
Finding Nearest Neighbors in Growth-restricted Metrics

David R. Karger Matthias Ruhl

MIT Laboratory for Computer Science
Cambridge, MA 02139, USA

{karger,ruhl }@theory.lcs.mit.edu

ABSTRACT
Most research on nearest neighbor algorithms in the literature has
been focused on the Euclidean case. In many practical search prob-
lems however, the underlying metric is non-Euclidean. Nearest
neighbor algorithms for general metric spaces are quite weak, which
motivates a search for other classes of metric spaces that can be
tractably searched.

In this paper, we develop an efficient dynamic data structure
for nearest neighbor queries ingrowth-constrainedmetrics. These
metrics satisfy the property that for any pointq and distanced the
number of points within distance 2d of q is at most a constant fac-
tor larger than the number of points within distanced. Spaces of
this kind may occur in networking applications, such as the Inter-
net or Peer-to-peer networks, and vector quantization applications,
where feature vectors fall into low-dimensional manifolds within
high-dimensional vector spaces.

1. INTRODUCTION
Finding the nearest neighbor of a point in a given metric is a clas-

sic algorithmic problem with many practical applications. Some
such applications are database queries, in particular for complex
data such as multimedia data or biological structures, e.g. on pro-
tein structures or genome data. Other uses are in lossy data com-
pression, where data can be encoded by the closest representative
from a fixed set of representatives. The common characteristic of
these examples is that comparing two elements is costly, so one
would like to develop data structures that allow for nearest neigh-
bor searching with a small number of comparisons.

In the formal setting, one is given a metric spaceM = (M,d)
(whered is symmetric and satisfies the triangle-inequality), and a
subsetS⊆ M of n points in the space. Allowing for some pre-
processing one wants to efficiently answer queries of two kinds:

(i) Nearest Neighbor: Given a pointq∈M, return the point inS
that is closest toq among all points inS.

(ii) Range Query: Given a pointq∈M andr ≥ 0, return all points
p∈ S that satisfyd(p,q)≤ r.

It is also desirable that the data structure support efficient insertion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’02,May 19-21, 2002, Montreal, Quebec, Canada.
Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

and deletion of points fromS.
These problems are quite hard for general metrics, evidenced

by the fact that known data structures perform poorly (requiring
time Ω(n1−δ)) for range queries with non-trivialr, or for nearest
neighbor searches where the query point is relatively far from its
nearest neighbor (see “related work” below). This seemingly is
because general metrics do not provide enough structure to solve
these problems efficiently.

In the instances where search problems arise in practice, how-
ever, the underlying metric usually is far from general, but satisfies
additional constraints. Developing efficient search data structures
for these metric spaces is an important problem.

Previous research on this problem has focused on the Euclidean
case, i.e.M = (Rd,Lp), which is particularly important since many
practical applications deal with “feature vectors” that are naturally
embedded in Euclidean space. A large number of data structures
have been developed that perform very well (with logarithmic time
per operation) inlow dimensionalEuclidean spaces. There is, how-
ever, a significant number of problems where the data cannot eas-
ily be embedded into low-dimensional Euclidean space, or such an
embedding results in the loss of information.

In this paper, we are concerned with sample setsS that have
a certain smooth-growth property. Throughout this paper, we let
Bp(r) := {s∈ S | d(p,s)≤ r} be the ball of radiusr aroundp in S.

Definition 1 (Expansion Rate)
We say that Shas (ρ,c)-expansioniff for all p∈M and r > 0,

|Bp(r)| ≥ ρ =⇒ |Bp(2r)| ≤ c· |Bp(r)|.

In the bulk of this paper, we will set ρ = O(log|S|) and refer to c as
the expansion rateof S. �

Intuitively, for any space satisfying this property, points fromS
“come into view” at a constant rate when we expand a ball around
any pointp∈M.

The factor 2 in the expansion definition can be replaced by any
other constant with a corresponding change inc. For intuition, con-
sider the set of points in a uniformd-dimensional grid under theL1
metric. Balls in this metric ared-dimensional hypercubes. Mul-
tiplying the ball radius by 2 corresponds to increasing each side
length by this amount, which increases the volume of the cube, and
thus the number of points in it, by 2d. Thus, theL1 metric on the
grid has(1,2d)-expansion.

Based on this grid intuition, we can consider the expansion rate
to be a kind of “dimensionality” measurement for our metric space.
Expansion rate is incomparable to standard dimension, however:
a balanced binary tree, which can be embedded in 2 dimensions,
has a huge expansion rate. A low dimensional manifold in a high
dimensional space can have a very low expansion rate (as in the

applications discussed below). Under standard dimensionality, a
subset of points has no higher dimension than its containing set;
this powerful fact is not true for the expansion rate. However, we
will see below that a weaker and still useful result does hold: a
randomsubset of points from a low-expansion metric space has
low expansion. Thus, for example, a collection of points randomly
distributed in ad-dimensional Euclidean cube has expansion rate
O(d).

The expansion property, applied recursively, shows that the num-
ber of points in a ball of radiusr is at most polynomial inr. The
converse is not true, however: the expansion property requires this
growth to be reasonably smooth – it rules out the possibility (con-
sistent with the polynomial bound) that as the ball grows, we en-
counter a few points, then a long period with no points, then sud-
denly a tremendous number of points.

Our result. Our main result is a randomized data structure, the
metric skip list, that allow for nearest neighbor queries in spaces
with constant expansion rates (c = O(1)). The data structure can
answer nearest neighbor queries inO(logn) time, and range queries
in time O(logn+ k) (wherek is the number of returned elements)
with high probability. The data structure can be constructed in
O(nlogn) time, usesO(nlogn) space and allows for the addition
and deletion of points in expectedO(lognlog logn) time. The as-
sumption thatc is constant simplifies notation; more generally, the
running time is logarithmic inn, but polynomial in the expansion
rate c.1 The data structure is Las Vegas, i.e. always returns the
correct result regardless of our random choice. The structure works
even if the metric space does not have a bounded expansion rate,
although its running time bounds degrade.

Our data structure is quite simple, deducing from the low expan-
sion property that a random sample of a few points in a given ball
around the query point is likely to yield a point inside a much closer
ball.

Applications. Clearly, the main motivation for looking at spaces
with low expansion rates is because they actually appear in real
problems. We are aware of at least two applications where this is
the case.

In Internet applications, it is often important for nodes to find
other nodes that are “near” each other with respect to distance as
measured by latency or bandwidth. This paper was motivated by
work on the Chord system [7] which provides routing infrastructure
for various peer-to-peer applications. In many such applications, it
is useful for clients of the system to find a nearest Chord node that
can proxy for them in the application. In data caching applications,
it is useful to solve the more general problem of finding a nearby
node that actually has a copy of the desired data. Plaxton et al. [6]
tackled this problem. They describe a distributed system that stores
replicated copies of a data item, and a protocol that lets any node
retrieve a “nearby” copy of the data item – more precisely, their
randomized scheme finds a copy whose expected distance is close
to that of the nearest copy. Their scheme makes the same “con-
stant expansion” assumption as we make here. In fact, they require
more: that ratio of points in the larger ball to that in the smaller ball
must be upperand lower bounded by constants exceeding one. We
require only the upper bound. In an additional improvement, when
data is replicated by the Chord protocol, our scheme can be used to
find the closest (rather than just close in expectation) copy of a data
item.

