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New Dire
tions in TraÆ
 Measurement and A

ounting

Cristian Estan and George Varghese

February 8, 2002

Abstra
t

A

urate network traÆ
 measurement is required for a

ounting, bandwidth provisioning and dete
t-

ing DoS atta
ks. These appli
ations see the traÆ
 as a 
olle
tion of 
ows they need to measure. As

link speeds and the number of 
ows in
rease, keeping a 
ounter for ea
h 
ow is too expensive (using

SRAM) or slow (using DRAM). The 
urrent state-of-the-art methods (Cis
o's sampled NetFlow) whi
h

log periodi
ally sampled pa
kets are slow, ina

urate and resour
e-intensive. Previous work showed that

at di�erent granularities a small number of \heavy hitters" a

ounts for a large share of traÆ
. Our

paper introdu
es a paradigm shift by 
on
entrating on measuring only large 
ows | those above some

threshold su
h as 0.1% of the link 
apa
ity.

We propose two novel and s
alable algorithms for identifying the large 
ows: sample and hold and

multistage �lters, whi
h take a 
onstant number of memory referen
es per pa
ket and use a small amount

of memory. If M is the available memory, we show analyti
ally that the errors of our new algorithms are

proportional to 1=M ; by 
ontrast, the error of an algorithm based on 
lassi
al sampling is proportional

to 1=

p

M , thus providing mu
h less a

ura
y for the same amount of memory. We also des
ribe further

optimizations su
h as early removal and 
onservative update that further improve the a

ura
y of our

algorithms, as measured on real traÆ
 tra
es, by an order of magnitude. Our s
hemes allow a new form

of a

ounting 
alled threshold a

ounting in whi
h only 
ows above a threshold are 
harged by usage

while the rest are 
harged a �xed fee. Threshold a

ounting generalizes usage-based and duration based

pri
ing.

1 Introdu
tion

If we're keeping per-
ow state, we have a s
aling problem, and we'll be tra
king millions of ants

to tra
k a few elephants. | Van Ja
obson, End-to-end Resear
h meeting, June 2000.

Measuring and monitoring network traÆ
 is required to manage today's 
omplex Internet ba
kbones

[9, 5℄. Su
h measurement information is essential for short-term monitoring (e.g., dete
ting hot spots and

denial-of-servi
e atta
ks [15℄), longer term traÆ
 engineering (e.g., rerouting traÆ
 and upgrading sele
ted

links[9℄), and a

ounting (e.g., to support usage based pri
ing[6℄).

The standard approa
h advo
ated by the Real-Time Flow Measurement (RTFM) [4℄ Working Group of

the IETF is to instrument routers to add 
ow meters at either all or sele
ted input links. Today's routers

o�er tools su
h as NetFlow [17℄ that give 
ow level information about traÆ
.

The main problem with the 
ow measurement approa
h is its la
k of s
alability. Measurements on MCI

tra
es as early as 1997 [21℄ showed over 250,000 
on
urrent 
ows. More re
ent measurements in [8℄ using

a variety of tra
es show the number of 
ows between end host pairs in a one hour period to be as high as
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1.7 million (Fix-West) and 0.8 million (MCI). Even with aggregation, the number of 
ows in 1 hour in the

Fix-West used by [8℄ was as large as 0.5 million.

It 
an be feasible for 
ow measurement devi
es to keep up with the in
reases in the number of 
ows (with

or without aggregation) only if they use the 
heapest memories: DRAMs. Updating the 
ounters in DRAM

is already impossible with today's line speeds and the gap between DRAM speeds (improving 7-9% per year)

and link speeds (improving 100% per year) is only going to in
rease. Cis
o NetFlow [17℄, whi
h keeps its


ow 
ounters in DRAM solves this problem by sampling: only the sampled pa
kets result in updates. But

this sampling has problems of its own (as we show later) sin
e it a�e
ts the a

ura
y of the measurement

data.

Despite the large number of 
ows, a 
ommon observation found in many measurement studies (e.g., [9, 8℄)

is that a small per
entage of 
ows a

ounts for a large per
entage of the traÆ
. [8℄ shows that the top 9%

of the 
ows between AS pairs a

ounts for 90% of the traÆ
 in bytes between all AS pairs.

For many appli
ations, knowledge of these large 
ows is most important. [8℄ suggests that s
alable

di�erentiated servi
es 
ould be a
hieved by providing sele
tive treatment only to a small number of large


ows or aggregates. [9℄ underlines the importan
e of knowledge of \heavy hitters" for de
isions about network

upgrades and peering. [6℄ proposes a usage sensitive billing s
heme that relies on exa
t knowledge of the

traÆ
 of large 
ows but only samples of the traÆ
 of small 
ows.

We 
on
lude that it is not feasible to a

urately measure all 
ows on high speed links, but many appli
a-

tions 
an bene�t from a

urately measuring the few large 
ows that dominate the traÆ
 mix. This 
an be

a
hieved by traÆ
 measurement devi
es that use small fast memories. However, how does the devi
e know

whi
h 
ows to tra
k? If one keeps state for all 
ows to identify the heavy hitters, our purpose is defeated.

Thus a reasonable goal is to produ
e an algorithm that identi�es the heavy hitters using memory that

is only a small 
onstant larger than what we need to tra
k the heavy hitters. This is the 
entral question

addressed by this paper. We present two algorithms that identify the large 
ows using a small amount

of state. Further, we have low worst 
ase bounds on the amount of per pa
ket pro
essing, making our

algorithms suitable for use in high speed routers.

1.1 Problem de�nition

A 
ow is generi
ally de�ned by an optional pattern (whi
h de�nes whi
h pa
kets we will fo
us on) and an

identi�er (values for a set of spe
i�ed header �elds)

1

. Flow de�nitions vary with appli
ations: for example

for a traÆ
 matrix one 
ould use a wild
ard pattern and identi�ers de�ned by distin
t sour
e and destination

network numbers. On the other hand, for identifying TCP denial of servi
e atta
ks one 
ould use a pattern

that fo
uses on TCP pa
kets and use the destination IP address as a 
ow identi�er.

Large 
ows are de�ned as those that send more than a given threshold (say 1% of the link 
apa
ity) during

a given measurement interval (1 se
ond, 1 minute or even 1 hour). Appendix C gives an alternative de�nition

of large 
ows based on leaky bu
ket des
riptors, and investigates how our algorithms 
an be adapted to this

de�nition.

An ideal algorithm reports, at the end of the measurement interval, the 
ow IDs of all the 
ows that

ex
eeded the threshold and their exa
t size. There are three ways in whi
h the result 
an be wrong: it

might omit some of the large 
ows, it might erroneously add some small 
ows to the report or it might give

an ina

urate estimate of the traÆ
 of some large 
ows. We 
all the large 
ows that evade dete
tion false

negatives, and the small 
ows that are wrongly in
luded false positives.

1

We 
an also generalize by allowing the identi�er to be a fun
tion of the header �eld values (e.g., using pre�xes instead of

addresses based on a mapping using route tables)
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Note that the minimum amount of memory required by an ideal algorithm is the inverse of the threshold;

for example, there 
an be at most 100 
ows that use more than 1% of the link. We will measure the

performan
e of an algorithm by its memory (
ompared to that of the ideal algorithm), and the probability

of false negatives and false positives.

1.2 Motivation

Our algorithms for identifying large 
ows 
an potentially be used to solve many problems. Appli
ations we

envisage in
lude:

� S
alable Threshold A

ounting: The two poles of pri
ing for network traÆ
 are usage based (e.g.,

a pri
e per byte for ea
h 
ow) or duration based (e.g., a �xed pri
e based on duration of a

ess or a

�xed pri
e per month, regardless of how mu
h the 
ow transmits). While usage-based pri
ing [14, 20℄

has been shown to improve overall utility by providing in
entives for users to redu
e traÆ
, usage based

pri
ing in its most 
omplete form is not s
alable be
ause we 
annot tra
k all 
ows at high speeds. We

suggest, instead, a s
heme where we measure all aggregates that are above z% of the link; su
h traÆ


is subje
t to usage based pri
ing, the remaining traÆ
 is subje
t to duration based pri
ing. By varying

z from 0 to 100, we 
an move from usage based pri
ing to duration based pri
ing. More importantly,

for reasonably small values of z (say 1%) threshold a

ounting 
an o�er a 
ompromise between the

two extremes that is s
alable and yet o�ers almost the same utility as usage based pri
ing. [1℄ o�ers

experimental eviden
e based on the INDEX experiment that su
h threshold pri
ing 
ould be attra
tive

to both users and ISPs.

2

.

� Real-time TraÆ
 Monitoring: Many ISPs monitor their ba
kbones to look for hot-spots. On
e

a hot-spot is dete
ted one would want to identify the large aggregates that 
ould be rerouted (using

MPLS tunnels or new routes through re
on�gurable opti
al swit
hes) to alleviate 
ongestion. Also

ISPs might want to monitor traÆ
 to dete
t (distributed) denial of servi
e atta
ks. Sudden in
reases

in the traÆ
 sent to 
ertain destinations (the vi
tims) 
an indi
ate an ongoing atta
k. [15℄ proposes a

me
hanism that rea
ts to them as soon as they are dete
ted. In both these settings, it may be suÆ
ient

to fo
us on 
ows above a 
ertain traÆ
 threshold.

� S
alable Queue Management: As we move further down the time s
ale, there are other appli
ations

that would bene�t from identifying large 
ows. S
heduling me
hanisms aiming to ensure (weighted)

max-min fairness (or an approximation thereof), need to be able to dete
t the 
ows sending above their

fair rate and penalize them. Keeping per 
ow state only for these 
ows does not a�e
t the fairness

of the s
heduling and 
an a

ount for substantial savings. This problem is a
tually more 
ompli
ated

be
ause the de�nition of a non-
onformant 
ow 
an depend on round-trip delays as well. Several papers

address this issue in
luding [10℄. We do not address this appli
ation further in the paper, ex
ept to

note that our te
hniques may be useful as a 
omponent in solutions to this problem.

The rest of the paper is organized as follows. We des
ribe related work in Se
tion 2, des
ribe our

main ideas in Se
tion 3, and provide a theoreti
al analysis in Se
tion 4. We theoreti
ally 
ompare our

algorithms with NetFlow in Se
tion 5. After showing how to dimension our algorithms in Se
tion 6, we

des
ribe experimental evaluation on tra
es in Se
tion 7. We end with implementation issues in Se
tion 8

and 
on
lusions in Se
tion 9.

2

Besides [1℄, a brief referen
e to a similar idea 
an be found in [20℄. However, neither paper proposes a 
orresponding

me
hanism to implement the idea at ba
kbone speeds. [6℄ o�ers a me
hanism to implement threshold a

ounting that is

suitable if the times
ale for billing is long.
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2 Related work

The primary tool used for 
ow level measurement by IP ba
kbone operators is Cis
o NetFlow [17℄ (see

Appendix E for a more detailed dis
ussion). NetFlow keeps per 
ow state in a large, slow DRAM. Basi


NetFlow has two problems: i) Pro
essing Overhead: updating the DRAM slows down the forwarding

rate; ii) Colle
tion Overhead: the amount of data generated by NetFlow 
an overwhelm the 
olle
tion

server or its network 
onne
tion. [9℄ reports loss rates of up to 90% using basi
 NetFlow.

The pro
essing overhead 
an be alleviated using sampling: per-
ow 
ounters are in
remented only for

sampled pa
kets. We show later that sampling introdu
es 
onsiderable ina

ura
y in the estimate; this is

not a problem for measurements over long periods (errors average out) and if appli
ations do not need exa
t

data. However, we will show that sampling does not work well for appli
ations that require true lower bounds

on 
ustomer traÆ
 (e.g., it may be infeasible to 
harge 
ustomers based on estimates that are larger than

a
tual usage) and for appli
ations that require a

urate data at small time s
ales (e.g., billing systems that


harge higher during 
ongested periods).

The data 
olle
tion overhead 
an be alleviated by having the router aggregate 
ows (e.g., by sour
e and

destination AS numbers) as dire
ted by a manager. However, [8℄ shows that even the number of aggregated


ows is very large. For example, 
olle
ting pa
ket headers for Code Red traÆ
 on a 
lass A network [16℄

produ
ed 0.5GB per hour of 
ompressed NetFlow data and aggregation redu
ed this data only by a fa
tor

of 4. Te
hniques des
ribed in [6℄ 
an be used to redu
e the 
olle
tion overhead at the 
ost of further errors.

However, it 
an 
onsiderably simplify router pro
essing to only keep tra
k of heavy-hitters (as in our paper)

if that is what the appli
ation needs.

Many paper address the problem of mapping the traÆ
 of large IP networks. [9℄ deals with 
orrelating

measurements taken at various points to �nd spatial traÆ
 distributions; the te
hniques in our paper 
an

be used to 
omplement their methods. [5℄ des
ribes a me
hanism for identifying pa
ket traje
tories in the

ba
kbone, not identifying the networks generating the traÆ
.

Bloom �lters [2℄ and sto
hasti
 fair blue [10℄ use similar but di�erent te
hniques to our parallel multistage

�lters to 
ompute di�erent metri
s (set interse
tions and drop probabilities). Gibbons and Matias [11℄


onsider synopsis data stru
tures that use small amounts of memory to approximately summarize large

databases. They de�ne 
ounting samples that are similar to our sample and hold algorithm. However, we


ompute a di�erent metri
, need to take into a

ount pa
ket lengths and have to size memory in a di�erent

way. In [7℄, Fang et al look at eÆ
ient ways of exa
tly 
ounting the number of appearan
es of popular items

in a database. Their multi-stage algorithm is similar to the multistage �lters we propose. However, they use

sampling as a front end before the �lter and use multiple passes. Thus their �nal algorithms and analyses

are very di�erent from ours.

3 Our solution

Be
ause our algorithms use an amount of memory that is a 
onstant fa
tor larger than the (relatively small)

number of heavy-hitters, our algorithms 
an be implemented using on-
hip or o�-
hip SRAM to store 
ow

state. We assume that at ea
h pa
ket arrival we 
an a�ord to look up a 
ow ID in the SRAM, update the


ounter(s)

3

allo
ate a new entry if there is no entry asso
iated with the 
urrent pa
ket.

The biggest problem is to identify the large 
ows. Two simple approa
hes to identifying large 
ows

suggest themselves immediately. First, when a pa
ket arrives with a 
ow ID not in the 
ow memory, we

3

Furthermore, the improvement presented in Appendix E that 
an be applied to NetFlow and our algorithms in
reases by

an order of magnitude the amount of time we 
an spend on a pa
ket
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ould make pla
e for the new 
ow by removing the 
ow with the smallest measured traÆ
 (i.e., smallest


ounter). It is easy, however, to provide 
ounter examples where a large 
ow is not measured be
ause it

keeps being expelled from the 
ow memory before its 
ounter be
omes large enough.

A se
ond approa
h is to use 
lassi
al random sampling. Random sampling (similar to sampled NetFlow

ex
ept using a smaller amount of SRAM) provably identi�es large 
ows. We show, however, in Table 1 that

random sampling introdu
es a very high relative error in the measurement estimate that is proportional to

1=

p

M , where M is the amount of SRAM used by the devi
e. Thus one needs very high amounts of memory

to redu
e the ina

ura
y to a

eptable levels.

The two most important 
ontributions of this paper are two new algorithms for identifying large 
ows:

Sample and Hold (Se
tion 3.1) and Multistage Filters (Se
tion 3.2). Their performan
e is very similar, the

main advantage of sample and hold being implementation simpli
ity and for multistage �lters a slightly

higher a

ura
y. In 
ontrast to random sampling, the relative errors of our two new algorithms s
ale with

1=M , whereM is the amount of SRAM. This allows our algorithms to provide mu
h more a

urate estimates

for the same amount of memory than random sampling. In Se
tion 3.3 we present improvements to the two

algorithms that further improve their a

ura
y on a
tual tra
es (Se
tion 7). We start by des
ribing the main

ideas behind these s
hemes.

3.1 Sample and hold

Base Idea: The simplest way to identify large 
ows is through sampling but with the following twist. As

with ordinary sampling, we sample ea
h pa
ket with a probability. If a pa
ket is sampled and the 
ow it

belongs to has no entry in the 
ow memory, a new entry is 
reated. However, after an entry is 
reated for a


ow, unlike in sampled NetFlow, we update the entry for every subsequent pa
ket belonging to the 
ow as

shown in Figure 1.

Thus on
e a 
ow is sampled a 
orresponding 
ounter is held in a hash table in 
ow memory till the end

of the measurement interval. While this 
learly requires pro
essing (looking up the 
ow entry and updating

a 
ounter) for every pa
ket (unlike Sampled NetFlow), we will show that the redu
ed memory requirements

allow the 
ow memory to be in SRAM instead of DRAM. This in turn allows the per-pa
ket pro
essing to

s
ale with line speeds.

