

g of an data item whose primary locations is nqueThe search nearby copies of replicated objects in a distributed

is similar to the FND-operation with the difference that we will environmentTheory of Computing Systen®2:241-280,

not search beyong, since all copies of the data item are stored 1999.

directly before the nod@ in the ordering. On a high level, the [7] 1. Stoica, R. Morris, D. Karger, F. Kasshoek, and

search algorithm is as follows: H. Balakrishnan. Chord: A scalable peer-to-peer lookup

service for internet applications. RProceedings ACM
1. If the item is stored at nods stop and access the item. SIGCOMM 2001.

[8] J. B. Tenenbaum. Mapping a manifold of perceptual
observations. Iidvances in Neural Information Processing
Systemsvolume 10. The MIT Press, 1998.

[9] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global

geometric framework for nonlinear dimensionality reduction.

Science290(5500):2319-2323, December 2000. See also

http://isomap.stanford.edu

J. Uhlmann. Satisfying general proximity/similarity queries

with metric treesinformation Processing Letters

40:175-179, 1991.

P. Yianilos. Data structures and algorithms for nearest

neighbor search in general metric spacefroceedings

SODA pages 311-321, 1993.

(10]

(11]

APPENDIX

The Algorithm

In this section we prove Lemma 11: we give an algorithm that
reports thek closest neighbors of a noden time O(logn+Kk). The
algorithm can be summarized as follows:

K-RANGE-QUERY(q,k) (returnsk nearest neighbors afin S)
let s, = nearest neighbor af
letr = R(sm), B=Bq(r)
while |B| < kdo
letr = AUGMENT(r,B,q), B=Bq(r)
output k points inB closest tay

Note that the assignmenBs= Bq(r) here correspond to range
queries in the sense of section 3.4.

The sub-routine AGMENT(r,B,q) that we have to define later
can be called witlB = By(r) andB > logn. It returns with high
probability in timeO(|B|) anr’ > r such that

(1+ zg2) B < Ba(r) <76 &
In other words|B| grows by a constant factor each time.

The correctness of the above algorithm is clear. As for the run-
ning time, the first two lines take tim®(logn). Every execute of
the while loop takes tim®(logn -+ |B|). Since|B| grows geometri-
cally, the sum of these times collapsex@ogn+ k), as claimed.

The AUGMENT-Procedure

The AUGMENT-procedure overcomes the problem that by there
is no bound on by how much we have to increasgsincrease the
size of By(r) by a constant factor. The procedure uses sampling
nearB to obtain an estimate on the local growth ratégfr).

AUGMENT(r,B,q)
(letB = {by,by,... by} be an enumeration &'s elements)
fori=1tofdo
let & := element closest th; in b;’s finger lists withd(a;, b;j) > 2r
letri :=d(a,by)
output median of{r; | 1 <i < ¢}

The running time of this algorithm i®(|B|) as each iteration of
the loop requires a lookup &% (b;), which can be done in constant
time as in section 4.2, because we already have pointdtgip)
after the range search that computd Note that if there is no
element inb;’s finger lists of distance more tham B b, then we
can setj = .

For correctness, we need to prove that the inequalities (1) hold

(we use’ to refer to the value returned by theyAMENT-procedure).

The lower bound is the easier of the two. Note that none of the
a are inB, as their distance tq is at leastd(a;,q) > d(a;,bj) —
d(bi,q) > 2r —r =r. On the other hand, by returning the median
of ther;, we guarantee that the new b&(r’) now contains at
least half of theg;. It remains to show that there are not too many
repetitions among tha.

For this and the following it will be useful to recall that the
are arranged on a circle order in the search data structure. For no-
tational simplicity assume that they occur in the ordgrby, ...,

b, in the data structure. Notice that we hayeZ a; if i+ 24c% < j.
This is becausé; would encountebiq,bi12,...,bj, 24 before
seeinga; in its finger list construction, and since all thés are
closer tobj thanaj, aj would not be included intdy’s finger list.
That is, eachs; appears at most 22 times among the others.
Thus,|Bq(r')| > |B| + %% |B|, which shows the first inequality.

While the previous inequality holds unconditionally, we will prove
that the second inequality holds with high probability. lebe
the element ofy-rank %2|B|, andR := d(p,q) +r. We will show
that with high probability’ < R. This is enough, because by the
expansion propertyBq(R)| < c[Bq(d(p,q))| = 7c|B|, usingR =
d(p,q) +r < 2d(p,q).

LetX; be the event thay < R. To show that with high probability
at least half of theX; occur, we will bound them by other events.
Let P be the set of elements withrank in{|B| +1,...,¢%|B|}, and
Q be the set of element witprank in{c?|B| +1,...,7¢?|B|}. Note
that the elements @ all are at least distance 4 r = 3r from the
elements irB, and thus would be considered as choices forahe
in the AUGMENT procedure.

In the random order of the data structure the $eendQ oc-
cur interleaved with the points;, by, ..., by. Let us focus on the
random sub-ordering consisting just of thesé\B| elements. Let
Y; be the event tha; is directly followed by an element @ in
this ordering. We then have thgtimpliesX;. This is because tfj
includes the element @ that directly follows it in its finger list,
then that element is a valid candidate &r and since it is closer
thanRto g, X; is true. On the other hand, lif does not include this
element in its finger list, then there must bec24lements closer
than it tob; between the two in the ordering. Singeholds, these
elements must hawgrank > 7¢?|B|, thus cannot be closer than 2
to by, but also cannot be further th&from b;, thusX; is satisfied.

We now proceed to bound the probability that less than half of
theY; happen. Fix any ordering of thg andP. If we imagine
inserting the elements @ at random places in this ordering, then

there are(‘BH}g‘rlQ') ways to do so. If, however, more than half

of theYj are not true, then the elements@fmay not be inserted
directly behind they; for whichY; is not true. Thus, there are only

(‘Bl/zT(‘;HlQ‘) choices for an ordering. By multiplying with the

number of possible choices for whidhare not true, we obtain an
upper bound on the probability of failure by:

) (\BI/ZT\QTHIQI)

(|BJ
Bl/2
(IBIH

+|QI)

|B|/2+ |P|+k
[Bl/2+[P[+]Q| +k

[B/2
2e)

IB/2
~2e) < 0.8826l

) - (26)BI/2

Pl
IQl
<
Bl+P
B+ [P[+ Q|

<
g

- <7c2|B|

This is polynomially small sincéB| > logn.