1Recall that on a grid the expansion ratec is exponential in the standard
dimensiond; thus being polynomial inc fits the outcome, common in geo-
metric algorithms and data structures, of being exponential in the standard
dimension.

A second application comes from machine learning. A current
thread of machine learning research [9, 8] postulates that the feature
vectors representing points being analyzed form a low-dimensional
manifold of a high dimensional space. There is no a-priori spec-
ification of the manifold; rather, a large set of example points is
provided. The distance metric on these points is given in the high
dimensional space. Identifying near neighbors among the example
points is useful – for example, to implement the standardk-nearest
neighbors algorithm for classification, or to identify neighborhoods
in the manifold in order to construct local parameterizations of the
manifold. Under assumptions of limited curvature (which are also
made in the AI literature) and random selection of example points
from the manifold, the low-expansion property will hold (as it does
for low dimensional Euclidean spaces) and our near-neighbor struc-
ture could be applied.

Related Work. As mentioned previously, most research on near-
est neighbor search has focused on the case of vector spaces and/or
Euclidean metrics [1, 2]. There has been a growing interest in
general metrics, however. In a recent survey [4], Chávez et al.
give an overview on the data structures developed for these ap-
plications. The most frequent approach is by “pivoting” [10, 11],
i.e. the space is partitioned into two halves by picking a random
pivot, and putting points into either half of the partition according
to their distance to the pivot element. Variations use multiple piv-
oting elements per split [3]. While these structures answer queries
in O(logn) time for a point that is actually in the setS, they can-
not be used efficiently to find nearest neighbors, or perform range
queries unless the radii involved are very small. This is because in
general the search ranges can split at every pivoting step, requiring
the exploration of a significant part of the search tree. (Comparable
to the performance guarantee of nearest neighbor searches using
quad-trees, which isO(

√
n).) Also, dynamic maintenance of the

trees, in particular deletion, is difficult.
Clarkson [5] developed two data structures for non-Euclidean

spaces. He assumes that the samplesS andq are drawn from the
same (unknown) probability distribution. While his data structures
apply to the low-expansion spaces that we consider (as long as
the non-trivial assumption of random inputs is satisfied), they have
super-logarithmic query times, and do not allow for insertion or
deletion of elements.

The already mentioned paper by Plaxton et al [6] contains a data
structure for low expansion spaces that allows for locating data ob-
jects in a shared network in that space. The data structure cannot be
directly used for nearest neighbor search, as it returns only approx-
imately closest data items. Moreover, the construction makes addi-
tional crucial assumptions on the space, such as|Bp(2r)| ≥8|Bp(r)|
for all p∈ Sandr > 0, so does not necessarily work on all spaces
with low expansion.

Outline. The paper is structured as follows. First, we will de-
rive some additional properties of spaces with low expansion rates.
We then describe and discuss our data structure for searching in
low expansion metrics, describe an application to a peer-to-peer
networking protocol, and conclude the paper with describing some
directions for future research.

2. CONSEQUENCES OF LOW EXPANSION
Let us begin by introducing notation, and proving a few facts

about spaces with low expansion that show why sampling is a good
way to find nearest neighbors in these spaces.

We begin by proving the fact claimed in the introduction.

Lemma 2
A random subset of mpoints from a metric space with (ρ,c)-expansion
will have (max(cρ,O(logm)),2c)-expansion with high probability
(in the size of the subset).

Proof: We prove(max(cρ,µ),2c)-expansion for someµ= O(logm).
Let Z be the sample from the metric spaceS. Consider a particular
ball Bp(r) for some pointp in the sample. Let us now condition on
the numberk of points inZ∩Bp(2r). If k≤ cρ then the expansion
property is vacuously satisfied. Similarly, ifk≤ µ we are done.

So we can assumek≥ cρ andk≥ µ. This impliesBp(2r) con-
tains at leastk≥ cρ points inZ and thus inS. From the expansion
property forS we know thatBp(2r) has at mostc times as many
points asBp(r) in S. Conditioned onk, the set of points included
in the sample is chosen at random fromS∩Bp(2r); thus, each such
point is inBp(r) with probability at least 1/c. Thus, the expected
number of pointsk′ in Z∩Bp(r) is at leastk/c. Sincek ≥ µ, a
standard Chernoff bound implies thatk′ ≥ k/2c with probability
1− e−Ω(µ). By choosingµ = O(logm) (varying the constant ac-
cording to the precise desired probability bound) we deduce that
k′ ≥ k/2c with high probability inm.

Our analysis has shown that regardless ofk, the ball obeys the
expansion property with high probability inm. Thus, the same high
probability result holds without conditioning.

This outcome holds with high probability for any particularp∈Z
and any particularr. It thus holds with high probability inm for
any of the

(m
2

)
pairwise distances between points inZ. Since these

particular distances are the only ones where ball-sizes change, the
claim is proven.�

As can be seen in the proof, sampling creates a size logmneigh-
borhood of a point within which expansion fails to be preserved;
this motivated the parameterρ that excepts small balls from the
expansion-rate bound.

Now we turn to developing our data structure. In the following,
we will assume that the metric spaceM is normalized (by scaling)
such that the maximum distance between any two points inS is 1.
As before, letn be the size of the subsetS.

All the algorithms we describe below can be viewed as random
walks on the setS. To find q, we start at an arbitrary pointp∈ S,
and step through a sequence of points that quickly converges toq.
In fact, in each step we expect to halve the number of points closer
to q than our current position, resulting in aO(logn) query time.

The steps in the random walk are performed by sampling points
from S in a ball around our current pointp. We will now show how
this yields good performance. First, we state a simple claim about
inclusions of balls around a pair of points.

Lemma 3 (Sandwich Lemma)
If d(p,q)≤ r , then Bq(r)⊆ Bp(2r)⊆ Bq(4r).

Proof: For the first inclusion, ifs∈ Bq(r), thend(p,s)≤ d(p,q)+
d(q,s) ≤ r + r = 2r. For the second inclusion, ifs∈ Bp(2r), then
d(q,s)≤ d(q, p)+d(p,s)≤ r +2r < 4r. �

This simple observation leads us to the sampling lemma which
is the basis for our algorithms.

Lemma 4 (Sampling Lemma)
Let M be a metric space, and S⊆ M be a subset of size n with
(ρ,c)-expansion, where ρ = Ω(logn). Then for all p,q ∈ S and
r ≥ d(p,q) with |Bq(r/2)| ≥ ρ, the following is true.

When selecting 3c3 points in Bp(2r) uniformly at random, with
probability at least 9/10, one of these points will lie in Bq(r/2).

Proof: This follows from the Sandwich Lemma. Letk := |Bq(r/2)|
be the number of “good” points. SinceBq(r/2) ⊆ Bq(r) ⊆ Bp(2r)
by the Sandwich Lemma, all good points are possible results in our
sampling. Also due to the Sandwiching Lemma, we have|Bp(2r)| ≤
|Bq(4r)| ≤ c3|Bq(r/2)|= c3 ·k, the last inequality due to the limited
expansion rate. Thus, the probability that one sample is good is at
leastk/(c3k) = 1/c3. The probability thatc3 samples are all bad is
at most (

1− 1
c3

)3c3

≤
(

1
e

)3

≤ 0.05.