Let p be the probability with whi
h we sample a byte

4

. Choosing a high enough value for p guarantees

that 
ows above the threshold are very likely to be dete
ted. In
reasing p too mu
h 
an 
ause too many

false positives (small 
ows �lling up the 
ow memory). The advantage of this s
heme is that it is easy to

implement and yet gives a

urate measurements with very high probability.

Preliminary Analysis: The following example illustrates the method and the analysis more 
on
retely.

Suppose we wish to measure the traÆ
 sent by all the 
ows that take over 1% of the link 
apa
ity in a

measurement interval. There are at most 100 su
h 
ows that take over 1%. Instead of making our 
ow

memory have just 100 lo
ations, we will allow oversampling by a fa
tor of 100 and keep 10; 000 lo
ations.

We wish to sample ea
h byte with probability p su
h that the average number of samples is 10; 000. Thus if

C bytes 
an be transmitted in the measurement interval, p = 10; 000=C.

For the error analysis, 
onsider a 
ow F that takes 1% of the traÆ
. Thus F sends more than C=100

bytes. Sin
e we are randomly sampling ea
h byte with probability 10; 000=C, the probability that F will

not be in the 
ow memory at the end of the measurement interval (the probability of a false negative)

is (1 � 10000=C)

C=100

whi
h is very 
lose to e

�100

. Noti
e that the fa
tor of 100 in the exponent is the

4

We a
tually sample pa
kets, but the sampling probability depends on pa
ket sizes. The sampling probability for a pa
ket

of size s is p

s

= 1� (1� p)

s

. This 
an be looked up in a pre
omputed table or approximated by p

s

= p � s.
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F3  2

F1  3

F1 F1 F2 F3 F2 F4 F1 F3 F1

Entry updated

Sampled packet (probability=1/3)

Entry created

Transmitted packets

Flow memory

Figure 1: The leftmost pa
ket with 
ow label F1 arrives �rst at the router. After an entry is 
reated for a


ow (solid line) the 
ounter is updated for all its pa
kets (dotted lines)

All

packets
Every xth Update entry or

create a new one
Large flow

packet

Large reports to

management station

Sampled NetFlow

Sample and hold

memory

Yes

No

Update existing entry

Create

Small flow
p ~ size

Pass with
probability

management station

Small reports to

new entry

memory
All packets

Has entry?

Figure 2: Sampled NetFlow 
ounts only sampled pa
kets, sample and hold 
ounts all after entry 
reated

oversampling fa
tor. Better still, the probability that 
ow F is in the 
ow memory after sending 5% of its

traÆ
 is, using a similar analysis, 1� e

�5

whi
h is greater than 99% probability. Thus with 99% probability

the reported traÆ
 for 
ow F will be at most 5% below the a
tual amount sent by F .

The analysis 
an be generalized to arbitrary threshold values; the memory needs s
ale inversely with the

threshold per
entage and dire
tly with the oversampling fa
tor. Noti
e also that the analysis assumes that

there is always spa
e to pla
e a sample 
ow not already in the memory. Setting p = 10; 000=C ensures that

the average number of 
ows sampled is no more than 10,000 but some intervals 
an sample more pa
kets.

However, the distribution of the number of samples is binomial with a small standard deviation equal to

the square root of the mean. Thus, adding a few standard deviations to the memory estimate (e.g., a total

memory size of 10,300) makes it extremely unlikely that the 
ow memory will ever over
ow.

When 
ompared to Cis
o's sampled NetFlow our idea has three signi�
ant di�eren
es depi
ted in Figure 2.

Most importantly, we sample only to de
ide whether to add a 
ow to the memory; from that point on, we

update the 
ow memory with every byte the 
ow sends. As shown in se
tion 5 this will make our results

mu
h more a

urate. Se
ond, our sampling te
hnique avoids pa
ket size biases unlike NetFlow whi
h samples

6
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h2(F)

h1(F)

h3(F)
Stage 3

Stage 2

Stage 1

Figure 3: In a parallel multistage �lter, a pa
ket with a 
ow ID F is hashed using hash fun
tion h1 into

a Stage 1 hash table, h2 into a Stage 2 hash table, et
. Ea
h of the hash bu
kets 
ontain a 
ounter that

is in
remented by the pa
ket size. If all the hash bu
ket 
ounters are above the threshold (shown bolded),

then 
ow F is passed to the 
ow memory for more 
areful observation.

every x pa
kets. Third, our te
hnique avoids the extra resour
e overhead (router pro
essing, router memory,

network bandwidth) of sending the large amount of sampled information to a management station (assuming

only information about heavy-hitters will be used at the station).

3.2 Multistage �lters

Base Idea: The basi
 multistage �lter is shown in Figure 3. The building blo
ks are hash stages that

operate in parallel. First, 
onsider how the �lter operates if it had only one stage. A stage is a table of


ounters whi
h is indexed by a hash fun
tion 
omputed on a pa
ket 
ow ID; all 
ounters in the table are

initialized to 0 at the start of a measurement interval. When a pa
ket 
omes in, a hash on its 
ow ID is


omputed and the size of the pa
ket is added to the 
orresponding 
ounter. Sin
e all pa
kets belonging to

the same 
ow hash to the same 
ounter, if a 
ow F sends more than threshold T , F 's 
ounter will ex
eed the

threshold. If we add to the 
ow memory all pa
kets that hash to 
ounters of T or more, we are guaranteed

to identify all the large 
ows (no false negatives).

Unfortunately, sin
e the number of 
ounters we 
an a�ord is signi�
antly smaller than the number of


ows, many 
ows will map to the same 
ounter. This 
an 
ause false positives in two ways: �rst, small 
ows


an map to 
ounters that hold large 
ows and get added to 
ow memory; se
ond, several small 
ows 
an

hash to the same 
ounter and add up to a number larger than the threshold.

To redu
e this large number of false positives, we use multiple stages. Ea
h stage (Figure 3) uses an

independent hash fun
tion. Only the pa
kets that map to 
ounters of T or more at all stages get added to

the 
ow memory. For example, in Figure 3, if a pa
ket with a 
ow ID F arrives that hashes to 
ounters 3,1,

and 7 respe
tively at the three stages, F will pass the �lter (
ounters that are over the threshold are shown

darkened). On the other hand, a 
ow G that hashes to 
ounters 7, 5, and 4 will not pass the �lter be
ause

the se
ond stage 
ounter is not over the threshold. E�e
tively, the multiple stages attenuate the probability

of false positives exponentially in the number of stages. This is shown by the following simple analysis.

Preliminary Analysis: Assume a 100 Mbytes/s link

5

, with 100,000 
ows and we want to identify the


ows above 1% of the link during a one se
ond measurement interval. Assume ea
h stage has 1,000 bu
kets

and a threshold of 1 Mbyte. Let's see what the probability is for a 
ow sending 100 Kbytes to pass the

�lter. For this 
ow to pass one stage, the other 
ows need to add up to 1 Mbyte - 100Kbytes = 900 Kbytes.

5

To simplify 
omputation, in our examples we assume that 1Mbyte=1,000,000 bytes and 1Kbyte=1,000 bytes.

7
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Figure 4: Serial multistage �lter: pa
kets that hash to large bu
kets are passed to the next stage

There are at most 99,900/900=111 su
h bu
kets out of the 1,000 at ea
h stage. Therefore, the probability

of passing one stage is at most 11.1%. With 4 independent stages, the probability that a 
ertain 
ow no

larger than 100 Kbytes passes all 4 stages is the produ
t of the individual stage probabilities whi
h is at most

1:52 � 10

�4

.

Based on this analysis, we 
an dimension the 
ow memory so that it is large enough to a

ommodate

all 
ows that pass the �lter. The expe
ted number of 
ows below 100Kbytes passing the �lter is at most

100; 000 � 15:2 � 10

�4

< 16. There 
an be at most 999 
ows above 100Kbytes, so the number of entries

we expe
t to a

ommodate all 
ows is at most 1,015. Se
tion 4 has a rigorous theorem that proves a

stronger bound (for this example 122 entries) that holds for any distribution of 
ow sizes. Note the potential

s
alability of the s
heme. If the number of 
ows in
reases to 1 million, we simply add a �fth hash stage to

get the same e�e
t. Thus to handle 100,000 
ows, requires roughly 4000 
ounters and a 
ow memory of

approximately 100 memory lo
ations, while to handle 1 million 
ows requires roughly 5000 
ounters and the

same size of 
ow memory. This is logarithmi
 s
aling.

The number of memory a

esses at pa
ket arrival time performed by the �lter is exa
tly one read and

one write per stage. If the number of stages is small enough this is a�ordable even at high speeds sin
e the

memory a

esses 
an be performed in parallel, espe
ially in a 
hip implementation.

6

While multistage �lters

are more 
omplex than sample-and-hold, they have a number of advantages. They redu
e the probability of

false negatives to 0 and by de
reasing the probability of false positives, they redu
e the size of the required


ow memory.

3.2.1 The serial multistage �lter

In this se
tion we brie
y present another variant of the multistage �lter 
alled a serial multistage �lter

(Figure 4). Instead of using multiple stages in parallel, we 
an put them after ea
h other, ea
h stage seeing

only the pa
kets that passed the previous stage (and all stages pre
eding it).

Let d be the number of stages (the depth of the serial �lter). We set a threshold of T=d for all the stages.

Thus for a 
ow that sends T bytes, by the time the last pa
ket is sent, the 
ounters the 
ow hashes to at

all d stages rea
h T=d, so the pa
ket will pass to the 
ow memory. As with parallel �lters, we have no false

negatives. As with parallel �lters, small 
ows 
an pass the �lter only if they are lu
ky enough to hash to

6

We des
ribe details of a preliminary OC-192 
hip implementation of multistage �lters in Se
tion 8.
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ounters with signi�
ant traÆ
 generated by other 
ows.

The analyti
al evaluation of serial �lters is somewhat more 
ompli
ated than for parallel �lters. Sin
e, as

presented in Se
tion 7, parallel �lters perform better than serial �lters on tra
es of a
tual traÆ
, the main

fo
us in this paper will be on parallel �lters.

3.3 Improvements to the basi
 algorithms

The improvements to our algorithms presented in this se
tion further improve the a

ura
y of the measure-

ments and redu
e the memory requirements. Some of the improvements apply to both algorithms, some

apply only to one of them.

3.3.1 Preserving entries a
ross measurement intervals

Measurements show that large 
ows also tend to last long. Applying our algorithms dire
tly would mean

erasing the 
ow memory after ea
h interval. This means that in ea
h interval, the bytes of large 
ows

sent before they are allo
ated an entry are not 
ounted. By preserving the entries of large 
ows a
ross

measurement intervals and only reinitializing the 
ounters, only the �rst measurement interval has this

ina

ura
y, so all long lived large 
ows are measured exa
tly.

The problem is that the algorithm 
annot distinguish between a large 
ow that was identi�ed late and

a small 
ow that was identi�ed by error sin
e both have small 
ounter values. A 
onservative solution is

to preserve the entries of not only the 
ows for whi
h we 
ount at least T bytes transferred in the 
urrent

interval, but all the 
ows whose entries were added in the 
urrent interval (sin
e their traÆ
 might be above

T if we also add their traÆ
 that went by before the 
ow was identi�ed). While more 
omplex rules for

whi
h entries to keep 
an be devised, we found little advantage in most of them and therefore do not dis
uss

them here. The next se
tion presents a rare ex
eption.

3.3.2 Early removal of entries

While the simple rule for preserving entries des
ribed above works well for both of our algorithms, there

is a re�nement that 
an help further in the 
ase of sample and hold whi
h has a more false positives than

multistage �lters. If we keep for one more interval all of the 
ows that got a new entry, many small 
ows

will keep their entries for two intervals. We 
an improve the situation by sele
tively removing some of the


ow entries 
reated in the 
urrent interval.

The new rule for preserving entries is as follows. We de�ne an early removal threshold R that is less then

the threshold T . At the end of the measurement interval, we keep all entries whose 
ounter is at least T and

all entries that have been added during the 
urrent interval and whose 
ounter is at least R.

3.3.3 Shielding the �lter from 
ows with entries

Shielding strengthens multistage �lters. Figure 5 illustrates how it works. The traÆ
 belonging to 
ows that

have an entry no longer passes through the �lter. It may not be immediately apparent how this redu
es the

number of false positives. Consider large, long lived 
ow that would go through the �lter ea
h measurement

interval. Ea
h measurement interval, the 
ounters it hashes to ex
eed the threshold. If we shield the �lter

from this large 
ow, many of these 
ounters will not rea
h the threshold after the �rst interval. This redu
es

the probability that a random small 
ow passes the �lters by hashing to 
ounters that are large be
ause of

other 
ows.

9
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Figure 5: Shielding: we do not pass through the �lter the traÆ
 of the 
ows with an entry
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Figure 6: Conservative update: without 
onservative update (left) all 
ounters are in
reased by the size of

the in
oming pa
ket, with 
onservative update (right) no 
ounter is in
reased to more than the size of the

smallest 
ounter plus the size of the pa
ket

3.3.4 Conservative update of 
ounters

We now des
ribe an important but natural optimization for multistage �lters. Conservative update redu
es

the number of false positives of multistage �lters by three subtle 
hanges to the rules for updating 
ounters.

In essen
e, we endeavour to in
rement 
ounters as little as possible (thereby redu
ing false positives by

preventing small 
ows from passing the �lter) while still avoiding false negatives (i.e., we need to ensure that

all 
ows that rea
h the threshold still pass the �lter.)

The �rst 
hange (Figure 6) applies only to parallel �lters and only for pa
kets that don't pass the �lter.

As usual, an arriving 
ow F is hashed to a 
ounter at ea
h stage. We update the smallest of the 
ounters

normally (by adding the size of the pa
ket). However, the other 
ounters are set to the maximum of their

old value and the new value of the smallest 
ounter (
ounters are never de
remented). Sin
e the amount of

traÆ
 sent by the 
urrent 
ow is at most the new value of the smallest 
ounter, this 
hange 
annot introdu
e

a false negative for the 
ow the pa
ket belongs to.

The se
ond 
hange is very simple and applies to both parallel and serial �lters. When a pa
ket passes

the �lter and it obtains an entry in the 
ow memory, no 
ounters should be updated. This will leave the

10




ounters below the threshold. Other 
ows with smaller pa
kets that hash to these 
ounters will get less

\help" in passing the �lter.

The third 
hange applies only to serial �lters. It regards the way 
ounters are updated when the threshold

is ex
eeded in any stage but the last one. Let's say the value of the 
ounter a pa
ket hashes to at stage i is

T �x and the size of the pa
ket is s > x > 0. Normally one would in
rement the 
ounter at stage i to T and

add s� x to the 
ounter from stage i+1. What we 
an do instead with the 
ounter at stage i+1 is update

its value to the maximum of s� x and its old value (assuming s� x < T ). Sin
e the 
ounter at stage i was

below T , we know that no prior pa
kets belonging to the same 
ow as the 
urrent one passed this stage and


ontributed to the value of the 
ounter at stage i+ 1. We 
ould not apply this 
hange if the threshold was

allowed to 
hange during a measurement interval.

4 Analyti
al evaluation of our algorithms

In this se
tion we analyti
ally evaluate our algorithms. We fo
us on two important questions:

� How good are the results? We use two distin
t measures of the quality of the results: how many of the

large 
ows are identi�ed, and how a

urately is their traÆ
 estimated?

� What are the resour
es required by the algorithm? The key resour
e measure is the size of 
ow memory

needed. A se
ond resour
e measure is the number of memory referen
es required.

In Se
tion 4.1 we analyze our sample and hold algorithm, and in Se
tion 4.2 we analyze multistage �lters.

We �rst analyze the basi
 algorithms and then examine the e�e
t of some of the improvements presented

in Se
tion 3.3. In the next se
tion (Se
tion 5) we use the results of this se
tion to analyti
ally 
ompare our

algorithms with sampled NetFlow (based on its analysis from appendix E).

Example: We will use the following running example to give numeri
 instan
es for the analysis. Assume

a 100 Mbyte/s link with 100; 000 
ows. We want to identify and measure all 
ows whose traÆ
 is more than

1% (1 Mbyte) of the link 
apa
ity during a one se
ond measurement interval.

4.1 Sample and hold

We �rst de�ne some notation we use in this se
tion.

� p the probability for sampling a byte;

� s the size of a 
ow (in bytes);

� T the threshold for large 
ows;

� C the 
apa
ity of the link { the number of bytes that 
an be sent during the entire measurement

interval;

� O the oversampling fa
tor de�ned by p = O � 1=T ;

� 
 the number of bytes a
tually 
ounted for a 
ow.