Thus, we succeed with probability more than 90 %. Because the
sample space had at least logarithmic size, the effect of sampling
without replacement vs. with replacement is negligible.�

2.1 A simple local search algorithm
The Sampling Lemma immediately suggests a nearest neighbor

search algorithm.

let p be an arbitrary point inS
while p is not the nearest neighbor ofq in S

let X = random sample of 3c3 elements ofBp(2d(p,q))
let p = element ofX∪{p} of minimal distance toq

Let us briefly discuss this algorithm. For simplicity, we ana-
lyze this scheme in terms of the ratioR between maximum and
minimum pairwise distances between points in the metric space,
and assume that the set has(1,c)-expansion (as opposed to the
(O(logn),c)-expansion considered in the rest of the paper).

Theorem 5
The local search algorithm completes with high probability in O(logR)
time.

Proof: We start with a point at distance at most 1 from the query
point (recall that we normalized our space this way). By the sam-
pling lemma, each local search step (iteration of the while loop)
will halve our distance toq with probability at least 9/10 (and will
never increase it). It follows that the expected number of iterations
to halve our distance toq is at most 10/9, and the expected num-
ber of iterations to produce logRhalvings is(10/9) logR. But after
logRhalvings, we will have a point at distance at most 1/R from q.
Since by definition ofR there are no points at this small a distance,
we must terminate sooner with the nearest neighbor ofq.

A standard Chernoff bound on the expectation yields the high
probability result.�

A Space-Inefficient Structure
The local search algorithm relies on a random-sampling prim-

itive which we have yet to implement. We provide a data struc-
ture that supports the necessary sampling. We saw above that local
search takes onlyO(logR) time with high probability. It follows
trivially that with high probability, we will need to examine only
O(logR) samples from a ball around any particular pointp in our
search. Our data structure simply chooses theseO(logR) samples
in advance for alln points in the metric space.

Of course, we do not have advance knowledge of the query points,
so we cannot predict the distance between a pointp and the query
point. Without such knowledge, we do not know what radius of ball
aroundp to sample from. We get around this problem by choosing
from a set of balls with power-of-two radii. One such ball will have
radius within twice the current distance to the query point, and we
can use the in-advance samples from that ball.

More precisely, for each integerk, each pointp chooses a set
of 3c3 logR level k finger pointsuniformly at random from the set

Bp(2−k) of points within distance 2−k of p. Denote this set of
fingers asFk(p). This selection is done for eachk up tok = logR,
since there are no points closer than this distance top. Note also
that the level 0 fingers are simply random points in the metric space.
Given these finger points, we use the following algorithm.

QUERY(q)
let p be any point inS
while p is not the nearest neighbor ofq

let k be maximum such thatd(p,q)≤ 2−k

let p = closest point toq in Fk−1(p)
return p

We can analyze this algorithm using the Sampling Lemma. Given
some pointp at distancer from q, with 2−(k+1) < r ≤ 2−k, we use
samples (fingers) from the ball of radius 2−k < 2r. The Sampling
Lemma thus applies, telling us that we halve the distance of the
current point toq with constant probability. The analysis of the
previous section therefore applies to tell us the following theorem.

Theorem 6
There is a data structure of size O(nlog2R) that answers near-
neighbor queries with high probability in O(logR) time.

Proof: There are logR distinct powers of 2 between the maximum
and minimum distances in the metric spaces. For each such power
of 2, we needO(logR) fingers for each of ourn points.�

The problem with this approach, however, is the fact that draw-
ing samples uniformly at random from prescribed spheres is not
easy. In particular, if we demand that all these samples are inde-
pendent of each other, efficient dynamic maintenance of the data
structure seems difficult.

If we do not require dynamic maintenance of the data structure,
however, this approach can be developed into a data structure by
independently choosing the samples in “advance” during construc-
tion time. This scheme produces a data structure we call a “metric
search tree” with the same time bounds as our current structure that
can be analyzed by an application of branching processes. We omit
the details in this version of the paper.

Instead, we concentrate on a data structure where the “pre-chosen”
samples are not completely independent. While allowing for easier
insertion and deletion, this makes the analysis more complicated,
as we will see.

3. METRIC SKIP LISTS
We now describe themetric skip listdata structure that solves

the nearest neighbor search problem in metric spaces with constant
expansion rates. It follows the sampling paradigm described in the
last section. To avoid the problem of creating (and maintaining)
completely independent samples, we use a trick previously applied
to the design oftreaps(a dictionary data structure). To construct
our data structure, we introduce a random ordering on the points
in the sample spaceS. The construction of the data structure will
then be deterministic given the ordering. But, using the fact that the
ordering is truly random, we will show good performance guaran-
tees.

For simplicity, we will assume in the following that all pair-wise
distances of points inSare distinct (via perturbation).

We impose a random total order onS= {s1,s2, . . . ,sn}. We call
si+1 the successor ofsi , and lets1 be the successor ofsn, so one can
actually imagine the points arranged on a circle.

The data structure consists of sets of pre-chosen samples for ev-
ery pointsi ∈ S. We will refer to those samples as being “stored at”

the corresponding pointsi . For each nodesi , we will storefinger
lists.

Definition 7
For r ≥ 0 the radiusr finger listfor si , denoted Fr (si), contains the
indices of the first 24c3 elements after si in the ordering that have
a distance ≤ r to si . If we reach the end of the ordering, we wrap
around to the beginning, and if there are less than 24c3 elements of
this kind in S, then Fr (si) just contains all of them.

The lengthk finger listsare defined analogously, with the con-
stant 24c3 replaced by k.

In the remainder of this section we will analyze the space re-
quirements of the data structure, prove that it can be used to find
nearest neighbors in timeO(lognlog logn), and give an off-line
O(nlognlog logn) construction algorithm. We defer the problem
of dynamic updates (addition and removal of points fromS) to the
following section. Later in section 4.2 we will also improve the
running time of the FIND-algorithm toO(logn).

3.1 Space requirements
At first glance, it seems that the number of finger listsFr (si) we

have to store at a node is not bounded. But it actually turns out that
with high probability onlyO(logn) of the finger lists are distinct,
as we will show now. Thus, it is enough to just store these, indexed
by r. This leads toO(logn) storage per node, orO(nlogn) for the
whole data structure.

Lemma 8
Let S= {s1, . . . ,sn} be a randomly ordered subset of a metric space
M = (M,d), k∈ N, and p∈M. Then with high probability, there
are only O(k logn) distinct length k finger lists for each si .

Proof: We give an algorithm that outputs all the elements in any
Fr (p), and analyze its behavior. Consider the following algorithm:

let j = 0, F = {s1,s2, . . . ,sk}
for i = k+1 to ndo

if d(p,si)<maxs∈F d(p,s) then // new element closer
let j = j +1,

f j = elements∈ F maximizingd(p,s),
F = (F \{ f j})∪{si}

output F ∪{ f1, f2, . . . , f j}.

We claim that this algorithm outputs all elements that appear in
any lengthk finger list of p. Clearly, an elementsi will not be in a
finger list, if there arek elements before it in the ordering which are
all closer top thansi . The setF maintained by the algorithm always
contains thek closest element top among{s1,s2, . . . ,si−1}. Using
this invariant, we see that no elements besides the ones output at
the end can appear in a finger list.