11



4.1.1 The quality of results for sample and hold

The �rst measure of the quality of the results is the probability that a 
ow at the threshold is not identi�ed.

As presented in Se
tion 3.1 the probability that a 
ow of size T is not identi�ed is (1 � p)

T

� e

�O

. An

oversampling fa
tor of 20 results in a probability of missing 
ows at the threshold of 2 � 10

�9

.

Example: For our running example, this would mean setting p to 1 in 50,000 bytes for an oversampling

of 20 and 1 in 200,000 for an oversampling of 5. With an average pa
ket size of 500 bytes this is roughly 1

in 100 pa
kets and 1 in 400 pa
kets respe
tively.

The se
ond measure of the quality of the results is the di�eren
e between the size of a 
ow s and our

estimate. The number of bytes that go by before the �rst one gets sampled has a geometri
 probability

distribution

7

: it is x with a probability

8

(1� p)

x

p.

Therefore E[s � 
℄ = 1=p and SD[s � 
℄ =

p

1� p=p. The best estimate for s is 
 + 1=p and its

standard deviation is

p

1� p=p. If we 
hoose to use 
 as an estimate for s then the error will be larger,

but we never overestimate the size of the 
ow. In this 
ase, the deviation from the a
tual value of s is

p

E[(s� 
)

2

℄ =

p

2� p=p. Based on this value we 
an also 
ompute the relative error of a 
ow of size T

whi
h is T

p

2� p=p =

p

2� p=O.

Example: For our example, with an oversampling fa
tor O of 20, the relative error of the estimate of the

size of a 
ow at the threshold is 7% and with an oversampling of O = 5 28%. Applying the 
orre
tion would

bring down the errors to 5% and 20% respe
tively.

4.1.2 The memory requirements for sample and hold

The size of the 
ow memory is determined by the number of 
ows identi�ed. The a
tual number of sampled

pa
kets is an upper bound on the number of entries needed in the 
ow memory be
ause new entries are


reated only for sampled pa
kets. Assuming that the link is 
onstantly busy, by the linearity of expe
tation,

the expe
ted number of sampled bytes is p � C = O � C=T .

Example: Using an oversampling of 20 requires 2,000 entries and an oversampling of 5 500 entries.

The number of sampled bytes 
an ex
eed this value. Sin
e the number of sampled bytes has a binomial

distribution, we 
an use the normal 
urve to bound with high probability the number of bytes sampled

during the measurement interval. Therefore with probability 99% the a
tual number will be at most 2.33

standard deviations above the expe
ted value; similarly, with probability 99.9% it will be at most 3.08

standard deviations above the expe
ted value. The standard deviation of the number of sampled pa
kets is

p

Cp(1� p).

Example: For our example for an oversampling of 20 and an over
ow probability of 0.1% we need at

most 2,147 entries and with an oversampling of 5, 574 entries. If the a

eptable over
ow probability is 1%,

the sizes are 2,116 and 558 respe
tively.

4.1.3 The e�e
t of preserving entries

We preserve entries a
ross measurement intervals to improve a

ura
y. The probability of missing a large


ow de
reases be
ause we 
annot miss it if we keep its entry from the prior interval. A

ura
y in
reases

be
ause we know the exa
t size of the 
ows whose entries we keep. To quantify these improvements we need

to know the ratio of long lived 
ows among the large ones.

7

We ignore for simpli
ity that the bytes before the �rst sampled byte that are in the same pa
ket with it are also 
ounted.

Therefore the a
tual algorithm will be more a

urate than our model.

8

Sin
e we fo
us on large 
ows, we ignore for simpli
ity the 
orre
tion fa
tor we need to apply to a

ount for the 
ase when

the 
ow goes undete
ted (i.e. x is a
tually bound by the size of the 
ow s, but we ignore this).
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The 
ost of this improvement in a

ura
y is an in
rease in the size of the 
ow memory. We need enough

memory to hold the samples from both measurement intervals

9

. Therefore the expe
ted number of entries

is bounded by 2O � C=T .

To bound with high probability the number of entries we use the normal 
urve and the standard deviation

of the the number of sampled pa
kets during the 2 intervals whi
h is

p

2Cp(1� p).

Example: For our example with an oversampling of 20 and a

eptable probability of over
ow equal to

0.1%, the 
ow memory has to have at most 4,207 entries and with an oversampling of 5, 1,104 entries. If

the a

eptable over
ow probability is 1%, the sizes are 4,164 and 1,082 respe
tively.

4.1.4 The e�e
t of early removal

The e�e
t of early removal on the proportion of false negatives depends on whether or not the entries removed

early are reported. Sin
e we believe it is more realisti
 that implementations will not report these entries, we

will use this assumption in our analysis. Let R < T be the early removal threshold. A 
ow at the threshold

is not reported unless one of its �rst T �R bytes is sampled. Therefore the probability of missing the 
ow is

approximately e

�O(T�R)=T

. If we use an early removal threshold of R = 0:2�T , this in
reases the probability

of missing a large 
ow from 2 � 10

�9

to 1:1 � 10

�7

with an oversampling of 20 and from 0.67% to 1.8% with

an oversampling of 5.

Early removal redu
es the size of the memory required by limiting the number of entries that are preserved

from the previous measurement interval. Sin
e there 
an be at most C=R 
ows sending R bytes, the number

of entries that we keep is at most C=R whi
h 
an be smaller than OC=T , the bound on the expe
ted number

of sampled pa
kets. The expe
ted number of entries we need is C=R+OC=T .

To bound with high probability the number of entries we use the normal 
urve. If R � T=O the standard

deviation is given only by the randomness of the pa
kets sampled in one interval and is

p

Cp(1� p).

Example: An oversampling of 20 and R = 0:2T with over
ow probability 0.1% requires a 
ow memory

with 2,647 entries and with an oversampling of 5, 1,074 entries. If the a

eptable over
ow probability is 1%,

the sizes are 2,616 and 1,058 respe
tively.

4.2 Multistage �lters

In this se
tion, we analyze parallel multistage �lters. We only present the main results. The proofs and

supporting lemmas are in Appendix A. We �rst de�ne some new notation:

� b the number of bu
kets in a stage;

� d the depth of the �lter (the number of stages);

� n the number of a
tive 
ows;

� k the stage strength expresses the strength of the �ltering a
hieved by a stage of the �lter: the ratio

of the threshold and the average size of a 
ounter. k =

T b

C

, where C denotes the 
hannel 
apa
ity as

before. Intuitively, this 
an also be seen as the memory over-provisioning ratio: by what fa
tor do we

in
ate ea
h stage memory beyond the required minimum of C=T ?

9

We a
tually also keep the older entries that are above the threshold. Sin
e we are performing a worst 
ase analysis we

assume that there is no su
h 
ow, be
ause if there were, many of their pa
kets would be sampled, de
reasing the number of

entries required.

13



Example: To illustrate our results numeri
ally, we will assume that we solve the measurement example

des
ribed in Se
tion 4 with a 4 stage �lter, with 1000 bu
kets at ea
h stage. The stage strength k is 10

be
ause ea
h stage memory has 10 times more bu
kets than the maximum number of 
ows (i.e., 100) that


an 
ross the spe
i�ed threshold of 1%.

4.2.1 The quality of results for multistage �lters

As dis
ussed in Se
tion 3.2, multistage �lters have no false negatives. The error of the traÆ
 estimates for

large 
ows is bounded by the threshold T sin
e no 
ow 
an send T bytes without being entered into the


ow memory. The stronger the �lter, the less likely it is that the 
ow will be entered into the 
ow memory

mu
h before it rea
hes T . We �rst state an upper bound for the probability of a small 
ow passing the �lter

des
ribed in Se
tion 3.2.

Lemma 1 Assuming the hash fun
tions used by di�erent stages are independent, the probability of a 
ow

of size s < T (1� 1=k) passing a parallel multistage �lter is at most p

s

�

�

1

k

T

T�s

�

d

.

The proof of this bound formalizes the preliminary analysis of multistage �lters from Se
tion 3.2. Note

that the bound makes no assumption about the distribution of 
ow sizes, and thus applies for all 
ow

distributions. The bound is tight in the sense that it is almost exa
t for a distribution that has b(C �

s)=(T � s)
 
ows of size (T � s) that send all their pa
kets before the 
ow of size s. However, for realisti


traÆ
 mixes (e.g., if 
ow sizes follow a Zipf distribution), this is a very 
onservative bound.

Based on this lemma we obtain a lower bound for the expe
ted error for a large 
ow.

Theorem 2 The expe
ted number of bytes of a large 
ow that go undete
ted by a multistage �lter is bound

from below by

E[s� 
℄ � T

�

1�

d

k(d� 1)

�

� y

max

(1)

where y

max

is the maximum size of a pa
ket.

This bound suggests that we 
an signi�
antly improve the a

ura
y of the estimates by adding a 
orre
tion

fa
tor to the bytes a
tually 
ounted. The down side to adding a 
orre
tion fa
tor is that we 
an overestimate

some 
ow sizes; this may be a problem for a

ounting appli
ations.

4.2.2 The memory requirements for multistage �lters

We 
an dimension the 
ow memory based on bounds on the number of 
ows that pass the �lter. Based on

Lemma 1 we 
an 
ompute a bound on the total number of 
ows expe
ted to pass the �lter.

Theorem 3 The expe
ted number of 
ows passing a parallel multistage �lter is bound by

E[n

pass

℄ � max

 

b

k � 1

; n

�

n

kn� b

�

d

!

+ n

�

n

kn� b

�

d

(2)
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Example: Theorem 3 gives a bound of 121:2 
ows. Using 3 stages would have resulted in a bound of

200:6 and using 5 would give 112:1. Note that when the �rst term dominates the max, there is not mu
h

gain in adding more stages.

This is a bound on the expe
ted number of 
ows passing. In Appendix A we derive a high probability

bound on the number of 
ows passing the �lter..

Example: The probability that more than 185 
ows pass the �lter is at most 0.1% and the probability

that more than 211 pass is no more than 1� 10

�6

. Thus by in
reasing the 
ow memory from the expe
ted

size of 122 to 185 we 
an make over
ow of the 
ow memory extremely improbable.

4.2.3 The e�e
t of preserving entries and shielding

Preserving entries a�e
ts the a

ura
y of the results the same way as for sample and hold: long lived large


ows have their traÆ
 
ounted exa
tly after their �rst interval above the threshold. As with sample and

hold, preserving entries basi
ally doubles all the bounds for memory usage.

Shielding has a strong e�e
t on �lter performan
e, sin
e it redu
es the traÆ
 presented to the �lter.

Redu
ing the traÆ
 � times in
reases the stage strength to k � �, whi
h 
an be substituted in Theorems 2

and 3.

5 Comparison of traÆ
 measurement methods

In this se
tion we analyti
ally 
ompare the performan
e of three traÆ
 measurement algorithms: our two

new algorithms (sample and hold and multistage �lters) and Sampled NetFlow. First, in Se
tion 5.1, we


ompare the algorithms at the 
ore of traÆ
 measurement devi
es. For the 
ore 
omparison, we assume that

ea
h of the algorithms is given the same amount of high speed memory and we 
ompare their a

ura
y and

number of memory a

esses. This allows a fundamental analyti
al 
omparison of the e�e
tiveness of ea
h

algorithm in identifying heavy-hitters.

However, in pra
ti
e, it may be unfair to 
ompare Sampled NetFlow with our algorithms using the same

amount of memory. This is be
ause Sampled NetFlow 
an a�ord to use a large amount of DRAM (be
ause

it does not pro
ess every pa
ket) while our algorithms 
annot (be
ause they pro
ess every pa
ket and hen
e

need to store state in SRAM). Thus we perform a se
ond 
omparison in Se
tion 5.2 of 
omplete traÆ


measurement devi
es. In this se
ond 
omparison, we allow Sampled NetFlow to use more memory than our

algorithms. The 
omaparisons are based on the algorithm analysis in Se
tion 4 and an analysis of NetFlow

from Appendix E.

5.1 Comparison of the 
ore algorithms

In this se
tion we 
ompare sample and hold, multistage �lters and ordinary sampling (used by NetFlow)

under the assumption that they are all 
onstrained to using M memory entries. We fo
us on the a

ura
y of

the measurement of a 
ow whose traÆ
 is zC (for 
ows of 1% of the link 
apa
ity we would use z = 0:01).

The bound on the expe
ted number of entries is the same for sample and hold and for sampling and is

pC. By making this equal to M we 
an solve for p. By substituting in the formulae we have for the a

ura
y

of the estimates and after eliminating some terms that be
ome insigni�
ant (as p de
reases and as the link


apa
ity goes up) we obtain the results shown in Table 1.

For multistage �lters, we use a simpli�ed version of the result from Theorem 3: E[n

pass

℄ � b=k+n=k

d

. We

in
rease the number of stages used by the multistage �lter logarithmi
ally as the number of 
ows in
reases
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Measure Sample Multistage Sampling

and hold �lters

Relative error

p

2

Mz

1+10 r log

10

(n)

Mz

1

p

Mz

Memory a

esses 1 1 + log

10

(n)

1

x

Table 1: Comparison of the 
ore algorithms: sample and hold provides most a

urate results while pure

sampling has very few memory a

esses

Measure Sample and hold Multistage �lters Sampled NetFlow

Exa
t measurements / longlived% longlived% 0

Relative error 1:41=O / 1=u 0:0088=

p

zt

Memory bound 2O=z 2=z + 1=zlog

10

(n) min(n,486000 t)

Memory a

esses 1 1 +log

10

(n) 1=x

Table 2: Comparison of traÆ
 measurement devi
es

so that a single small 
ow is expe
ted to pass the �lter

10

and the strength of the stages is 10. At this point

we estimate the memory usage to be M = b=k + 1 + rbd = C=T + 1 + r10C=T log

10

(n) where r depends

on the implementation and re
e
ts the relative 
ost of a 
ounter and an entry in the 
ow memory. From

here we obtain T whi
h will be the error of our estimate of 
ows of size zC and the result from Table 1 is

immediate.

The termMz that appears in all formulae in the �rst row of the table is exa
tly equal to the oversampling

we de�ned in the 
ase of sample and hold. It expresses how many times we are willing to allo
ate over the

theoreti
al minimum memory to obtain better a

ura
y. We 
an see that the error of our algorithms de
reases

inversely proportional to this term while the error of sampling is proportional to the inverse of its square

root.

The se
ond line of Table 1 gives the number of memory a

esses per pa
ket that ea
h algorithm performs.

Sin
e sample and hold performs a pa
ket lookup for every pa
ket

11

, its per pa
ket pro
essing is 1. Multistage

�lters add to the one 
ow memory lookup an extra one a

ess per stage; the number of stages in turn in
reases

as the logarithm of the number of 
ows. Finally, for ordinary sampling if one in x pa
kets get sampled, then

the average per pa
ket pro
essing is 1=x.

Table 1 provides a fundamental 
omparison of our new algorithms with ordinary sampling as used in

Sampled NetFlow. The �rst line shows that the relative error of our algorithms s
ale with 1=M whi
h is mu
h

better than the 1=

p

M s
aling of ordinary sampling. However, the se
ond line shows that this improvement


omes at the 
ost of requiring at least one memory a

ess per pa
ket for our algorithms. While this allows

us to implement the new algorithms using SRAM, the smaller number of memory a

esses (< 1) per pa
ket

allows Sampled NetFlow to use DRAM. This is true as long as x is larger than the ratio of a DRAM memory

a

ess to an SRAM memory a

ess. However, even a DRAM implementation of Sampled NetFlow has some

problems whi
h we turn to in our se
ond 
omparison.

10

Con�guring the �lter su
h that a small number of small 
ows pass would have resulted in smaller memory and fewer memory

a

esses (be
ause we would need fewer stages), but it would have 
ompli
ated the formulae.

11

We equate a lookup in the 
ow memory to a single memory a

ess. This is true if we use a 
ontent asso
iable memory.

Lookups without hardware support require a few more memory a

esses to resolve hash 
ollisions.

16



5.2 Comparison of traÆ
 measurement devi
es

Table 1 seems to imply that if we in
rease the DRAM memory size M to in�nity, we 
an make the relative

error of a Sampled NetFlow estimate arbitrarily small. Intuitively, this assumes that by in
reasing memory

one 
an in
rease the sampling rate so that x de
reases to be
ome arbitrarily 
lose to 1. Clearly, if x = 1, the

results for Sampled NetFlow would, of 
ourse, have no error sin
e every pa
ket is logged. But we have just

seen that x must at least be as large as the ratio of DRAM speed to SRAM speed; thus Sampled NetFlow

will always have a minimum error 
orresponding to this value of x.