We will now show that the number of elements in the output is
O(k logn) with high probability. To be output, an element must
first enterF . An elementsi entersF if and only if it is one of
the k closest elements top among{s1, . . . ,si}. These items are a
random permutation of (some subset of)S, so si is one of thek
closest top with probability k/i. It follows immediately that the
expected number of points enteringF is ∑k/i = O(k logn). For
the high probability bound, consider generating the list{s1, . . . ,sn}
backwards from the end by repeatedly choosing a random element
not yet in the list. From this framework it can be seen that the
probability ofsi becoming a finger is independent of all other such
events. Thus, the number of fingers is a sum of independent indi-
cator random variables with meanO(k logn), and thus isO(k logn)
with high probability by the Chernoff bound.

Finally, note that the number of elements output upper-bounds
the number of distinct lengthk finger lists, since the setF (which
enumerates all finger lists) changes once each time we produce a
new output element in the above algorithm.�

3.2 TheFIND-operation
The FIND-operation on our data structure is the “obvious” ap-

plication of the sampling search strategy given in section 2. The
algorithm is defined as follows:

FIND(q) (finds nearest neighbor ofq in S)
let i = 1 // i is current position
let m= 1 // m is minimum so far
while i < n do

let r = d(si ,q)
if ∃ j ∈ F2r (si) such that

d(sj ,q)< d(sm,q) or d(sj ,q)≤ r/2 then
let i be the smallest index∈ F2r (si) with that property
if d(si ,q)< d(sm,q) then let m= i

else leti = maxF2r (si)
output sm.

Let us first prove the correctness of the algorithm. For this we
will not need the fact thatS has low expansion, i.e. the algorithm
will work correctly (if not particularly efficiently) on any metric
space.

Lemma 9
The FIND-algorithm always returns the nearest neighbor to q in S.

Proof: We only move forward in the ordering, i.e.i is strictly
increasing. An invariant of the algorithm is thatsm is always the
point closest toq among{s1, . . . ,si}. Assume, for contradictions
sake, that after moving fromi to j, this condition did not hold. Then
there must be a pointsk (i < k< j) with d(sk,q)< d(si ,q) = r. This
implies d(sk,si) < 2r. But such ansk should have been included
in the finger listFr (si), and would not have been skipped. The
contradiction shows the correctness of the algorithm.�

3.3 Running time analysis forFIND
In the following running time analysis, we will make a simplify-

ing assumption to be removed later. When we access a finger list,
we do so by the corresponding radiusr. The unbounded number
of possible values forr prevents us from storing the finger lists in-
dexed byr, however. Therefore we store the finger lists in an array
ordered byr. The most straightforward way of locating the correct
list is therefore binary search onr, which leads to an additional cost
of O(log logn) per finger list access. Later, we will reduce this time
to constant per finger list.

Theorem 10
The FIND-algorithm with high probability accesses only O(logn)
finger lists. Thus, its running time is O(lognlog logn) with high
probability.

Proof: First observe that the FIND-algorithm actually steps through
all the elements that would appear in the length 1 finger lists ofq
(hadq been inserted where we start the search). In particular, any
time we take an elementsi with d(si ,q) < d(sm,q), we are taking
a 1-finger-list element. We will refer to these as “record” items.
Note from Lemma 8 that there areO(logn) record items with high
probability. However, the algorithm will also encounter nodes that
arenot record items. We must bound this work.

We consider the running time of the algorithm on the first third
Sn/3 = {s1,s2, . . . ,sn/3} of the elements, and prove that with high

probability it is onlyO(logn). But “high probability” implies that
the bound is true for any starting point, in particular the point where
we end up after processing the first third of the points. This allows
us to process the second (and eventually last) third of the points
again inO(logn) each, yielding at total time bound ofO(logn).

So consider the first thirdSn/3. Suppose that our search is cur-
rently at itemsk, having passed the setSk = {s1, . . . ,sk−1}. The
setS−Sk is (thanks to our random ordering) a random subset of
S, of size at least 2n/3. It follows from Lemma 2 thatS−Sk is a
metric space with(O(logn),2c)-expansion. In other words, with
high probability, for allr > 0 such that|Bq(r)|= Ω(logn), we have
|Bq(2r)∩ (S\Sk)| ≤ 2c· |Bq(r)∩ (S\Sk)|.

We briefly defer the case of|Bq(r)|= O(logn). For larger balls,
we have just argued that the elements in the finger list are drawn
at random from a space with expansion rate 2c. Thus drawing
24c3 = 3(2c)3 of them will yield one with distance at mostdi/2
with probability at least 9/10, by Lemma 4. This tells us that theif
test in the FIND algorithm will be satisfied with probability at least
9/10 in each iteration.

To outline our argument, we make two assumptions that must
be revisited later. First, we assume any record-breaking stepalso
reduces the distance by half. Second, we assume that the outcomes
of the iterations areindependent. Under these two assumptions, we
can analyze our algorithm as a random walk.

Let 〈d1,d2, . . .〉 be the distances toq of the elementssi visited
during the execution of FIND on the first third of the elements. We
will model 〈di〉 as a random walk. The analysis above (and our
assumption about record events) means that with probability 9/10
the if test succeeds and we halve our distance toq. When theif test
fails, by definition and the Sandwich Lemma, we havedi+1 ≤ 4di .
It follows thatE[logdi+1]≤ logdi−9/10+2·1/10= logdi−7/10.
In other words, the random walk has negative drift.

Such a random walk has the property that inO(logn) moves, it
will move O(logn) times to a value below any previous encoun-
tered value. Such a move discovers a record breaking item. Since
by Lemma 8 there are onlyO(logn) record-breakers, we will have
found them all withinO(logn) time steps.

We must now revisit our assumptions. Our argument that the dis-
tance halves with probability 9/10 per iteration ignored two cases.
First, if we are on one of theρ = O(logn) closest points toq, then
the expansion rate need not hold. Second, in iterations where we
encounter a record breaker, the distance need not halve. Note that
each outcome (being on a close point, or encountering a record
breaker) happens onlyO(logn) times. We model this by letting an
adversary “cancel”O(logn) of the distance-halving steps that oc-
cur in our algorithm. The random walk analysis generalizes to this
case and still shows thatO(logn) record-breakers will be encoun-
tered withinO(logn) steps.

Finally, it remains to justify our assumption above that the ran-
dom walk steps are independent. We use the principle of deferred
decisions. In an iteration starting atsi , our algorithm selects the
closest itemsj ∈ F2r (si) that satisfies theif test. We can identify
sj by walking forward on the list fromfi , adding valid items to the
finger list until the finger list is full or we encounter an appropriate
sj . In this variant of the algorithm, we reachsj before examining
anynode followingsj in the list. Thus, by the principle of deferred
decisions, the fingers ofsj are independent of all our previous steps.
�

3.4 Range Queries
In a range query we want to find all elements inSthat are within

a distancer of a query pointq. These queries can be answered by a
variant of our FIND-algorithm in timeO((logn+ k) log logn) with

high probability, wherek is the number of returned points.
We simply modify the FIND-algorithm to never query finger lists

with a radius of less than 2r. This ensures that we will never miss
any of the points within the required ball aroundq. Similar to the
original FIND, the behavior of this algorithm can be analyzed as a
random walk, where the points within distancer of q are considered
to be one set at distancer to q. It takes at most timeO(logn) for the
random walk to get within distancer of q, and thenO(k) time to
visit all points in the query radius, since it takes expected constant
time between visiting successive elements in the ball. This yields
a total bound ofO(logn+ k) finger list accesses, for aO((logn+
k) log logn) running time.