Another way to see the same e�e
t is to realize that for a �xed value of x, there is a limit M

0

to the

amount of DRAM memory that 
an be a

essed during a measurement interval. In the worst 
ase, the

number of pa
kets sampled by ordinary sampling is M

0

out of at most C=y

min

pa
kets, where C is the link


apa
ity and y

min

is the minimum size for a pa
ket. Thus x = C=(y

min

M

0

) and so M

0

= C=(xy

min

). Thus

in
reasing M beyond M

0

does not help!

With this as the basi
 insight, we now 
ompare the performan
e of our algorithms and NetFlow in

Table 2 without limiting the amount of memory made available to NetFlow. Table 2 takes into a

ount the

underlying te
hnologies (i.e., the use of DRAM versus SRAM) and one optimization (i.e., preserving entries)

for both our algorithms.

We 
onsider the task of estimating the size of all the 
ows above a fra
tion z of the link 
apa
ity over a

measurement interval of t se
onds

12

. The four 
hara
teristi
s of the traÆ
 measurement algorithms presented

in the table are: the per
entage of large 
ows known to be measured exa
tly, the relative error of the estimate

of a large 
ow, the upper bound on the memory size and the number of memory a

esses per pa
ket.

Note that the table does not 
ontain the a
tual memory used but a bound. For example the number

of entries used by NetFlow is bounded by the number of a
tive 
ows and the number of DRAM memory

lookups that it 
an perform during a measurement interval (whi
h doesn't 
hange as the link 
apa
ity grows).

Our measurements in Se
tion 7 show that for all three algorithms the a
tual memory usage is mu
h smaller

than the bounds, espe
ially for multistage �lters. Memory is measured in entries, not bytes

13

. Note that

the number of memory a

esses required per pa
ket does not ne
essarily translate to the time spent on the

pa
ket be
ause memory a

esses 
an be pipelined or performed in parallel.

We make simplifying assumptions about te
hnology evolution. As link speeds in
rease, so must the

ele
troni
s. Therefore we assume that SRAM speeds keep pa
e with link 
apa
ities. We also assume that

the speed of DRAM does not improve (based on its histori
ally slow pa
e of progress 
ompared to 
hip

speeds).

We assume the following 
on�gurations for the three algorithms. Our algorithms preserve entries. For

multistage �lters we introdu
e a new parameter expressing how many times larger a 
ow of interest is than

the threshold of the �lter u = zC=T . Sin
e the speed gap between the DRAM used by sampled NetFlow

and the link in
reases as link speeds in
rease, NetFlow has to de
rease its sampling rate proportionally with

the in
rease in 
apa
ity

14

to provide the smallest possible error. For the NetFlow error 
al
ulations we also

assume that the size of the pa
kets of large 
ows is 1500 bytes.

Besides the di�eren
es (Table 1) that stem from the 
ore algorithms, we see new di�eren
es in Table 2.

The �rst big di�eren
e (Row 1 of Table 2) is that unlike NetFlow, our algorithms provide exa
t measures for

long-lived large 
ows by preserving entries. More pre
isely, by preserving entries our algorithms will exa
tly

12

In order to make the 
omparison possible we 
hange somewhat the way NetFlow operates: we assume that it reports the

traÆ
 data for ea
h 
ow after ea
h measurement interval, like our algorithms do.

13

We assume that a 
ow memory entry is equivalent to 10 of the 
ounters used by the �lter be
ause the 
ow ID is typi
ally

mu
h larger than the 
ounter.

14

If the 
apa
ity of the link is x times OC-3, then one in x pa
kets gets sampled. We assume based on [17℄ that NetFlow 
an

handle pa
kets no smaller than 40 bytes at OC-3 speeds.

17



measure traÆ
 for all (or almost all in the 
ase of sample and hold) of the large 
ows that were large in

the previous interval. Given that our measurements show that most large 
ows are long lived, this is a big

advantage.

15

The se
ond big di�eren
e (Row 2 of Table 2) is that we 
an make our algorithms arbitrarily a

urate at

the 
ost of in
reases in the amount of memory used

16

while sampled NetFlow 
an do so only by in
reasing

the measurement interval t.

The third row of Table 2 
ompares the memory used by the algorithms. The extra fa
tor of 2 for sample

and hold and multistage �lters arises from preserving entries. Note that the number of entries used by

Sampled NetFlow is bounded by both the number n of a
tive 
ows and the number of memory a

esses that


an be made in t se
onds. Finally, the fourth row of Table 2 is identi
al to the se
ond row of Table 1.

Table 2 demonstrates that our algorithms have two advantages over NetFlow: i) they provide exa
t values

for long-lived large 
ows (row 1) and ii) they provide mu
h better a

ura
y even for small measurement

intervals (row 2). Besides these advantages, our algorithms also have three more advantages not shown in

Table 2. These are iii) provable lower bounds on traÆ
, iv) redu
ed resour
e 
onsumption for 
olle
tion,

and v) faster dete
tion of new large 
ows. We brie
y examine these dvantages.

iii) Provable Lower Bounds: A possible disadvantage of Sampled NetFlow is that the NetFlow

estimate is not an a
tual lower bound on the 
ow size. Thus a 
ustomer may be 
harged for more than

the 
ustomer sends. While one 
an make the average over
harged amount arbitrarily low (using large

measurement intervals), there may be philosophi
al obje
tions to over
harging. Our algorithms do not have

this problem.

iv) Redu
ed Resour
e Consumption: Clearly, while Sampled NetFlow 
an in
rease DRAM to im-

prove a

ura
y, the router has more entries at the end of the measurement interval. These re
ords have

to be pro
essed, potentially aggregated, and transmitted over the network to the management station. If

the router extra
ts the heavy hitters from the log, then router pro
essing is large; if not, the bandwidth


onsumed and pro
essing at the management station is large. By using mu
h smaller logs, our algorithm

avoids these resour
e (e.g., memory, transmission bandwidth, and router CPU 
y
les) bottlene
ks.

v) Faster dete
tion of long-lived 
ows: In a se
urity or DoS appli
ation, it may be useful to qui
kly

dete
t a large in
rease in traÆ
 to a server. Our algorithms 
an use small measurement intervals and

dete
t large 
ows soon after they start. By 
ontrast, Sampled NetFlow, espe
ially when mediated through

a management station, 
an be mu
h slower.

6 Dimensioning traÆ
 measurement devi
es

Before we des
ribe measurements, we des
ribe how to dimension our two algorithms. For appli
ations

that fa
e adversarial behavior (e.g., dete
ting DoS atta
ks), one should use the 
onservative bounds from

Se
tions 4.1 and 4.2 that hold for any ditribution of 
ow sizes. When we 
an make some assumptions about

the distribution of 
ow sizes, we 
an arrive to some tighter bounds as in Appendix B does for the 
ase of a

Zipf distribution. Se
tion 7 shows that the performan
e of our algorithms on a
tual tra
es ex
eeds as mu
h

as tens of thousands of times our 
onservative analysis. Dimensioning a

ording to the safe, 
onservative

bounds 
an be a waste resour
es for appli
ations su
h as measurement for a

ounting purposes, where the

15

Of 
ourse, one 
ould get the same advantage by using an SRAM 
ow memory that preserves large 
ows a
ross measurement

intervals in Sampled NetFlow as well. However, that would require the router to root through its DRAM log before the end of

the interval to �nd the large 
ows, a large pro
essing load. One 
an also argue that if one 
an a�ord an SRAM 
ow memory,

it is quite easy to do Sample and Hold.

16

Of 
ourse, te
hnology and 
ost impose limitations on the amount of available SRAM but the 
urrent limits for on and

o�-
hip SRAM are high enough to make this not be an issue.

18



ADAPTTHRESHOLD

usage = entriesused=flowmemsize

if (usage > target)

threshold = threshold � (usage=target)

adjustup

else

if (threshold did not in
rease for 3 intervals)

threshold = threshold � (usage=target)

adjustdown

endif

endif

Figure 7: The threshold adapts dynami
ally to a
hieve the target memory usage

ability to handle adversarial behavior is less important than the overall a

ura
y of the results. In this

se
tion we look at more aggressive methods of 
on�guring the traÆ
 measurement devi
es that maximize

the a

ura
y of the results by making good use of the available memory.

The measurements from se
tion 7 show that the a
tual performan
e depends strongly on the traÆ


mix. Sin
e we usually don't have a priori knowledge of 
ow distributions, we prefer to dynami
ally adapt

algorithm parameters to a
tual traÆ
. The main idea we use is to keep de
reasing the threshold below the


onservative estimate until the 
ow memory is nearly full (totally �lling memory 
an result in new large


ows not being tra
ked). We only dis
uss here the algorithm used for adapting the threshold.Appendix D

gives the heuristi
s we use to set the 
on�guration parameters for the multistage �lters that are hard to

adapt dynami
ally to the traÆ
 (i.e. the number of 
ounters and stages).

Figure 7 presents our threshold adaptation algorithm. There are two important 
onstants that adapt the

threshold to the traÆ
: the \target usage" (variable target in Figure 7) that tells it how full the memory 
an

be without risking to �ll it up 
ompletely and the \adjustment ratio" (variables adjustup and adjustdown in

Figure 7) that the algorithm uses to de
ide how mu
h to adjust the threshold to a
hieve a desired in
rease

or de
rease in 
ow memory usage. We rely on the measurements from Appendix I to determine the a
tual

values for these 
onstants.

The usage of the 
ow memory os
illates even when the 
on�guration is �xed. This happens due to


hanges in the traÆ
 mix or simply due to the randomness of our algorithms. The measurements from

Appendix I determine how volatile the number of entries used is and based on them, set the target usage to

90% for both algorithms.

One 
an argue that intuitively the number of entries should be proportional to the inverse of the threshold

sin
e the number of 
ows that 
an ex
eed a given threshold is inversely proportional to the value of the

threshold. This 
orresponds to having an adjustment ratio of 1. In pra
ti
e it might happen that in
reasing

the threshold does not redu
e the number of used entries by very mu
h be
ause fewer 
ows than expe
ted

are between the two values of the threshold. On the other hand de
reasing the threshold 
an 
ause a 
ollapse

of the multistage �lter in
reasing very mu
h the number of 
ows that pass. To give robustness to the traÆ


measurement devi
e we use two di�erent adjustment ratios: when in
reasing the threshold we use a large

one (we 
onservatively assume that we need to in
rease the threshold by adjustup% to de
reases memory

usage by only 1%) and when de
reasing we use a small one (we 
onservatively assume that de
reasing the

threshold by only adjustdown% we in
rease the memory usage by 1%). We use measurements to bound from

above and below the e�e
t of the 
hanges of threshold on the number of memory entries used and derive
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Tra
e Number of 
ows (min/avg/max) Mbytes/interval

5-tuple destination IP AS pair (min/avg/max { link)

MAG+ 93,437/98,424/105,814 40,796/42,915/45,299 7,177/7,401/7,775 201.0/256.0/284.2 { 1483

MAG 99,264/100,105/101,038 43,172/43,575/43,987 7,353/7,408/7,477 255.8/264.7/273.5 { 1483

IND 13,746/14,349/14,936 8,723/8,933/9,081 - 91.37/96.04/99.70 { 370.8

COS 5,157/5,497/5,784 1,124/1,146/1,169 - 14.28/16.63/18.70 { 92.70

Table 3: The tra
es used for our measurements

the adjustment ratios. Based on the measurements from Appendix I, we use a value of 3 for adjustup, 1 for

adjustdown in the 
ase of sample and hold and 0.5 for multistage �lters.

To give further stability to the traÆ
 measurement devi
e, the entriesused variable does not 
ontain

the number of entries used over the last measurement interval, but an average of the last 3 intervals. If the

threshold de
reased within the last 3 measurement intervals we 
onservatively 
onsider only the memory

usage values re
orded with the low threshold. Sin
e 
hanges of the threshold take 2 measurement intervals

to fully show their e�e
ts on the memory usage we 
onsider that using a window of 3 measurement intervals

to average over is a good tradeo� between responsiveness to 
hanges in the traÆ
 mix and fast 
onvergen
e

to a good value for the threshold.

7 Measurements

Performan
e 
annot be evaluated solely through the use of Zen Meditation. (paraphrased from

Je� Mogul)

In Se
tion 4 and Se
tion 5 we used theoreti
al analysis to understand the e�e
tiveness of our algorithms.

In this se
tion, we turn to experimental analysis to show that our algorithms behave mu
h better on real

tra
es than the (reasonably good) bounds provided by the earlier theoreti
al analysis and 
ompare them

with Sampled NetFlow.

We start by des
ribing the tra
es we use and some of the 
on�guration details 
ommon to all our

experiments. In Se
tion 7.1.1 we 
ompare the measured performan
e of the sample and hold algorithm with

the predi
tions of the analyti
al evaluation, and also evaluate how mu
h the various improvements to the

basi
 algorithm help. In Se
tion 7.1.2 we evaluate the multistage �lter and the improvements that apply

to it. We 
on
lude with Se
tion 7.2 where we 
ompare 
omplete traÆ
 measurement devi
es using our two

algorithms with Cis
o's Sampled NetFlow.

We use 3 unidire
tional tra
es of Internet traÆ
: a 4515 se
ond \
lear" one (MAG+) from CAIDA

(
aptured in August 2001 on an OC-48 ba
kbone link between two ISPs) and two 90 se
ond anonymized

tra
es from the MOAT proje
t of NLANR (
aptured in September 2001 at the a

ess points to the Internet

of two large universities on an OC-12 (IND) and an OC-3 (COS)). For some of the experiments use only the

�rst 90 se
onds of the \
lear" tra
e MAG+ and we refer to them as tra
e MAG.

In our experiments we use 3 di�erent de�nitions for 
ows. The �rst de�nition is at the granularity of TCP


onne
tions: 
ows are de�ned by the 5-tuple of sour
e and destination IP address and port and the proto
ol

number. This de�nition is 
lose to that of Cis
o NetFlow. The se
ond de�nition uses the destination IP

address as a 
ow identi�er. This is a de�nition one 
ould use to identify at a router ongoing (distributed)

denial of servi
e atta
ks. The third de�nition uses the sour
e and destination autonomous system as the
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Figure 8: Cumulative distribution of 
ow sizes for various tra
es and various 
ow de�nitions


ow identi�er. This is 
lose to what one would use to determine traÆ
 patterns in the network. We 
annot

use this de�nition with the anonymized tra
es (IND and COS) be
ause we 
annot perform route lookups on

them.

Table 3 gives a summary des
ription of the tra
es we used. The number of a
tive 
ows is given for

all appli
able 
ow de�nitions. The reported values are the smallest, largest and average value over the

measurement intervals of the respe
tive tra
es. The number of megabytes per interval is also given as the

smallest, average and largest value. Our tra
es use only between 13% and 27% of their respe
tive link


apa
ities.

The best value for the size of the measurement interval depends both on the appli
ation and the traÆ


mix. We 
hose to use a measurement interval of 5 se
onds in all our experiments. Appendix F gives the

measurements we base this de
ision on. Here we only note that in all 
ases 99% or more of the pa
kets

(weighted by pa
ket size) arrive within 5 se
onds of the previous pa
ket belonging to the same 
ow.

Sin
e our algorithms are based on the assumption that a few heavy 
ows dominate the traÆ
 mix, we

�nd it useful to see to what extent this is true for our tra
es. Figure 8 presents the 
umulative distributions

of 
ow sizes for the tra
es MAG, IND and COS for 
ows de�ned by 5-tuples. For the tra
e MAG we also

plot the distribution for the 
ase where 
ows are de�ned based on destination IP address, and for the 
ase

where 
ows are de�ned based on the sour
e and destination ASes. As we 
an see from the �gure, the top

10% of the 
ows represent between 85.1% and 93.5% of the total traÆ
 validating our original assumption

that a few 
ows dominate.

7.1 Comparing Theory and Pra
ti
e

We present detailed measurements on the performan
e on sample and hold in and its optimizations in

Appendix G. The detailed results for multistage �lters are in Appendix H. Here we summarize our most

important results that 
ompare the theoreti
al bounds with the results on a
tual tra
es, and quantify the

bene�ts of various optimizations.
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Algorithm Maximum memory usage / Average error

MAG 5-tuple MAG destination IP MAG AS pair IND 5-tuple COS 5-tuple

General bound 16,385 / 25% 16,385 / 25% 16,385 / 25% 16,385 / 25% 16,385 / 25%

Zipf bound 8,148 / 25% 7,441 / 25% 5,489 / 25% 6,303 / 25% 5,081 / 25%

Sample and hold 2,303 / 24.33% 1,964 / 24.07% 714 / 24.40% 1,313 / 23.83% 710 / 22.17%

+ preserve entries 3,832 / 4.67% 3,213 / 3.28% 1,038 / 1.32% 1,894 / 3.04% 1,017 / 6.61%

+ early removal 2,659 / 3.89% 2,294 / 3.16% 803 / 1.18% 1,525 / 2.92% 859 / 5.46%

Table 4: Summary of sample and hold measurements for a threshold of 0.025% and an oversampling of 4

7.1.1 Summary of �ndings about sample and hold

Table 4 summarizes our results for a single 
on�guration: a threshold of 0.025% of the link with an over-

sampling of 4. We ran 50 experiments (with di�erent random hash fun
tions) on ea
h of the reported tra
es

with the respe
tive 
ow de�nitions. The table gives the maximum memory usage over the 900 measurement

intervals and the ratio between average error for large 
ows and the threshold.

The �rst row presents the theoreti
al bounds that hold without making any assumption about the distri-

bution of 
ow sizes and the number of 
ows. These are not the bounds on the expe
ted number of entries

used (whi
h would be 16,000 in this 
ase), but high probability bounds. The se
ond row presents theoreti
al

bounds assuming that we know the number of 
ows and know that their sizes have a Zipf distribution with

a parameter of � = 1. Note that the relative errors predi
ted by theory may appear large (25%) but these

are 
omputed for a very low threshold of 0:025% and only apply to 
ows exa
tly at the threshold.

17

The third row shows the a
tual values we measured for the basi
 sample and hold algorithm. The a
tual

memory usage is mu
h below the bounds. The �rst reason is that the links are lightly loaded and the se
ond

reason (partially 
aptured by the analysis that assumes a Zipf distribution of 
ows sizes) is that large 
ows

have many of their pa
kets sampled. The average error is very 
lose to its expe
ted value. The fourth row

presents the e�e
ts of preserving entries. While this in
reases memory usage (espe
ially where large 
ows

do not have a big share of the traÆ
) it signi�
antly redu
es the error for the estimates of the large 
ows,

be
ause there is no error for large 
ows identi�ed in previous intervals. This improvement is most impressive

when we have many long lived 
ows.

The last row of the table reports the results when preserving entries as well as using an early removal

threshold of 15% of the threshold (our measurements indi
ate that this is a good value). We 
ompensated for

the in
rease in the probability of false negatives early removal 
auses by in
reasing the oversampling to 4.7.

The average error de
reases slightly. The memory usage de
reases, espe
ially in the 
ases where preserving

entries 
aused it to in
rease most.

We performed measurements on many more 
on�gurations, but for brevity we report them only in

Appendix G. The results are in general similar to the ones from Table 4, so we only emphasize some

noteworthy di�eren
es. First, when the expe
ted error approa
hes the size of a pa
ket, we see signi�
ant

de
reases in the average error. Our analysis assumes that we sample at the byte level. In pra
ti
e, if a


ertain pa
ket gets sampled all its bytes are 
ounted, in
luding the ones before the byte that was sampled.

Se
ond, preserving entries redu
es the average error by 70% - 95% and in
reases memory usage by 40%

- 70%. These �gures do not vary mu
h as we 
hange the threshold or the oversampling. Third, an early

17

We de�ned the relative error by dividing the average error by the size of the size of the threshold. We 
ould have de�ned it

by taking the average of the ratio of a 
ow's error to its size but this makes it diÆ
ult to 
ompare results from di�erent tra
es.
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Figure 9: Filter performan
e for a stage strength of k=3

removal threshold of 15% redu
es the memory usage by 20% - 30%. The size of the improvement depends

on the tra
e and 
ow de�nition and it in
reases slightly with the oversampling.

7.1.2 Summary of �ndings about multistage �lters

Figure 9 summarizes our �ndings about 
on�gurations with a stage strength of k = 3 for our most 
hallenging

tra
e: MAG with 
ows de�ned at the granularity of TCP 
onne
tions. It represents the per
entage of small


ows (log s
ale) that passed the �lter for depths from 1 to 4 stages. We used a threshold of a 4096th of the

maximum traÆ
. The �rst (i.e., topmost and solid) line represents the bound of Theorem 3. The se
ond line

below represents the improvement in the theoreti
al bound when we assume a Zipf distribution of 
ow sizes.

Unlike in the 
ase of sample and hold we used the maximum traÆ
, not the link 
apa
ity for 
omputing the

theoreti
al bounds.

The third line represents the measured average per
entage of false positives of a serial �lter, while the

fourth line represents a parallel �lter. We 
an see that both are at least 10 times better than the stronger of

the theoreti
al bounds. As the number of stages goes up, the parallel �lter gets better than the serial �lter by

up to a fa
tor of 4. The last line represents a parallel �lter with 
onservative update whi
h gets progressively

better than the parallel �lter by up to a fa
tor of 20 as the number of stages in
reases. We 
an see that all

lines are roughly straight; this indi
ates that the per
entage of false positives de
reases exponentially with

the number of stages.

Measurements on other tra
es show similar results. The di�eren
e between the bounds and measured

performan
e is even larger for the tra
es where the largest 
ows are responsible for a large share of the traÆ
.

Preserving entries redu
es the average error in the estimates by 70% to 85%. Its e�e
t depends on the traÆ


mix. Preserving entries in
reases the number of 
ow memory entries used by up to 30%. By e�e
tively

in
reasing stage strength k, shielding 
onsiderably strengthens weak �lters. This 
an lead to redu
ing the

number of 
ow memory entries by as mu
h as 70%.
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7.2 Evaluation of 
omplete traÆ
 measurement devi
es

In this se
tion we present our �nal 
omparison between sample and hold, multistage �lters and sampled

NetFlow. We perform the evaluation on our long OC-48 tra
e, MAG+. We assume that our devi
es 
an use

1 Mbit of memory (4096 entries

18

) whi
h is well within the possibilities of today's 
hips. Sampled NetFlow

is given unlimited memory and uses a sampling of 1 in 16 pa
kets. We run ea
h algorithms 16 times on the

tra
e with di�erent sampling or hashing fun
tions.

Both our algorithms use the adaptive threshold approa
h. To avoid the e�e
t of initial mis
on�guration,

we ignore the �rst 10 intervals to give the devi
es time to rea
h a relatively stable value for the threshold.

We impose a limit of 4 stages for the multistage �lters. Based on heuristi
s presented in Appendix D, we use

3114 
ounters

19

for ea
h stage and 2539 entries of 
ow memory when using a 
ow de�nition at the granularity

of TCP 
onne
tions, 2646 
ounters and 2773 entries when using the destination IP as 
ow identi�er and

1502 
ounters and 3345 entries when using the sour
e and destination AS. Multistage �lters use shielding

and 
onservative update. Sample and hold uses an oversampling of 4 and an early removal threshold of 15%.

Our purpose is to see how a

urately the algorithms measure the largest 
ows, but there is no impli
it

de�nition of what large 
ows are. We look separately at how well the devi
es perform for three referen
e

groups: very large 
ows (above one thousandth of the link 
apa
ity), large 
ows (between one thousandth and

a tenth of a thousandth) and medium 
ows (between a tenth of a thousandth a hundredth of a thousandth

{ 15552 bytes).

For ea
h of these groups we look at two measures of a

ura
y that we average over all runs and mea-

surement intervals: the per
entage of 
ows not identi�ed and the relative average error. We 
ompute the

relative average error by dividing the sum of the moduli of all errors by the sum of the sizes of all 
ows.

We use the modulus so that positive and negative errors don't 
an
el out for NetFlow. For the unidenti�ed


ows, we 
onsider that the error is equal to their total traÆ
. Tables 5 to 7 present the results for the 3

di�erent 
ow de�nitions.

When using the sour
e and destination AS as 
ow identi�er, the situation is di�erent from the other two


ases be
ause the average number of a
tive 
ows (7,401) is not mu
h larger than the number of memory

lo
ations that we 
an a

ommodate in our SRAM (4,096), so we will dis
uss this 
ase separately. In the �rst

two 
ases, we 
an see that both our algorithms are mu
h more a

urate than sampled NetFlow for large and

very large 
ows. For medium 
ows the average error is roughly the same, but our algorithms miss more of

them than sampled NetFlow.

We believe these results (and similar results not presented here for la
k of spa
e) do 
on�rm that our

algorithms are better than sampled NetFlow at measuring the largest of the 
ows. The results for multistage

�lters are always slightly better than those for sample and hold despite the fa
t that we use fewer memory

lo
ations be
ause we have to sa
ri�
e part of the memory for the 
ounters of the stages. We do not 
onsider

this to be a de�nitive proof of the superiority of multistage �lters, sin
e tighter algorithms for adapting the

threshold 
an possibly result in further improvements of the performan
e of both algorithms.

In the third 
ase sin
e the average number of very large, large and medium 
ows (1,107) was mu
h below

the number of available memory lo
ations and these 
ows were mostly long lived, both of our algorithms

measured all these 
ows very a

urately. Thus, even when the number of 
ows is only a few times larger than

the number of a
tive 
ows, our algorithms ensure that the available memory is used to a

urately measure

the largest of the 
ows and provide gra
eful degradation in 
ase that the traÆ
 deviates very mu
h from the

expe
ted (e.g. more 
ows).

18

Cis
o NetFlow uses 64 bytes per entry in 
heap DRAM. We 
onservatively assume that the size of a 
ow memory entry

will be 32 bytes (even though 16 or 24 are also plausible).

19

We 
onservatively assume that we use 4 bytes for a 
ounter even though 3 bytes would be enough.
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Group Unidenti�ed 
ows / Average error

(
ow size) Sample Multistage Sampled

and hold �lters NetFlow

> 0:1% 0% / 0.07508% 0% / 0.03745% 0% / 9.020%

0:1 : : : 0:01% 1.797% / 7.086% 0% / 1.090% 0.02132% / 22.02%

0:01 : : :0:001% 77.01% / 61.20% 54.70% / 43.87% 17.72% / 50.27%

Table 5: Comparison of traÆ
 measurement devi
es with 
ow IDs de�ned by 5-tuple

Group Unidenti�ed 
ows / Average error

(
ow size) Sample Multistage Sampled

and hold �lters NetFlow

> 0:1% 0% / 0.02508% 0% / 0.01430% 0% / 5.720%

0:1 : : : 0:01% 0.4289% / 3.153% 0% / 0.9488% 0.01381% / 20.77%

0:01 : : :0:001% 65.72% / 51.19% 49.91% / 39.91% 11.54% / 46.59%

Table 6: Comparison of traÆ
 measurement devi
es with 
ow IDs de�ned by destination IP

Group Unidenti�ed 
ows / Average error

(
ow size) Sample Multistage Sampled

and hold �lters NetFlow

> 0:1% 0% / 0.000008% 0% / 0.000007% 0% / 4.877%

0:1 : : : 0:01% 0% / 0.001528% 0% / 0.001403% 0.002005% / 15.28%

0:01 : : : 0:001% 0.000016% / 0.1647% 0% / 0.1444% 5.717% / 39.87%

Table 7: Comparison of traÆ
 measurement devi
es with 
ow IDs de�ned by the sour
e and destination AS
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8 Implementation Issues

In this se
tion we brie
y des
ribe implementation issues for the two algorithms. Sample and Hold is fairly

straightforward to implement even in a network pro
essor be
ause it adds only one memory referen
e to

pa
ket pro
essing, assuming there is suÆ
ient SRAM for 
ow memory and assuming an asso
iative memory.

For small 
ow memory sizes, adding a CAM is quite feasible. Alternatively, one 
an implement an asso
iative

memory using a hash table and storing all 
ow IDs that 
ollide in a mu
h smaller CAM. Sample and Hold

does require a sour
e of random numbers but most routers require this anyway to implement algorithms

su
h as RED.

Multistage �lters are harder to implement using a network pro
essor be
ause they need multiple memory

referen
es (to stage memories) in addition to the asso
iative lookup of 
ow memory. However, multistage

�lters are fairly easy to implement in an ASIC as the following feasibility study shows. [12℄ des
ribes a 
hip

designed to implement a parallel multistage �lter with 4 stages of 4K 
ounters

20

ea
h and a 
ow memory

21

of 3584 entries. The 
hips runs at OC-192 line speeds: it a

epts a header every 32 nanose
onds. It has a


y
le time of 8ns. Ea
h entry in the 
ow memory is 27 bytes wide and 
ontains the 
ow ID, number of bytes

and pa
kets and the timestamp of the �rst and last pa
ket. The 
hip has an interfa
e to a management

pro
essor that 
an read and write the 
ow memory. The 
ore logi
 of the 
hip 
onsists of approximately

450,000 transistors that �t on 2mm x 2mm on a .18 mi
ron pro
ess. The hash stage 
ounters would o

upy

a further 8.4 mm

2

and the 
ow memory takes 21 mm

2

. In
luding the memories and the overhead, the total

size of the 
hip would be 5.5mm x 5.5mm and would use a total power of less than 1 watt. Both the size

and the power put the 
hip at the low end of today's IC designs.

9 Con
lusions

Motivated by measurements that show that traÆ
 is dominated by a few heavy hitters, our paper ta
kles

the problem of dire
tly identifying the heavy hitters without keeping tra
k of potentially millions of small


ows. Fundamentally, Table 1 shows that our algorithms have a mu
h better s
aling of estimate error

(inversely proportional to memory size) than provided by the state of the art Sampled NetFlow solution

(inversely proportional to the square root of the memory size). On a
tual measurements, our algorithms

with optimizations do several orders of magnitude better than predi
ted by theory.

However, 
omparing Sampled NetFlow with our algorithms is more diÆ
ult than indi
ated by Table 1.

This is be
ause Sampled NetFlow does not pro
ess every pa
ket and hen
e 
an a�ord to use large DRAM.

Despite this, results in Table 2 and in Se
tion 7.2 show that our algorithms are mu
h more a

urate for small

intervals than NetFlow. In addition, unlike NetFlow, our algorithms provide exa
t values for long-lived large


ows, provide provable lower bounds on traÆ
 that 
an be reliably used for billing, avoid resour
e-intensive


olle
tion of large NetFlow logs, and identify large 
ows very fast.

The above 
omparison only indi
ates that the algorithms in this paper may be better than using Sampled

NetFlow when the only problem is that of identifying heavy hitters, and when the manager has a pre
ise

idea of whi
h 
ow de�nitions are interesting. NetFlow re
ords allow managers to a posteriori mine patterns

in data they did not anti
ipate, while our algorithms rely on eÆ
iently identifying stylized patterns that are

de�ned a priori. To see why this may be insuÆ
ient, imagine that CNN suddenly gets 
ooded with web

traÆ
. How 
ould a manager realize before the event that the interesting 
ow de�nition to wat
h for is a

multipoint-to-point 
ow (de�ned by destination address and port numbers)?

20

The 
ounters are on 32 bits.

21

Entries are lo
ated in the 
ow memory with the help of 3 hash fun
tions in the manner des
ribed in [3℄.
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The last example motivates an interesting open question. Is it possible to generalize the algorithms in

this paper to automati
ally extra
t 
ow de�nitions 
orresponding to large 
ows? A se
ond open question is

to deepen our theoreti
al analysis to a

ount for the large dis
repan
ies between theory and pra
ti
e.

We end by noting that the measurement problems fa
ed by network managers are extremely similar to the

measurement problems fa
ed by other areas in 
omputer s
ien
e su
h as data mining, ar
hite
ture, and even


ompilers. For example, Jim Smith and his 
o-workers [19℄ re
ently proposed using a Sampled NetFlow-like

strategy to obtain dynami
 instru
tion pro�les in a pro
essor (whi
h are used for later optimization). We

have preliminary results that show that the use of multistage �lters with 
onservative update 
an improve

the results of [19℄ for determining instru
tion pro�les. Thus the te
hniques in this paper may be of utility

to other areas, and the te
hniques in these other areas may of utility to us.
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A Details of the analyti
al evaluation of multistage �lters

This se
tion presents the detailed analyti
al evaluation of parallel multistage �lters. We use the same notation

as in se
tion 4.2. We �rst derive the bound for the expe
ted number of 
ows passing the �lter. After that we

give two high probability bounds on the number of 
ows passing the �lter: a loose bound that has a 
losed

form and a tighter one we spe
ify as and algorithm.

Lemma 4 The probability of a 
ow of size s � 0 passing one stage of the �lter is bound by p

s

�

1

k

T

T�s

. If

s < T

k�1

k

this bound is below 1.

Proof Let's assume that the 
ow is the last one to arrive into the bu
ket. This does not in
rease its


han
e to pass the stage, on the 
ontrary: in reality it might have happened that all pa
kets belonging to

the 
ow arrived before the bu
ket rea
hed the threshold and the 
ow was not dete
ted even if the bu
ket

went above the threshold in the end. Therefore the probability of the 
ow passing the stage is not larger

than the probability that the bu
ket it hashed to rea
hes T . The bu
ket of the 
ow 
an rea
h T only if the

other 
ows hashing into the bu
ket add up to T � s. The total amount of traÆ
 belonging to other 
ows

is C � s. Therefore, the maximum number of bu
kets in whi
h the traÆ
 of other 
ows 
an rea
h T � s is

b

C�s

T�s


. The probability of a 
ow passing the �lter is bound by the probability of it being hashed into su
h

a bu
ket.

p

s

�

b

C�s

T�s




b

�

C

b(T � s)

=

1

k

T

T � s

�

Based on this lemma we 
an 
ompute the probability that a small 
ow passes the parallel multistage

�lter.