3.5 Offline construction
Before considering dynamic updates to the data structure, we

first present a simpleO(nlognlog logn) off-line construction algo-
rithm for our data structure.

Suppose we truncate all finger listsFr (si), so that they do not
“wrap around” at the end of the ordering, but rather only include
elements aftersi in the ordering. This data structure would still
support searches, as long as they start ats1, at the beginning of the
ordering.

Constructing this data structure can be done by starting with an
empty data structure, and repeatedly addingsn,sn−1,sn−2, . . . ,s1 to
the beginning of the previously constructed data structure. This
way, when we insertsi , we only have to computesi ’s finger lists,
while the finger lists of already inserted elements remain the same
(since, by definition, they will not containsi). At each step, the data
structure so far is a metric skip list on the (random) subset of items
{si+1, . . . ,sn}. This random sample has low expansion (Lemma 2)
so the finger list computations forsi are fast.

Constructing the new element’s finger lists
The construction of the new elementsi ’s finger lists can be done

by a modification of the FIND algorithm. We start a search forsi at
si+1, the successor ofsi . But instead of just maintaining the closest
elementsm encountered so far, we keep the 24c3 closest elements
seen so far, dropping the furthest element of that set as soon as a
closer element becomes available. As seen in the proof of Lemma
8, this yields all elements ofsi ’s finger lists.

The running time analysis of this search is virtually identical to
the one given for the FIND-algorithm. The main change is that the
number of finger elements is now 24c3 times as large, which causes
the random walk on the distances to be slower by that factor. But it
still yields aO(lognlog logn) bound with high probability.

Thus, we can construct our data structure in timeO(nlognlog logn).
The problem is that this approach does not immediately lend itself
to performing dynamic updates, because by always inserting at the
“beginning” of the ordering, we would not guarantee that the or-
dering remains random.

4. DYNAMIC MAINTENANCE
In this section we describe how the metric skip list data structure

can be maintained dynamically, i.e. how elements can added and
deleted inO(lognlog logn) amortized expected time each. We will
focus mostly on the INSERT-operation to add a new node to the
structure, as the analysis for the deletion of a node is very similar.

4.1 Augmenting the data structure
To make dynamic maintenance of the search data structure pos-

sible efficiently, we have to add two more pieces of data to the basic
structure described in the previous section. These are:

Nearest Neighbor ListsNN(si),R(si): For every pointsi we main-

tain a radiusR(si)>0 such thatclogn≤ |Bsi (R(si))| ≤3clogn,
and a listNN(si) of the points inBsi (R(si)).

Query Lists Qr (si): For each finger listFr (si) we store an associ-
ated list of all elementssj that queriedFr (si) when construct-
ing their own finger lists. The exception to this is that we do
not recordsj ’s queries for its finger lists with radius less than
R(sj).

These additions do not change theO(nlogn) space requirement
of the data structure. The nearest neighbor lists requireO(logn)
space per node. And since the number of queries performed when
constructing an element’s finger lists isO(logn) with high proba-
bility, the total number of entries in the query lists isO(nlogn).

4.2 A fasterFIND
It turns out that with only small changes, the FIND-algorithm

can be modified to run timeO(logn) with high probability, with a
corresponding bound ofO(logn+ k) for the range search. We will
use these bounds from now on to compute running times.

We change the FIND-algorithm so that once it queries a finger
list Fr (si) with r < R(si), we stop the random walk, and just return
the closest element to the query point inNN(si), which takes time
O(logn) by a linear pass.

The only reason that we incurred an additionalO(log logn) fac-
tor in the running time of the FIND-algorithm so far is that this was
the time per accessed node to find the correct finger list. Suppose
now that we further augment our data structure such that for each
j ∈ Fr (si) there is an associated pointer toFr (sj), and also pointers
from Fr (si) to F2r (si). Maintaining these pointers can be subsumed
in the total time taken for INSERTand DELETE.

Thus, we can find the next finger list in the FIND-procedure in
constant time if the radius we query is “not too far off” the previous
one. But this is true in the case of the FIND algorithm. The query
radius never increases more than fromr to 2r, and we can find that
finger list in timeO(1). From that point, we can seek through de-
creasingr for the correct radius finger list. Each drop in radius takes
O(1) time, but can be “charged” against the improved distance—in
the FIND algorithm, we can basically think of this as a random walk
step which improves with probability 1 rather than 9/10. Thus the
analysis goes through unchanged, showingO(logn) steps, but now
the “steps” bound not only the number of nodes visited but also the
work at each node.

A similar change can be made to the range query procedure given
in section 3.4, yielding a running time ofO(logn+k).

4.3 Range queries revisited
In section 3.4, we considered the range query of reporting all

points within distancer of a pointq. Now we consider the related
query, where given a numberk and a pointq, we are asked to output
thek closest points toq. This type of query will be useful to us for
the INSERTprocedure.

Unfortunately, this problem cannot be directly reduced to the one
we already solved, as finding the correctr such that|Bq(r)| = k is
difficult. It would be considerably easier if in addition to the ex-
pansion property we also had a lower bound of the form|Bq(2r)| ≥
c′|Bq(r)| because that would relater andk very closely. However,
it is still possible to solve the problem efficiently.

Lemma 11
There is an algorithm that, given a point q and a number k, outputs
the k closest neighbors of q in time O(logn+k). �

Due to its technical nature, we defer the proof to the appendix.

4.4 TheINSERT-operation
We have seen in section 3.5 how to construct our data structure

in an offline manner, and in particular how to construct the finger
lists of any newly inserted elementq. The main change for dynamic
updates is that now insertions do not occur “at the beginning” of the
ordering, but rather at a random position in the middle. This means
that the new elementq has to appear on other elements’ finger lists.
The main difficulty of making insertion efficient is to be able to
quickly find the elements that should point toq.

How do we find the elementssi that should includeq in their
finger lists? An element could have computed different finger lists,
hadq been present, only if it queried a finger list that should have
containedq as well during its construction. This observation is
only self-referential at first glance: to construct a finger listFr (si)
of radiusr, si would query only finger lists with radius 2r or higher.

Using the query lists we introduced, the elementssi that have
to point toq can be found using a search backwards along query
pointers. First, we know thatq has to be included in the distance 1
(the maximal distance) finger lists for the 24c3 elements preceding
it in the ordering. Then, recursively, whenever we addq to a finger
list, we check all elementssi mentioned in the associated query list
to determine which of these should change their finger lists, and so
on.

The correctness follows, since, as mentioned above, for con-
structing a finger list of radiusr, the INSERTprocedure would only
query finger lists of radius 2r and higher. That means that by fix-
ing all radius 1 finger lists, we will inductively fix all other affected
lists.

4.4.1 The algorithm
In summary, the INSERT-procedure for a new elementq is the

following.