Lemma 5 (1) Assuming the hash fun
tions used by di�erent stages are independent, the probability of a


ow of size s passing a parallel multistage �lter is bound by p

s

�

�

1

k

T

T�s

�

d

.

Proof A 
ow passes the �lter only if it passes all the stages. Sin
e all stages are updated in the same way for

the parallel �lter, lemma 4 applies to all of them. Sin
e the hash fun
tions are independent, the probability

of the 
ow passing all of the stages equals the produ
t of the probabilities for every stage. �

Before using this lemma to derive a bound on the number of 
ows passing a multistage �lter, we 
an use

it for binding from below the expe
ted error in the estimate of the size of a large 
ow.

Corollary 5.1 For a 
ow with size s > T and no pa
kets larger than y

m

ax, the probability that the number

of undete
ted bytes s� 
 is at least x is bound by P (s� 
 � x) �

�

1

k

T

T�x�y

m

ax+1

�

d

Proof There is a sequen
e of pa
kets at the beginning of the 
ow of length x � s

s

� x+ y

m

ax� 1. If this

sequen
e does not pass the �lter than s� 
 � s

s

� x. By lemma 1 we 
an bound this probability and this

gives us this 
orollary. �

Theorem 6 (2) The expe
ted number of bytes of a large 
ow that go undete
ted by a multistage �lter is

bound from below by

E[s� 
℄ � T

�

1�

d

k(d� 1)

�

� y

m

ax (3)
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Proof

E[s� 
℄ =

T�1

X

x=0

P (s� 
 = x)x =

T�1

X

x=1

P (s� 
 = x)x =

T�1

X

x=1

P (s� 
 � x) �

T

k�1

k

�y

m

ax

X

x=1

P (s� 
 � x)

=

T

k�1

k

�y

m

ax

X

x=1

1� P (s� 
 < x) = T

k � 1

k

� y

m

ax�

T

k�1

k

�y

m

ax

X

x=1

P (s� 
 < x)

� T

�

1�

1

k

�

� y

m

ax�

T

k�1

k

�y

m

ax

X

x=1

P (s� 
 � x)

Through 
orollary 5.1 we 
an give an upper bound for the sum.

T

k�1

k

�y

m

ax

X

x=1

P (s� 
 � x) �

T

k�1

k

�y

m

ax

X

x=1

�

1

k

T

T � x� y

m

ax+ 1

�

d

�

Z

T

k�1

k

�y

m

ax+1

x=1

�

1

k

T

T � x� y

m

ax+ 1

�

d

dx

=

�

T

k

�

d

Z

T

k�1

k

�y

m

ax+1

x=1

�

1

T � y

m

ax+ 1� x

�

d

dx

=

�

T

k

�

d

1

d� 1

�

1

T � y

m

ax+ 1� x

�

d�1

j

T

k�1

k

�y

m

ax+1

x=1

�

(T=k)

d

d� 1

 

1

T � y

m

ax+ 1� T

k�1

k

+ y

m

ax� 1

!

d�1

=

(T=k)

d

d� 1

�

1

T=k

�

d�1

=

T

k(d� 1)

By substituting this result we obtain E[s� 
℄ � T

�

1�

1

k

�

� y

m

ax�

T

k(d�1)

= T

�

1�

d

k(d�1)

�

� y

m

ax . �

Now we 
an give the bound on the number of 
ows passing a multistage �lter.

Theorem 7 (3) The expe
ted number of 
ows passing a parallel multistage �lter is bound by

E[n

pass

℄ � max

 

b

k � 1

; n

�

n

kn� b

�

d

!

+ n

�

n

kn� b

�

d

(4)

Proof Let s

i

be the sequen
e of 
ow sizes present in the traÆ
 mix. Let n

i

the number of 
ows of

size s

i

. h

i

=

n

i

s

i

C

is the share of the total traÆ
 the 
ows of size s

i

are responsible for. It is immediate

that

P

n

i

= n, and

P

h

i

= 1. By lemma 1 the expe
ted number of 
ows of size s

i

to pass the �lter is

E[n

i

pass

℄ = n

i

p

s

i

� n

i

max(1; (

1

k

T

T�s

i

)

d

) . By the linearity of expe
tation we have E[n

pass

℄ =

P

E[n

i

pass

℄ .

To be able to bound E[n

pass

℄, we will divide 
ows in 3 groups by size. The largest 
ows are the ones

we 
annot bound p

s

i

for. These are the ones with s

i

> T

k�1

k

. For these E[n

i

pass

℄ � n

i

=

h

i

C

s

i

<

h

i

C

T

k�1

k

,

therefore substituting them with a number of 
ows of size T

k�1

k

that generate the same amount of traÆ
 is

guaranteed to not de
rease the lower bound for E[n

pass

℄. The smallest 
ows are the ones below the average


ow size of

C

n

. For these p

s

i

� pC

n

. The number of below average 
ows is bound by n. For all these 
ows

taken together E[n

small

pass

℄ � npC

n

.
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E[n

pass

℄ =

X

E[n

i

pass

℄ =

X

s

i

>T

k�1

k

E[n

i

pass

℄ +

X

C

n

�s

i

�T

k�1

k

E[n

i

pass

℄ +

X

s

i

<

C

n

E[n

i

pass

℄

�

X

s

i

>T

k�1

k

h

i

C

s

i

+

X

C

n

�s

i

�T

k�1

k

h

i

C

s

i

�

1

k

T

T � s

i

�

d

+ n

 

1

k

T

T �

C

n

!

d

� C

0

�

X

s

i

>T

k�1

k

h

i

1

T

k�1

k

+

X

C

n

�s

i

�T

k�1

k

h

i

1

s

i

�

1

k

T

T � s

i

�

d

1

A

+ n

 

1

k

T

T �

C

n

!

d

� C max

C

n

�s

i

�T

k�1

k

1

s

i

�

1

k

T

T � s

i

�

d

+ n

 

1

k

T

T �

C

n

!

d

Now we will determine the maximum of the fun
tion f(x) =

1

x

(

1

T�x

)

d

on the domain [

C

n

; T

k�1

k

℄.

f

0

(x) = �

1

x

2

�

1

T � x

�

d

+

1

x

d

(T � x)

d+1

=

1

x

1

(T � x)

d

�

�

1

x

+

d

T � x

�

Within [

C

n

; T

k�1

k

℄ f

0

(x) = 0 for x =

T

d+1

(if it is in the interval), f

0

(x) < 0 to the left of this value and

f

0

(x) > 0 to the right of it. Therefore this represents a minimum for f(x). Therefore the maximum of f(x)

will be obtained at one of the ends of the interval CT

d

f(T

k�1

k

) =

C

T

k�1

k

=

b

k�1

or CT

d

f(

C

n

) = n(

1

k

T

T�

C

n

)

d

=

n(

n

kn�b

)

d

. Substituting these values we obtain the bound. �

For proving our high probability bounds, we use the following result from probability theory.

Lemma 8 Assume we have a sequen
e of n independent events su

eeding with probability p. The probability

that the number of events su
eeding i ex
eeds the expe
ted value by more than � is bound by

Pr(i > np+ �) � e

�

�

2

2np+

2

3

�

Corollary 8.1 If we want to limit the probability of underestimation to p

safe

for the experiment above we


an bound i by

i � bnp�

ln(p

safe

)

3

+

r

ln(p

safe

)

2

9

� 2np ln(p

safe

)


Proof By lemma 8 we have

e

�

�

2

2np+

2

3

�

� p

safe

We 
an determine � by solving the resulting quadrati
 equation.

�

2

+

2ln(p

safe

)

3

�+ 2np ln(p

safe

) = 0

Sin
e ln(p

safe

) < 0, the only positive solution is

� = �

ln(p

safe

)

3

+

r

ln(p

safe

)

2

9

� 2np ln(p

safe

)

�
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Theorem 9 With probability p

safe

the number of 
ows passing the parallel multistage �lter is bound by

n

pass

� b� 1 + bn

�

1

k � 1

�

d

+�

ln(p

safe

)

3

+

s

ln(p

safe

)

2

9

� 2n

�

1

k � 1

�

d

ln(p

safe

)


ProofWe divide the 
ows into two groups: 
ows stri
tly above

C

b

and 
ows below it. There are at most

b� 1 with s >

C

b

and we assume that all of these pass. With lemma 1 we bound the probability of passing

for 
ows below

C

b

by (

1

k

T

T�C=b

)

d

= (

1

k�1

)

d

. The number of 
ows in this group is at most n. By applying


orollary 8.1 we 
an bound the number of 
ows from this group passing the �lter. Adding the numbers for

the two groups gives us exa
tly the bound we need to prove. �

For our algorithm strengthening this theorem we will divide the 
ows above

C

b

into k � 2 groups. The

�rst group will 
ontain all 
ows of s > T

k�2

k

and we will assume that all of these pass. The jth group will


ontain 
ows of sizes between T

k�j�1

k

< s � T

k�j

k

. The last (k � 1th) group will 
ontain as in the 
ase

above, the 
ows with sizes below

C

b

=

T

k

.

Lemma 10 The probability of an individual 
ow from group j passing the �lter p

j

and the number of 
ows

in group j n

j

will be bound by

p

j

�

�

1

j

�

d

n

j

�

�

b

b

k�j�1


 if j < k � 1

n for the last group

Proof For group 1 we have p

1

� 1, so it is a 
orre
t upper bound. For all the other groups we have an

upper bound on the size of 
ows. Using lemma 1 we see that no 
ow has a probability of passing larger that

the probability for the largest permitted 
ow size. The bound for p

j

is immediate.

For the last group the bound n

k�1

� n trivially holds be
ause n is the total number of 
ows. All the

other groups have a lower bound on the size of their 
ows. We know that the 
ows a group 
an not add up

to more than the 
apa
ity of the link C. The bound on n

j

is immediate. �

Lemma 11 If the distribution of 
ow sizes is Zipf, the number of 
ows in group j n

j

will be bound by

n

j

�

8

>

<

>

:

b

b

(k�2)ln(n+1)


 for the �rst group

b

b

(k�j�1)ln(n+1)


 � b

b

(k�j)ln(2n+1)


 if(j > 1 and j < k � 1)

n� b

b

(k�j)ln(2n+1)


 for the last group

Proof By applying lemma 12, through simple manipulations, we obtain that the number of 
ows i larger

than T

k�j

k

is bound by

b

b

(k � j)ln(2n+ 1)


 � i � b

b

(k � j)ln(n+ 1)




Using these bounds, the lemma is immediate. �

We 
an strengthen the bound from theorem 9 by applying lemma 8.1 to these groups. Ea
h group will

have a limit on the number of passing 
ows. For the �rst group this will be the number of 
ows. The
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COMPUTEBOUND(psafe)

psafe = psafe=(k � 2)

for j = 1 to k � 1

p[j℄ = 1=(j

d

)

n[j℄ = COMPUTEMAXFLOWCOUNT (j)

expe
tedpass[j℄ = n[j℄ � p[j℄

smallest[j℄ = T � (k � 1� j)=k

if (j == 1)

worst
asepass[j℄ = n[j℄

else

lambda[j℄ = COMPUTELAMBDA(expe
tedpass[j℄; psafe)

worst
asepass[j℄ = bmin(expe
tedpass[j℄ + lambda[j℄; n[j℄)


endif

endfor

passingflows = 0

passingtraffi
 = 0

for j = k � 1 to 1

newtraffi
 = worst
asepass[j℄ � smallest[j℄

if(newtraffi
+ passingtraffi
 > C)

worst
asepass[j℄ = (C � passingtraffi
)=smallest[j℄

newtraffi
 = worst
asepass[j℄ � smallest[j℄

endif

passingflows+ = worst
asepass[j℄

passingtraffi
+ = newtraffi


endfor

return passingflows

Figure 10: Algorithm for 
omputing a strong high probability bound on the number of 
ows passing a

parallel �lter

probability of the total number of 
ows passing the �lter ex
eeding the sum of these limits will be bound by

the sum of the probabilities of individual groups ex
eeding their bounds. We divide p

safe

evenly between

the last k � 2 groups.

There is one further optimization, we 
an apply in the distribution free 
ase. Sin
e we derive the limits

separately for the groups, it 
an happen that when we add up all the passing 
ows, we obtain a traÆ


larger than C. We 
an dis
ard the largest 
ows until the size of the passing 
ows is C. Figure 10 gives the

pseudo
ode of the resulting algorithm.
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B Analysis of the memory requirements of our algorithms under

the assumptions that the 
ow sizes have a Zipf distribution

In this se
tion we derive bounds on the number of memory entries required by sample and hold and multistage

�lters assuming the 
ow sizes have a Zipf distribution with parameter 1.

B.1 Sample and hold with a Zipf distribution of 
ow sizes

Lemma 12 If the sizes of 
ows have a Zipf distribution, we 
an bound from above and below the size of the

i-th 
ow by

C

i ln(2n+1)

� s

i

�

C

i ln(n+1)

.

Proof The sizes of 
ows are s

i

= 


1

i

. We know that

P

n

i=1

s

i

= C.

Z

i+1

i

1

x

dx �

1

i

�

Z

i+0:5

i�0:5

1

x

dx




Z

n+1

1

1

x

dx �

P

n

i=1

s

i

� 


Z

n+0:5

0:5

1

x

dx


ln(n+ 1) � C � 
(ln(n+ 0:5)� ln(0:5)) = 
 ln(2n+ 1)

�

Corollary 12.1 If the sizes of 
ows have a Zipf distribution, the number of 
ows above a 
ertain threshold

T is at most b

C

T ln(n+1)


 .

Corollary 12.2 If the sizes of 
ows have a Zipf distribution, the number of 
ows above a 
ertain threshold

T is at least b

C

T ln(2n+1)


 .

Lemma 13 The �rst x 
ows represent at least a fra
tion of

ln(x+1)

ln(2n+1)

of the total traÆ
.

Proof

x

X

i=1

s

i

� 
ln(x+ 1) �

C

ln(2n+ 1)

ln(x+ 1)

�

Based on this, we 
an 
ompute that the total traÆ
 of the �rst j 
ows is at least C

ln(j+1)

ln(2n+1)

. The

exepe
ted number of entries needed will be j+Cp(1�

ln(j+1)

ln(2n+1)

). By di�erentiating, we se that we obtain the

lowest value for the number of entries by 
hoosing j =

Cp

ln(2n+1)

�1.

22

By substituting we obtain the number

of entries we need in the 
ow memory Cp(1 �

ln(Cp)�ln(ln(2n+1))�1

ln(2n+1)

) � 1. The standard deviation of the

number of sampled pa
kets belonging to 
ows smaller than the jth is

q

Cp(1� p)(1�

ln(j+1)

ln(2n+1)

). Applying

Chebyshev's inequality we obtain that the probability that the number of entries required be larger than

Cp(1�

ln(Cp)�ln(ln(2n+1))�1

ln(2n+1)

)� 1 + k

q

Cp(1� p)(1�

ln(j+1)

ln(2n+1)

) is less than

1

k

2

.

22

A
tually we have to 
hoose either the integer just below or the one just above this value, but we ignore this detail for

simpli
ity.
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B.2 Multistage �lters with a Zipf distribution of 
ow sizes

For proving theorem 15 we �rst need a helper lemma.

Lemma 14 For any 
 > 0 and 
 + 1:5 � i

0

< n we have

n

X

i=i

0

�

1

1�




i

�

d

< n+ 1� i

0

+ d
(ln(n+ 1) +

 

1

1�




i

0

�0:5

!

d�1

)

Proof

n

X

i=i

0

�

1

1�




i

�

d

=

n

X

i=i

0

i

d

(i� 
)

d

=

n�


X

j=i

0

�


(j + 
)

d

j

d

=

n�


X

j=i

0

�


d

X

m=0

�

d

m

�

j

d�m




m

j

d

=

d

X

m=0

�

d

m

�




m

n�


X

j=i

0

�


j

�m

�

d

X

m=0

�

d

m

�

(�
)

m

Z

n�
+0:5

j=i

0

�
�0:5

j

�m

dj

= n+ 1� i

0

+ 
d

Z

n�
+0:5

j=i

0

�
�0:5

1

j

dj +

d

X

m=2

�

d

m

�




m

Z

n�
+0:5

j=i

0

�
�0:5

j

�m

dj

= n+ 1� i

0

+ d
ln(

n� 
 + 0:5

i

0

� 
 � 0:5

) +

d

X

m=2

�

d

m

�

m


m

((i

0

� 
 � 0:5)

�m+1

� (n� 
 + 0:5)

�m+1

)

d

X

m=2

�

d

m

�

m


m�1

(a

�m+1

� b

�m+1

) = d

d

X

m=2

�

d� 1

m� 1

�

(

�




a

�

m�1

�

�




b

�

m�1

) = d

d�1

X

r=1

�

d� 1

r

�

(

�




a

�

r

�

�




b

�

r

)

= d

d�1

X

r=0

�

d� 1

r

�

�




a

�

r

� d

d�1

X

r=0

�

d� 1

r

�

�




b

�

r

= d

�

�

1 +




a

�

d�1

�

�

1 +




b

�

d�1

�

= d

 

�

a+ 


a

�

d�1

�

�

b+ 


b

�

d�1

!

By 
ombining these two results we immediately obtain

n

X

i=i

0

�

1

1�




i

�

d

� n+ 1� i

0

+ d


 

ln

�

n� 
 + 0:5

i

0

� 
 � 0:5

�

+

�

i

0

� 0:5

i

0

� 
 � 0:5

�

d�1

�

�

n+ 0:5

n� 
 + 0:5

�

d�1

!

< n+ 1� i

0

+ d


0

�

ln(n+ 1) +

 

1

1�




i

0

�0:5

!

d�1

1

A

�
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Theorem 15 If the 
ows sizes have a Zipf distribution, the expe
ted number of 
ows passing a parallel

multistage �lter is bound by

E[n

pass

℄ � i

0

+

n

k

d

+

db

k

d+1

+

db ln(n+ 1)

d�2

k

2

�

k ln(n+ 1)�

b

i

0

�0:5

�

d�1

(5)

where i

0

= dmax(1:5 +

b

k ln(n+1)

;

b

ln(2n+1)(k�1)

)e.

Proof We divide the 
ows into two groups. As in the general 
ase, for the larger ones we will assume

they will pass. For the smaller ones we will use lemma 14 to bound the expe
ted value of the number of


ows passing. Before de
iding where to separate the two groups we will give the general formula for the

se
ond one using lemma 1 (i

0

is the rank of the largest 
ow in this group).

E[n

small

pass

℄ =

n

X

i=i

0

p

s

i

�

n

X

i=i

0

�

1

k

T

T � s

i

�

d

�

1

k

d

n

X

i=i

0

 

T

T �

C

i ln(n+1)

!

d

=

1

k

d

n

X

i=i

0

0

�

1

1�

b

k ln(n+1)

i

1

A

d

For lemma 14 to apply we need i

0

� 1:5 +

b

k ln(n+1)

. To be able to bound the probability of these 
ows

passing the �lter, by lemma 4 we need s

i

0

� T

k�1

k

. Through lemma 12 we obtain i

0

�


k

T (k�1)

�

b

ln(2n+1)(k�1)

.

To satisfy both inequalities we set i

0

to dmax(1:5 +

b

k ln(n+1)

;

b

ln(2n+1)(k�1)

)e.

E[n

pass

℄ =

n

X

i=1

p

s

i

=

i

0

�1

X

i=1

p

s

i

+

n

X

i=i

0

p

s

i

� i

0

+

n+ 1� i

0

+

db

k ln(n+1)

 

ln(n+ 1) +

1

�

1�

b

k ln(n+1)(i

0

�0:5)

�

d�1

!

k

d

� i

0

+

n

k

d

+

db

k

d+1

+

db ln(n+ 1)

d�2

k

2

�

k ln(n+ 1)�

b

i

0

�0:5

�

d�1

�

C De�ning large 
ows with leaky bu
kets

In this appendinx we propose an alternate de�nition of large 
ows based on leaky bu
kets instead of mea-

surement intervals. We also show how to adapt the multistage �lters to this new de�nition and provide an

analyti
al evaluation of the new s
heme.

De�ning large 
ows based on measurement intervals 
an lead to some unfairness. For example if a 
ow

sends a burst of size slighlty larger than the threshold T within one measurement interval it is 
onsidered

large. However, if the same burst spans two intervals it's not. Even 
ows sending bursts of size almost

2T are not 
onsidered large if the bursts span measurement intervals a 
ertain way. It 
an be argued that
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we should 
onsider to be a large 
ow all 
ows that send more than T over any time interval no longer

than a measurement interval. While this distin
tion is arguably not very important for the 
ase of traÆ


measurement, it might matter for other appli
ations.

We use a leaky bu
ket des
riptor (also known as linearly bounded arrival pro
ess) to de�ne large 
ows: a


ow is large if during any time interval of size t it sends more than r�t+u bytes of traÆ
. By properly 
hoosing

the parameters of the leaky bu
ket des
riptor, we 
an ensure that all 
ows that send T bytes of traÆ
 over

a time interval no longer than a measurement interval are identi�ed. We 
an adapt the multistage �lters to

this new de�nition by repla
ing the 
ounters with \leaky bu
kets" and instead of looking for 
ounters above

the threshold we look for bu
kets that violated the des
riptor. We will �rst dis
uss how we 
an implement

these eÆ
iently at high speeds, and then give an analyti
al evaluation of the new algorithm.

C.1 Analyti
al evaluation of the parallel multistage �lter using leaky bu
kets

Flows sending more than r � t + u in any time interval of length t are large. For the example we used in

se
tion 4.2 by setting r to 0.5 Mbytes/s and u to 0.5 Mbytes, we are guaranteed that 
ows that send 1

Mbyte during any se
ond are labeled as large. This guarantees that we 
at
h all 
ows that send more than 1

Mbyte during a measurement interval. We 
an 
on
eptually des
ribe the operation of the bu
kets as follows.

Ea
h bu
ket has a 
ounter 
 initialized to 0. Every

1

r

se
onds this 
ounter is de
remented by 1 unless it is

already 0 . When a pa
ket of size s arrives, its size is added to the 
ounter, but the value of the 
ounter is

not in
resed above u. If the 
ounter is u the in
oming pa
ket is 
onsidered to belong to a large 
ow. We

also use the phrases the bu
ket is in violation and the pa
ket passes the bu
ket to des
ribe this situation.

Se
tion C.2 des
tribes how this 
an be implemented eÆ
iently. A
tual implementations would probably use

an approximation of this algorithm (e.g. they might de
rement the leaky bu
ket less often), but we are not


on
erned with these details in our analysis. We use the notations below in our analysis.

� r the steady state data rate of the leaky bu
ket;

� u the burst size of the leaky bu
ket;

� C the data rate of the link (in bytes/se
ond);

� k the stage strength: the ratio of r average data rate of the traÆ
 through a bu
ket k =

r b

C

(in our

modi�ed example above k is 5);

� � the drain time for the leaky bu
ket � =

u

r

, for our example � = 1 se
ond;

� 
 the 
ounter of a 
ertain leaky bu
ket (see below);

� a the number of \a
tive" bu
kets in a stage (bu
kets with non-zero 
ounters);

� A the a
tive traÆ
 in a parti
ular stage de�ned as the sum of all 
ounters;

� s the size of a pa
ket or a sequen
e of pa
kets;

We formalize the des
ription of how the leaky bu
kets of the stages operate in the following two lemmas.

Lemma 16 If 


initial

is the initial value of the 
ounter of a bu
ket, after a time t where the bu
ket re
eived

no pa
kets the value of the 
ounter will be 


final

= max(0; 


initial

� rt).
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Lemma 17 If 


initial

is the initial value of the 
ounter of a bu
ket when it re
eives a pa
ket of size s, the

value after the pa
ket was pro
essed is going to be 


final

= min(


initial

+ s; u).

Now we 
an prove a lemma that will help use prove we have no false negatives.

Lemma 18 Let 
 be the value of the 
ounter of a leaky bu
ket tra
king a 
ow. Let 


0

be the 
ounter of

another bu
ket that 
ounts all the pa
kets of our 
ow and possibly pa
kets of other 
ows. For any moment

in time 
 � 


0

Proof By indu
tion on time using as steps the moments when the pa
kets are re
eived.

Base 
ase The bu
kets are exa
tly identi
al at the beginning of the interval 
 = 
`.

Indu
tive step Three things 
an happen: a pa
ket belonging to the 
ow arrives, a pa
ket not belonging

to the 
ow arrives or no pa
kets arrive for time t. In all three 
ases we will use the fa
t that by indu
tion

hypothesis, 
 � 


0

in the beginning. If a pa
ket of size s belonging to the 
ow arrives, by lemma 17 we have




new

= min(
 + s; u) and 


0

new

= min(


0

+ s; u) therefore 


new

� 


0

new

. If a pa
ket of size s not belonging

to the 
ow arrives, by lemma 17 we have 


new

= 
 and 


0

new

= min(


0

+ s; u) therefore 


new

� 


0

new

. If

no pa
kets arrive for time t, by lemma 16 at the end of the interval we have 


new

= max(0; 
 � rt) and




0

new

= max(0; 


0

� rt), therefore 


new

� 


0

new

. �

Corollary 18.1 Let t be the moment in time when a 
ertain 
ow ex
eeds the leaky bu
ket des
riptor. The

violation will be dete
ted by the leaky bu
ket at time t no matter how many pa
kets belonging to other 
ows

hash to the same bu
ket.

Theorem 19 A parallel multistage �lter will dete
t any 
ow ex
eeding the leaky bu
ket des
riptor at latest

when it does so.

Proof By 
orollary 18.1, at all stages, the bu
kets the 
ow hashes to will dete
t the leaky bu
ket des
riptor

violation for the �rst pa
ket of the 
ow that violates it, therefore this pa
ket will pass the �lter 
ausing the


ow to be dete
ted. �

Just as in the 
ase with the measurement intervals, we 
an have no false negatives and we want to bound

the number of false positives. What we want to bound is the number of 
ows passing the �lter during a


ertain time interval whi
h gives us the peak rate at whi
h new 
ows are added to the 
ow memory.

Lemma 20 For any time interval t, if the 
ounter of a bu
ket at the beginning was 


initial

and the traÆ
 that

hit the bu
ket during the interval is s, the �nal value of the 
ounter is bound by 


final

� max(0; 


initial

�rt)+s.

Proof By indu
tion on time, using as steps the moments when the pa
kets are re
eived.

Base 
ase At the beginning of the experiment, the time passed sin
e the beginning of the experiment

will be t = 0 and the sum of the sizes of the pa
kets sent will be s = 0 therefore 
 = 


initial

= max(0; 


initial

�

rt) + s.

Indu
tive step Two things 
an happen: a pa
ket arrives or no pa
kets arrive for time t

0

. In all 
ases

we will use the fa
t that by indu
tion hypothesis, 
 � max(0; 


initial

� rt) + s in the beginning where t

is the time that passed sin
e the beginning of the experiment and s is the sum of the sizes of the pa
kets

re
eived so far. If a pa
ket of size s

0

arrives, by lemma 17 we have 


new

= max(
 + s

0

; u) � 
 + s

0

�

max(0; 


initial

� rt) + s+ s

0

. If no pa
kets arrive for time t

0

, by lemma 16 at the end of the interval we have




new

= max(0; 
 � rt

0

) � max(0;max(0; 


initial

� rt) + s � rt

0

) � max(0;max(0; 


initial

� rt) � rt

0

) + s �

max(0;max(0; 


initial

� rt � rt

0

)) + s = max(0; 


initial

� r(t+ t

0

)) + s. �
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Corollary 20.1 The value of the 
ounter of the bu
ket is not larger than the amount of traÆ
 that bu
ket

re
eived during the last � .

Lemma 21 The a
tive traÆ
 in any stage is bound by A �

bu

k

.

Proof By 
orollary 20.1, the size of ea
h individual bu
ket will be bound by the traÆ
 it re
eived during

the last � , therefore A will be bound by the total traÆ
 re
eived during this interval whi
h is bound by

C� =

bu

k

. �

Corollary 21.1 At any moment in time the number of bu
kets in a stage a

x

with 
 � x is bound by

a

x

� b

bu

kx


.

We will bound the expe
ted number of 
ows passing the �lter during an interval of � , the drain time for

the leaky bu
ket. We 
annot dire
tly use 
orollary 21.1 be
ause a parti
ular 
ow might pass the �lter at any

moment during the interval of � .

Lemma 22 The number of bu
kets of a stage with 
 � x at any time during an interval of � is bound by

a

x

� b2

bu

kx


.

Proof By lemma 21.1, the maximum number of bu
kets above x at the start of the interval is b

bu

kx


 with the

rest of the a
tive traÆ
 in other bu
kets. The best way an adversary 
ould use the remaining a
tive traÆ


at the beginning at the interval and the traÆ
 sent during the interval is to �ll bu
kets one by one. Sin
e the

amount of traÆ
 sent during the interval is bound by

bu

kx

, by adding the number of bu
kets that were above


 at the beginning to the ones that got �lled up during the interval we obtain the bound of this lemma.�

Lemma 23 For a 
ow that sends a total of s bytes during an interval � and the pre
eding � se
onds, the

probability that any of its pa
kets pass the parallel multistage �lter during the interval is bound by p

s

�

�

2

k

u

u�s

�

d

. If s � u

k�2

k

this bound is below 1.

Proof By lemma 20.1, the size of the bu
kets is hashes to is bound by the traÆ
 they re
eived in the past �

se
onds. This traÆ
 is made up by traÆ
 of the 
ow we are analyzing and traÆ
 of other 
ows 
 � s+s

rest

.

The amount of traÆ
 our 
ow sends during any window of � se
onds ending in the interval is bound by s.

For the 
ow to pass the �lter, we need all bu
kets to pass the 
ow s + s

rest

� u. By an argument similar

to the one on lemma 22, the number of bu
ket at ea
h stage for whi
h s

rest

� u� s at any moment during

the interval is bound by a

u�s

� 2

bu

k(u�s)

. Therefore the probability of passing any single stage is bound by

2u

k(u�s)

. This gives us the bound on the probability for a 
ow passing all of the stages as in the lemma. �

Noti
e that this lemma is an upper bound, not the a
tual probability. It is even further from the real

probability for the 
ow passing the �lter than lemma 1 be
ause it assumes that for all stages s

rest

rea
hes

the right value exa
tly when the last pa
ket of the 
ow is sent. This is quite unlikely in pra
ti
e. Based

on this lemma, we 
an give our �nal bound for the expe
ted number of 
ows passing the �lter during the

interval � .

Theorem 24 The expe
ted number of 
ows passing a multistage parallel �lter during any interval of length

� is bound by

E[n

pass

℄ � max

 

2b

k � 2

; n

�

2n

kn� 2b

�

d

!

+ n

�

2n

kn� 2b

�

d
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Proof Let s

i

be the sequen
e of 
ow sizes present in the traÆ
 mix 
ounting the traÆ
 sent during the

interval and the � pre
eding se
onds. Let n

i

the number of 
ows of size s

i

. h

i

=

n

i

s

i

2C�

is the share of the

total traÆ
 the 
ows of size s

i

are responsible for. We have

P

n

i

= n (n is de�ned as the number of 
ows

a
tive during the interval, not the interval and the � pre
eding se
ond), and

P

h

i

= 1. By lemma 23 the

expe
ted number of 
ows of size s

i

to pass the �lter is E[n

i

pass

℄ = n

i

p

s

i

�. By the linearity of expe
tation

we have E[n

pass

℄ =

P

E[n

i

pass

℄ .

To be able to bound E[n

pass

℄, we will divide 
ows in 3 groups by size. The largest 
ows are the ones

we 
annot bound p

s

i

for. These are the ones with s

i

> u

k�2

k

. For these E[n

i

pass

℄ � n

i

=

h

i

2C�

s

i

<

h

i

2C�

u

k�2

k

,

therefore substituting them with a number of 
ows of size u

k�2

k

that generate the same amount of traÆ
 is

guaranteed to not de
rease the lower bound for E[n

pass

℄. The smallest 
ows are the ones below the average


ow size of

2C�

n

. For these p

s

i

� p 2C�

n

. The number of below average 
ows is bound by n. For all these 
ows

taken together E[n

small

pass

℄ � np 2C�

n

.

E[n

pass

℄ =

X

E[n

i

pass

℄ =

X

s

i

>u

k�2

k

E[n

i

pass

℄ +

X

2C�

n

�s

i

�u

k�2

k

E[n

i

pass

℄ +

X

s

i

<

2C�

n

E[n

i

pass

℄

�

X

s

i

>u

k�2

k

h

i

2C�

s

i

+

X

2C�

n

�s

i

�u

k�2

k

h

i

2C�

s

i

�

2

k

u

u� s

i

�

d

+ n

 

2

k

u

u�

2C�

n

!

d

� 2C�

0

�

X

s

i

>u

k�2

k

h

i

1

u

k�2

k

+

X

2C�

n

�s

i

�u

k�2

k

h

i

1

s

i

�

2

k

u

u� s

i

�

d

1

A

+ n

�

2

k

nu

nu� 2C�

�

d

�

2ub

k

max

2C�

n

�s

i

�u

k�2

k

 

1

s

i

�

2

k

u

u� s

i

�

d

!