1. Insertq at a random position in the ordering.
2. Constructq’s finger lists by searching forward in the ordering

(cf. section 3.5)
3. Find 3c2 logn nodes closest toq, computeR(q), NN(q) such

that|NN(q)|= 2clogn.
4. Includeq in NN(si) among the 3c2 logn nodessi closest to

q, as necessary.
5. Follow query pointers backwards to find all nodes that seeq

in the construction of their finger lists. For these elements
and the 3c2 logn closest neighbors:

(i) Update their finger lists as necessary to includeq.
(ii) Update the query list entries they caused, as necessary.

We will now bound the expected running time of the INSERT-
operation, and give more details on the implementation.

4.4.2 The analysis
We perform the running time analysis step by step of the algo-

rithm. To do it, we introduce one more definition. Theq-rank of
point p is the number of points closer toq thanp is.

Step 2: Constructingq’s finger lists
Computing the finger lists can be done by a modified FIND-

operation as in section 3.5, using timeO(logn).

Step 3: Finding3c2 logn closest neighbors
We can do this using the procedure from Lemma 11 in time

O(logn). In timeO(logn) we can find the element ofq-rank 2clogn
among these elements, which yieldsR(q) andNN(q).

Step 4: Includeq in NN(si)

Due to the expansion property, any nodesi for whichq is among
the 3clogn closest nodes must be among the 3c2 logn nodes closest
to q. So this step of the algorithm suffices to maintain the correct
values of theNN(si).

Using the list of the 3c2 logn nearest neighborssi computed in
step 3, we can check for each of them inO(1) by comparingd(si ,q)
to R(si) to determine whetherq should be included inNN(si).

When this causes anNN(si) to grow beyond size 3clogn, we
can recompute that element’s finger lists,NN(si) andR(si) (such
that |NN(si)| = 2clogn) in time O(logn). Since it takesclogn in-
sertions to cause such a change, the amortized cost per insertion is
only O(1).

Thus, the total amortized time of step 4 isO(logn).

Step 5: Following query pointers backwards
In the next step of the algorithm, we follow query pointers back-

wards to determine which finger lists have to be updated following
the insertion ofq.

First, we will show that the number of nodes that we reach using
this search isO(logn) in expectation. Then, we will show that
each of these nodes is pointed to by only a constant number of
query pointers, so that the query pointer traversal takes total time
O(lognlog logn), the additionalO(log logn) factor coming from
having to look up the correct finger and query lists.

Lemma 12
The expected number of elements that encounter q in the construc-
tion of their finger lists is O(logn).

Proof: Here and in the following we will use different methods to
bound the work spent on theclogn nodes closest toq and all the
other nodes.

In this case, we have to give no particular analysis for theclogn
closest nodes, since even if they all encounteredq they would only
beO(logn) nodes.

For the remainingn−clogn nodes we are going to use a bound-
ing technique that we will also use repeatedly in the remaining run-
time analysis. Letsi be some fixed node in the structure, andpsee(r)
be the probability thatsi sees the element ofsi-rankr during its fin-
ger list construction. This probabilitypsee(r) has the property that
it is monotonically decreasing inr. This is because if an element
of rank r were replaced by an element of rankr ′ with r ′ < r in the
same ordering,si would still see this element in its search, if it saw
the element of rankr before. Thusr ′ < r =⇒ psee(r ′) > psee(r).
Also, since the finger list construction only depends on the ranks of
the elements,psee(r) is actually independent of the elementsi .

Two more observations yield the desired bound. First, since the
number of nodes that are encountered in a finger list construction is
O(logn) in expectation, we have∑n

r=1 psee(r) = O(logn). Second,
if an elementsi hasq-rank r ≥ clogn, thenq has asi-rank of at
leastr/c. This follows directly from the expansion property of the
metric space. Thus, we have

E[#elements that “see”q] =
n

∑
r=1

Pr[element ofq-rankr “sees”q]

≤O(logn)+
n

∑
r=clogn

psee(r/c)≤O(logn)+c
n

∑
r=1

psee(r) = O(logn),

proving the lemma.�

Lemma 13
Let si be any node. Then the number of finger lists that overlap q’s
position, that are queried in the construction of si’s finger lists, is at

most 24c3 = O(1). Thus, si can “see” q only a constant number of
times during the construction of its finger lists.

Proof: When constructingsi ’s finger lists, the first time we access
a finger list that overlapsq’s position in the ordering, this finger list
by definition contains all elements beforeq that we might include
into si ’s finger list. This number is therefore at most 24c3. If we
move to one of these points, then by the next time we access a
finger list overlappingq’s position, their number has decreased by
one. So after seeingq’s position at most 24c3 times, we will move
past it.�

The previous lemma implies that only 24c3 query pointers from
finger lists containingq can point to an elementsi that “sees”q
during its finger list construction. Thus the running time for the
“query pointer search” part of step 5 isO(lognlog logn).

Step 5(i): Updating finger lists
The time taken to create the finger lists containingq is at most

O(log logn) times the number of these finger lists. TheO(log logn)
is taken to find the correct insertion point of the new finger list
among the other finger lists. We will now show thatq appears in an
expected number ofO(logn) finger lists, yielding a total bound for
this step ofO(lognlog logn).

We will first use a coarse bound that we will use for theclogn
elements closest toq.

Lemma 14
Let si be any node. Then the expected number of si’s finger lists
that q appears in is O(1).

Proof: Consider the construction ofsi ’s finger lists. If we imagine
si being at the beginning of an order ofn elements, and inserting
q at a random position in that order, thenq can only appear on the
finger lists that are created “after” its insertion point in the ordering.

Consider some positionk in the order. The 24c3-rd smallestsi-
rank of the elements before thek-th position is expected to be close
to 24c3n/k = O(n/k). So since the remaining finger lists are con-
structed from onlyO(n/k) elements, the proof of Lemma 8 implies
that the expected number of finger lists created after this point is
O(log(n/k)).

If q gets inserted at a random position, the expected number of
finger lists created after that point is therefore on the order of

1
n

n

∑
k=1

log
n
k

= logn− logn!
n

= logn− (logn−O(1)) = O(1),

as claimed.�

Again, this bound is enough for theclogn elements closest to
q, as it yields an expected total number ofO(logn) occurrences
among these elements, but we require a different approach for the
remaining elements.

If Efl(r) is the expected number times that an element ofsi-
rankr appears insi ’s finger lists, then again we have∑n

r=1Efl(r) =
O(logn) andr ′ < r =⇒ Efl(r ′) > Efl(r), by similar arguments as
in the proof of Lemma 12 forpsee(r). Following the same proof
technique as above, this shows that the expected total number of
finger lists thatq appears in isO(logn) among all elements.

Lemma 15
An element q appears in O(logn) finger lists in expectation. �

Step 5(ii): Updating query lists
All the nodes that “see”q in the construction of their finger lists

might now take potentially different query paths than before the

insertion ofq. So we have to construct as much of the new query
paths as might be influenced by the insertion ofq.

For a nodesi that includesq in its finger lists, the queried finger
lists might be different as long asq remains among the closest 24c3

elements. For a nodesi that does not includeq in its finger lists, the
queried finger lists might be different up to the next element thatsi
doesinclude into its finger lists.

Lemma 16
The insertion of q causes O(logn) query list pointers to change in
expectation.

Proof: We will first treat the nodessi separately for whichq is one
of theclogn closest nodes tosi (i.e. q∈NN(si)). For each of these
nodes, the expected number of changed query pointers isO(1), for
a total ofO(logn) for all thesesi .

This is because only 24c3 of the nodes ofNN(si) appear insi ’s
finger lists with radius≥ R(si), and only these could result in a
change of query pointers. The probability thatq is one of these
nodes is thereforeO(1/ logn). As the worst case number of changed
query pointers isO(logn), the expected number of pointer that have
to be changed isO(1/ logn· logn) = O(1).

For all other elements, we are going to distinguish between the
cases thatq does appear or does not appear on their finger lists.
First, the elements that includeq in their finger lists.

Let E′(r) be the expected number of queries performed for the
finger list construction of an elementsi , such thatq hassi-rank
r, while q is among the elements of the current finger lists. As
there are always 24c3 elements in the current finger list, we end
up charging each query to 24c3 elements. Since the expected total
number of queries forsi is O(logn), we therefore have

n

∑
r=1

E′(r) = 24c3 ·O(logn) = O(logn).

As an element with a lower rank in the same position in the search
will stay as long or longer in the finger list during the search, we
have thatr ′ < r =⇒ E′(r ′) ≥ E′(r). A similar calculation as in
Lemma 12 gives thatq is expected to influence at most a total num-
ber ofO(logn) query pointers.

Second, we have to analyze the number of query pointers influ-
enced byq among the elements that seeq during their finger list
construction, but do not actually includeq among their finger list
elements. The changes thatq might necessitate are limited to the
finger list construction from seeingq until the next finger list ele-
ment is found. We will bound this in a similar fashion as above: let
E′′(r) be the expected number of elements seen bysi after an ele-
ment of rankr, before the next element of its finger lists is found
(we bound this independent of whetherq is actually a finger list ele-
ment itself, we only bound the number of search steps until the next
element is found). Again, we haver ′ < r =⇒ E′′(r ′)≥ E′′(r), be-
causesi is more likely to see an element of lower rank in its finger
list construction.

We have

n

∑
r=1

E′′(r) =
O(logn)

∑
j=1

E[X2
j /2],

whereXj is the number of elements seen between thej-th and
the (j + 1)-st of si ’s finger list elements that we find, searching
from si . Since the variablesXj are distributed geometrically with
a constant expectation, we also haveE[X2

j] = O(1), and therefore

∑n
r=1E′′(r) = O(logn). So in this case also,q is expected to influ-

ence at most a logarithmic number of query lists.�

Thus, the running time of the INSERT-operation is expected total
time O(lognlog logn). Note that we did not analyze the cost to re-
move finger and query list entries now obsolete due to the insertion
of q. But since our work will be linear in their size, and the size of
the structure is expected to grow upon insertion of an element, the
above bounds dominate the insertion time.

4.5 TheDELETE-operation
For the DELETE-operation, we use the query lists to determine

all finger lists containingq. Essentially, we do the opposite of what
we did for INSERT, and rebuild a node’s finger lists ifNN(si) be-
comes smaller thanclogn. Thus, the same time bounds apply, and
the operation takes timeO(lognlog logn).

5. APPLICATION TO PEER-TO-PEER NET-
WORKS

The nearest neighbor search structure described in this paper can
be used with only slight modifications in the Chord Peer-To-Peer
network protocol co-developed by the first author [7]. We will now
give a brief introduction to the relevant parts of the Chord data man-
agement protocol and describe how the nearest neighbor structure
can be used in this context.

The Chord protocol allows for distributed data access by storing
data items in multiple locations across the network. Every node
gets assigned a random identifier, and the nodes can be imagined
ordered on a circle based on these IDs. If an data item is stored in
the network, it has one primary location, where the original copy of
the item is stored. To speed up accesses, an item might be replicated
to be stored at other nodes besides the primary location. In Chord,
these copies are held on the nodes which immediately precede the
primary location in the order of IDs. I.e., the item copies propagate
backwards along the ordering, and the nodes that hold the item
always form a continuous segment of the ordering of nodes.

In many applications of Peer-To-Peer networks, such as in wire-
less networks, the cost of accessing an data item grows as the dis-
tance to the item increases. Thus, it is advantageous to locate the
“closest” copy of a data item to speed up accesses and lower oper-
ating costs. We will now show how the data structure developed in
the previous sections can be used to this effect.

Observe that our data structure can easily be made “distributed”
by simply storing the finger and query lists at the node in the net-
work that they are associated with. This requires onlyO(logn)
additional storage for each node. As the nodes in Chord already
have random IDs and are therefore naturally ordered in a random
order, we can make use of the same ordering for our data structure.

The FIND, INSERT and DELETE protocols work as before, al-
though in practice it might not be possible to store pointers into
another node’s finger lists that allow forO(1) lookups of the cor-
rect lists. Thus, a list lookup cost ofO(log logn) is more realistic,
and the operations become more costly by that factor. But since the
cost of an operation in a Peer-to-peer network is dominated by the
number of node-to-node communications (which staysO(logn))
and not by in-node computations, this does not seem to be a great
loss.

Suppose now that we want to find the closest copy to a node
q of an data item whose primary locations is nodep. The search
is similar to the FIND-operation with the difference that we will
not search beyondp, since all copies of the data item are stored
directly before the nodep in the ordering. On a high level, the
search algorithm is as follows:

1. If the item is stored at nodeq, stop and access the item.

2. Find a locationp′ containing the item, so that there is no
closer node with the item betweenq andp′ in the ordering.

3. Perform a FIND from p′ for q, keeping track of the closest
item containing node seen, and stop as soon as the FIND op-
eration moves beyondp.

Step 1 needs no explanation – if the item is already at our cur-
rent location there is no need to look for it elsewhere. Step 2 is
straightforward by a modification of the Chord lookup protocol—
that protocol does a binary search forq, and it can be modified to
report an “overshoot” if it encounters anyp that contains the item.
Step 3 finds the closest copy of an item, assuming that the second
step completed successfully, because during the FIND operation we
will see all elements that are closer toq than the previously closest
element we saw, starting out withp′. So we cannot possibly miss
seeing the closest element toq betweenp′ andp, which is the one
we are looking for. And obviously, we can terminate the search as
soon as we have passedp since the following elements do not con-
tain the item. Both steps only take timeO(logn) (or rather access
that number of nodes).

6. CONCLUSION
We have introduced a new data structure for nearest neighbor

search in metric spaces with low expansion rates. The structure is
simple, efficient, and can easily be use in a distributed environment,
for example if points correspond to nodes in a network.

An interesting open problem is to make the data structure fault
tolerant, in the following sense. If the data structure is actually dis-
tributed on a set of nodes, such as a Peer-To-Peer network, then it
is not unlikely that single nodes just “fail” without invoking a dele-
tion procedure. Is it possible to augment the data structure to work
even when nodes (and their associated finger lists) just disappear?

Another interesting property of low expansion metrics is that
they can be embedded into anO(

√
logn)-dimensional Euclidean

space with low distortion (as opposed to theO(logn)-dimensional
space required for general metrics). This allows for approximate
nearest neighbor searches by reduction to the Euclidean case. It
would be interesting to see whether this avenue leads to other ap-
proaches to this problem.

7. REFERENCES
[1] J. Bentley. Multidimensional binary search trees used for

associative searching.Communications of the ACM,
18(9):509–517, 1975.

[2] J. Bentley, B. Weide, and A. Yao. Optimal expected-time
algorithms for closest point problems.ACM Transactions of
Mathematical Software, 6(4):563–580, 1980.

[3] S. Brin. Near neighbor search in large metric spaces. In
Proceedings VLDB, pages 574–584, 1995.

[4] E. Ch́avez, G. Navarro, R. Baeza-Yates, and J. L. Marroquín.
Searching in metric spaces.ACM Computing Surveys,
33(3):273–321, 2001.

[5] K. Clarkson. Nearest neighbor queries in metric spaces.
Discrete Computational Geometry, 22(1):63–93, 1999.

[6] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed
environment.Theory of Computing Systems, 32:241–280,
1999.

[7] I. Stoica, R. Morris, D. Karger, F. Kasshoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. InProceedings ACM
SIGCOMM, 2001.

[8] J. B. Tenenbaum. Mapping a manifold of perceptual
observations. InAdvances in Neural Information Processing
Systems, volume 10. The MIT Press, 1998.

[9] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global
geometric framework for nonlinear dimensionality reduction.
Science, 290(5500):2319–2323, December 2000. See also
http://isomap.stanford.edu .

[10] J. Uhlmann. Satisfying general proximity/similarity queries
with metric trees.Information Processing Letters,
40:175–179, 1991.

[11] P. Yianilos. Data structures and algorithms for nearest
neighbor search in general metric spaces. InProceedings
SODA, pages 311–321, 1993.

APPENDIX

The Algorithm
In this section we prove Lemma 11: we give an algorithm that

reports thek closest neighbors of a nodeq in timeO(logn+k). The
algorithm can be summarized as follows:

K-RANGE-QUERY(q,k) (returnsk nearest neighbors ofq in S)
let sm = nearest neighbor ofq
let r = R(sm), B = Bq(r)
while |B|< k do

let r = AUGMENT(r,B,q), B = Bq(r)
output k points inB closest toq

Note that the assignmentsB = Bq(r) here correspond to range
queries in the sense of section 3.4.

The sub-routine AUGMENT(r,B,q) that we have to define later
can be called withB = Bq(r) andB≥ logn. It returns with high
probability in timeO(|B|) anr ′ > r such that(

1+
1

48c3

)
|B| ≤ |Bq(r ′)| ≤ 7c3 · |B| (1)

In other words,|B| grows by a constant factor each time.
The correctness of the above algorithm is clear. As for the run-

ning time, the first two lines take timeO(logn). Every execute of
the while loop takes timeO(logn+ |B|). Since|B| grows geometri-
cally, the sum of these times collapses toO(logn+k), as claimed.

The AUGMENT-Procedure
The AUGMENT-procedure overcomes the problem that by there

is no bound on by how much we have to increasesr to increase the
size ofBq(r) by a constant factor. The procedure uses sampling
nearB to obtain an estimate on the local growth rate ofBq(r).

AUGMENT(r,B,q)
(let B = {b1,b2, . . . ,b`} be an enumeration ofB’s elements)
for i = 1 to` do

let ai := element closest tobi in bi ’s finger lists withd(ai ,bi)> 2r
let r i := d(ai ,bi)

output median of{r i | 1≤ i ≤ `}

The running time of this algorithm isO(|B|) as each iteration of
the loop requires a lookup ofF2r (bi), which can be done in constant
time as in section 4.2, because we already have pointers toFr (bi)
after the range search that computedB. Note that if there is no
element inbi ’s finger lists of distance more than 2r to b, then we
can setr i = ∞.

For correctness, we need to prove that the inequalities (1) hold
(we user ′ to refer to the value returned by the AUGMENT-procedure).

The lower bound is the easier of the two. Note that none of the
ai are inB, as their distance toq is at leastd(ai ,q) ≥ d(ai ,bi)−
d(bi ,q) > 2r − r = r. On the other hand, by returning the median
of the r i , we guarantee that the new ballBq(r ′) now contains at
least half of theai . It remains to show that there are not too many
repetitions among theai .

For this and the following it will be useful to recall that thebi
are arranged on a circle order in the search data structure. For no-
tational simplicity assume that they occur in the orderb1, b2, . . . ,
b` in the data structure. Notice that we haveai 6= a j if i +24c3 < j.
This is becausebi would encounterbi+1,bi+2, . . . ,bi+24c3 before
seeinga j in its finger list construction, and since all theb’s are
closer tobi thana j , a j would not be included intobi ’s finger list.
That is, eachai appears at most 24c3 times among the othera’s.
Thus,|Bq(r ′)| ≥ |B|+ 1

2
1

24c3 |B|, which shows the first inequality.
While the previous inequality holds unconditionally, we will prove

that the second inequality holds with high probability. Letp be
the element ofq-rank 7c2|B|, andR := d(p,q) + r. We will show
that with high probabilityr ′ ≤ R. This is enough, because by the
expansion property|Bq(R)| ≤ c|Bq(d(p,q))| = 7c3|B|, usingR =
d(p,q)+ r < 2d(p,q).

Let Xi be the event thatr i ≤R. To show that with high probability
at least half of theXi occur, we will bound them by other events.
Let P be the set of elements withq-rank in{|B|+1, . . . ,c2|B|}, and
Q be the set of element withq rank in{c2|B|+1, . . . ,7c2|B|}. Note
that the elements ofQ all are at least distance 4r− r = 3r from the
elements inB, and thus would be considered as choices for theai
in the AUGMENT procedure.

In the random order of the data structure the setsP andQ oc-
cur interleaved with the pointsb1,b2, . . . ,b`. Let us focus on the
random sub-ordering consisting just of these 7c2|B| elements. Let
Yi be the event thatbi is directly followed by an element ofQ in
this ordering. We then have thatYi impliesXi . This is because ifbi
includes the element ofQ that directly follows it in its finger list,
then that element is a valid candidate forai , and since it is closer
thanR to q, Xi is true. On the other hand, ifbi does not include this
element in its finger list, then there must be 24c3 elements closer
than it tobi between the two in the ordering. SinceYi holds, these
elements must haveq-rank> 7c2|B|, thus cannot be closer than 2r
to bi , but also cannot be further thanR from bi , thusXi is satisfied.

We now proceed to bound the probability that less than half of
the Yi happen. Fix any ordering of thebi andP. If we imagine
inserting the elements ofQ at random places in this ordering, then

there are
(|B|+|P|+|Q|

|Q|
)

ways to do so. If, however, more than half
of theYi are not true, then the elements ofQ may not be inserted
directly behind thebi for whichYi is not true. Thus, there are only(|B|/2+|P|+|Q|

|Q|
)

choices for an ordering. By multiplying with the
number of possible choices for whichYi are not true, we obtain an
upper bound on the probability of failure by:(|B|

|B|/2
)(|B|/2+|P|+|Q|

|Q|
)

(|B|+|P|+|Q|
|Q|

)
≤ Π|B|/2k=1

(
|B|/2+ |P|+k

|B|/2+ |P|+ |Q|+k

)
· (2e)|B|/2

≤
(

|B|+ |P|
|B|+ |P|+ |Q|

·2e

)|B|/2
=
(

c2|B|
7c2|B|

·2e

)|B|/2
≤ 0.882|B|

This is polynomially small since|B| ≥ logn.