+ n

�

2n

kn� 2b

�

d

As we saw in the proof of theorem 3, the maximum is rea
hed at one of the ends of the interval. By

substituting these values we obtain the bound. �

If we 
ompute the number for our example we obtain a bound of 5; 202:7 
ows whi
h is mu
h higher than

the 121:2 theorem 3 gave. But is the 
omparison fair? Are the problems solved in the two 
ases equivalent?

In te analysis with measurement intervals the number of 
ows that 
ould violate the threshold during the

measurement interval is 100. What is this number in our 
ase? We 
an have 199 
ows that keep their

bu
kets at 0.5 Mbytes before our interval starts and they send one single small pa
ket during the interval.

These pa
kets are all in violation and they should be dete
ted. After this, we 
an have 198 other 
ows

sending bursts of slightly more than 0.5 Mbytes so that they violate their leaky bu
ket des
riptor. These


ows should also all be passed by the �lter if it is to avoid false negatives. Therefore we have a traÆ
 pattern

that requires at least 397 
ows to be dete
ted during the interval. If we proportionately in
rease the number

of bu
kets at ea
h stage from 1000 to b = 4000, theorem 24 gives us a bound of 454:6 whi
h is approximately

4 times the bound of theorem 3. As with that result, we expe
t that in pra
ti
e the number of 
ows passing

will be mu
h smaller.

C.2 Implementing multistage �lters with leaky bu
kets

A naive implementation of the leaky bu
kets that make up the stages would keep de
rementing the 
ounters

by 1 every 1=r se
onds. This needs a lot of memory a

esses and is not ne
essary. We think of the 
ounters
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as numbers that move between 0 and u and what matters to the algorithm is where the 
ounters are within

this interval. Instead of de
rementing all the 
ounters every 1=r se
onds by one, we 
an move the interval:

we will have a virtual 0 and a virtual u that get in
remented every 1=r se
onds. Sin
e we 
an keep these

values in two registers, in
rementing them often does not pose problems. With these new de�nitions, the


ounters themselves work the following way: when a new pa
ket hashes to the 
ounter, we �rst 
he
k if the

value if the 
ounter is below the virtual 0 we update it to 0; we add the size of the pa
ket to the 
ounter

and if it is above the virtual u, we de
rement it to virtual u; �nally if the 
ounter rea
hed the virtual u

we de
lare that the bu
ket is in violation. While this might sound long, it needs no more memory a

esses

than the 
ounters of �lters operating with measurement intervals. With this implementation, we need to

worry about over
ows. We 
an implement the operations in su
h a way that when the virtual 0 and virtual

u over
ow, 
omparisons and arithmeti
 operations still work 
orre
tly. However, after an over
ow an old


ounter that re
eived no pa
kets 
an seem to have a very large value instead of a very small one. To solve

this problem we 
an use a ba
kground pro
ess that periodi
ally updates to virtual 0 all the 
ounters below

it. Improvements to the basi
 parallel �lter su
h as shielding and 
onservative update easily generalize to

our �lter using leaky bu
kets.

D Heuristi
 rules for tight 
on�guration of the multistage �lters

Even if we have the 
orre
t 
onstants for the threshold adaptation algorithm, there are other 
on�guration

parameters for the multistage �lter we need to set. Our aim in this se
tion is not to derive the exa
t optimal

values for the 
on�guration parameters of the multistage �lters. Due to the dynami
 threshold adaptation,

the devi
e will work even if we use suboptimal values for the 
on�guration parameters. Nevertheless we want

to avoid using 
on�guration parameters that would lead the dynami
 adaptation to stabilize at a value of

the threshold that is signi�
antly higher than the one for the optimal 
on�guration.

We assume that design 
onstraints limit the total amount of memory we 
an use for the stage 
ounters

and the 
ow memory, but we have no restri
tions on how to divide it between the �lter and the 
ow memory.

Sin
e the number of per pa
ket memory a

esses might be limited, we assume that we might have a limit

on the number of stages. We want to see how we should divide the available memory between the �lter and

the 
ow memory and how many stages to use. We base our 
on�guration parameters on some knowledge of

the traÆ
 mix.

We �rst introdu
e a simpli�ed model of how the multistage �lter works. Measurements 
on�rm this

model is 
loser to the a
tual behavior of the �lters than the 
onservative analysis. Be
ause of shielding the

old large 
ows do not a�e
t the �lter. We assume that be
ause of 
onservative update only the 
ounters to

whi
h the new large 
ows hash rea
h the threshold. Let l be the number of large 
ows and �l be the number

of new large 
ows. We approximate the probability of a small 
ow passing one stage by �l=b and of passing

the whole �lter by (�l=b)

d

. This gives us the number of false positives in ea
h interval fp = n(�l=b)

d

. The

number of memory lo
ations used at the end of a measurement interval 
onsists of the large 
ows and the

false positives of the previous interval and the new large 
ows and the new false positives m = l+�l+2�fp.

To be able to establish a tradeo� between using the available memory for the �lter or the 
ow memory, we

need to know the relative 
ost of a 
ounter and a 
ow entry. Let r denote the ratio between the size of a


ounter and the size of an entry. The amount of memory used by the �lter is going to be equivalent to b�d�r

entries. To determine the optimal number of 
ounters per stage given a 
ertain number of large 
ows, new

large 
ows and stages, we take the derivative of the total memory with respe
t to b. Equation 6 gives the

optimal value for b and Equation 7 gives the total amount of memory required with this 
hoi
e of b.
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b = �l

d+1

r

2n

r�l

(6)

m

total

= l +�l + (d+ 1)r�l

d+1

r

2n

r�l

(7)

We make a further simplifying assumption that the ratio between �l and l (related to the 
ow arrival

rate) doesn't depend on the threshold. Measurements 
on�rm that this is a good approximation for wide

ranges of the threshold. For the MAG tra
e, when we de�ne the 
ows at the granularity of TCP 
onne
tions

�l=l is around 44%, when de�ning 
ows based on destination IP 37% and when de�ning them as AS pairs

19%. Let M be the number of entries the available memory 
an hold. We solve Equation 7 with respe
t to

l for all possible values of d from 2 to the limit on the number of memory a

esses we 
an a�ord per pa
ket.

We 
hoose the depth of the �lter that gives the largest l and 
ompute b based on that value.

E Cis
o NetFlow

NetFlow [17℄ is a feature of Cis
o routers that implements per 
ow traÆ
 measurement. It is one of the

primary tools used to 
olle
t traÆ
 data by large transit ISPs today [9℄. NetFlow is intended (by Cis
o)

to serve as a basis for usage based billing. We brie
y dis
uss here some details of Cis
o NetFlow. We

also present an analyti
al evaluation of the a

ura
y of sampled NetFlow and its memory requirements.

At the end of this appendix we propose an alternative implementation solution that 
ould in
rease by an

order of magnitude the link speeds NetFlow 
an handle without resorting to sampling. This implementation

pro
edure 
an also be used in 
onjun
tion with our algorithms.

E.1 Basi
 NetFlow

NetFlow de�nes 
ows as unidire
tional streams of pa
kets between two parti
ular endpoints. A 
ow is

identi�ed by the following �elds: sour
e IP address, destination IP address, the proto
ol �eld in the IP

header, sour
e port, destination port, the TOS byte and the interfa
e of the router that re
eived the pa
ket.

In the DRAM of the router interfa
e 
ard there is a 
ow 
a
he that stores per 
ow information (we 
all it 
ow

memory in this paper). The entry for a 
ow holds, besides the 
ow identi�er, various types of information

about the 
ow: timestamp of when the 
ow started and ended, pa
ket 
ount, byte 
ount, TCP 
ags, sour
e

network, sour
e AS (Autonomous System), destination network, destination AS, output interfa
e, next hop

router. Various heuristi
s (e.g. 
ows that have been ina
tive for a parti
ular period of time, the RST and

FIN TCP 
ags) are used to determine when a 
ow ends.

The NetFlow data 
aptured by at the router is exported via UDP pa
kets to 
omputers that pro
ess it

further. The raw NetFlow data 
an be pro
essed in a variety of ways and 
an give all kinds of information

about the traÆ
. There are two major problems with the basi
 NetFlow: for interfa
es faster than OC3

updating the 
ow 
a
he slows down the operation of the interfa
e and the amount of data generated by

NetFlow 
an be so large that it overwhelms the 
olle
tion server or its network 
onne
tion ([9℄ reports loss

rates of up to 90%). Cis
o's solution to the �rst problem is sampling pa
kets and to the se
ond aggregating

the measurement data on the router.
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E.2 NetFlow Aggregation

Many appli
ations are not interested in the raw NetFlow data, but in an aggregated form of it. For example

when deriving traÆ
 demands one is interested by traÆ
 between networks (more exa
tly IP pre�xes), not

individual endpoints: all NetFlow re
ords of individual 
ows whose two endpoints are in the same two

networks are aggregated together. One 
an also imagine arrangements between ISPs with payment based

on traÆ
 that would require a similar type of aggregation.

Cis
o's solution to the problem of NetFlow generating too mu
h data was introdu
ed in IOS 12.0(3)T .

The aggregation of raw data is performed at the router. One or more extra 
a
hes 
alled aggregation 
a
hes

are maintained at the router. Only the aggregate data is exported thereby redu
ing substantially the amount

of traÆ
 generated. Five aggregation s
hemes are 
urrently supported: based on sour
e and destination AS,

based on destination pre�x, based on sour
e pre�x, based on sour
e and destination pre�x and based on

sour
e and destination ports.

E.3 Sampled NetFlow

Cis
o introdu
ed a feature 
alled sampled NetFlow [18℄ with high end routers. The performan
e penalty

of updating the 
ow 
a
he from DRAM is avoided by sampling the traÆ
. For a 
on�gurable value of a

parameter x, one of every x pa
kets is sampled. The 
ow 
a
he is updated only for the sampled pa
kets.

Even though the update operation is not performed any faster, sin
e it is performed less often it does not

a�e
t the performan
e of the router. Cis
o re
ommends that sampling is turned on for interfa
es above

OC-3. The advantage of this solution is that it is very simple and requires no signi�
ant 
hanges to the

hardware of the line 
ard.

E.4 The a

ura
y of sampled NetFlow

The a
tual sampled NetFlow works by 
ounting every x-th pa
ket irrespe
tive of pa
ket sizes. To simplify

the analysis we will assume that all pa
kets have the same size y and are sampled with probability p = 1=x.

Let 
 be the number of pa
kets 
ounted for a given 
ow and s the a
tual size of the 
ow (in pa
kets).

The probability distribution of 
 is binomial. The probability that a 
ow of size s is missed is the same as

the probability that no pa
kets get sampled whi
h is (1 � p)

s

. By the linearity of expe
tation we obtain

that E[
℄ = sp. Therefore the best estimate for s is 
=p. Sin
e the probability distribution for 
 is binomial,

its standard deviation will be SD[
℄ =

p

sp(1� p). The standard deviation of our estimate of s will be

1=p

p

sp(1� p).

To 
ompare the a

ura
y of sampled NetFlow with our algorithms we 
ompute the standard deviation

of the estimate of the size of the 
ow that is at the threshold T = s � y (in bytes). By substituting in the

formula above, this is y=p

p

p(1� p)T=y =

p

y(1� p)T=p. Based on this number we 
an also 
ompute the

relative error of a 
ow of size T whi
h is

p

y(1� p)=Tp. We 
an substitute a
tual numbers into this formula.

Sin
e sampling is re
ommended above OC-3 (155.52 Mbits/s=19,440,000 bytes/s), if the line speed is x times

OC-3, then the sampling probability is at most p = 1=x. Smaller sampling probabilities 
an be used to redu
e

the memory requirements at the 
ost of a

ura
y. Let the measurement interval be i se
onds. Assuming a

threshold of T = zC = xiz19; 440; 000 and a pa
ket size of 1500 bytes (whi
h is 
ommon for large 
ows), the

relative error of the estimate of a 
ow at the threshold is

p

1500(1� 1=x)x=T �

p

1; 500=(19; 440; 000iz) =

0:0087841=

p

zi.
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E.5 The memory requirements of sampled NetFlow

To be able to 
ompare NetFlow to our algorithms, for the purpose of thia analysis we 
hange somewhat the

way NetFlow operates: we assume that it reports the traÆ
 data for ea
h 
ow after ea
h measurement inter-

val, like our algorithms do. The number of entries used by NetFlow is bound by both the maximum number

of pa
kets sampled during a measurement interval and the number of a
tive 
ows n. Assuming the link is

fully utilized with minimum size pa
kets of 40 bytes, the number of pa
kets sampled in i se
onds is exa
tly

ipC=40. As we saw in se
tion E.4, the maximum sampling that doesn't slow down the pa
ket forwarding is

p = 19; 440; 00=C. If we use this sampling rate, the maximum number of updates per measurement interval

is i19; 440; 000=CC=40 = 486; 000i.

E.6 Keeping a queue of pa
ket headers

The improvement presented in this se
tion signi�
antly in
reases the amount of time NetFlow 
an spend

with ea
h pa
ket. It involves addition of a simple SRAM bu�er.

In [13℄ Lakshman and Stiliadis argue that pa
ket forwarding and 
lassi�
ation de
isions have to be made

at line speed even for the smallest of pa
kets. We argue that this does not extend to traÆ
 measurement. We


an keep the pa
ket headers and other relevant information in a small queue and pro
ess that information

(for traÆ
 measurement purposes) at somewhat lower speeds after the pa
ket was sent on the wire. This

does not 
ause any delay for the a
tual pa
ket. We are basi
ally de
oupling the forwarding of pa
kets from

the traÆ
 measurement devi
e. We argue that the bene�ts far outweigh the 
osts of this improvement.

Pra
ti
ally all of the pa
kets from the tra
es we used are at least 40 bytes large. However the average size

is around 550 bytes. If we were to dimension the traÆ
 measurement devi
e to handle at line speeds pa
kets

of 240 bytes instead of 40 bytes, this would give us 6 times as mu
h time to pro
ess ea
h pa
ket. Sin
e the

average time the traÆ
 measurement devi
e has to pro
ess a pa
ket is more than twi
e what it needs, the

SRAM bu�er holding the queue of pa
ket headers need not be very large to make it very unlikely that it

ever over
ows. This is very similar to how pa
ket headers are bu�ered on 
ards used for traÆ
 
apture until

the driver 
an handle them.

F Choosing a suitable measurement interval

In this appendix we 
hoose the size of the measurement interval based on the tra
es we have. The optimal

size for the measurement interval depends on both the appli
ation for our algorithms and the traÆ
 mix.

The purpose of the measurements from this appendix is not to derive a size for the measurement interval

that we re
ommend for all appli
ations. We only want to derive a size for the measurement interval that is


lose enough to what appli
ations would use to make the results from se
tion 7 relevant.

The task of 
hoosing an appropriate measurement interval is further 
ompli
ated by the la
k of obje
tive


riteria for de
iding what a good value is. If the measurement intervals are too large the data 
olle
ted

might be too 
oarse for the purposes of the appli
ation. If the interval is too small than 
ows that have gaps

between some of their pa
kets larger than the measurement interval 
an appear as repeatedly going ina
tive

and starting to send again. This might be undesirable for the appli
ation and it 
an redu
e the e�e
tiveness

of optimizations to our algorithms that rely on the persisten
e of the 
ows (su
h as preserving entries in the


ow memory a
ross measurement intervals).

What do we measure in order to determine what a good value for the measurement interval is? One

would want as many as possible of the 
ows to send their pa
kets spa
ed apart by less than the size of

the measurement interval. An obvious measure of how good a size for the measurement interval is is the
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Interval MAG IND COS

0.1 s 4.482% /1.617% /67.261% 5.899% /7.068% /81.572% 9.923% /4.101% /77.623%

0.2 s 13.801%/7.829% /78.805% 8.809% /19.935%/87.162% 15.415%/10.481%/86.326%

0.5 s 35.556%/31.206%/91.939% 16.471%/44.679%/93.601% 23.659%/29.416%/93.629%

1.0 s 49.682%/45.012%/95.362% 27.896%/58.222%/96.651% 36.707%/48.031%/96.614%

2.0 s 56.683%/58.119%/97.224% 32.022%/67.509%/97.979% 41.659%/61.148%/97.850%

5.0 s 67.685%/76.528%/98.969% 57.919%/83.102%/99.250% 51.282%/80.745%/99.043%

10.0 s 90.056%/87.086%/99.611% 79.765%/91.705%/99.723% 63.092%/86.705%/99.483%

Table 8: Comparing measurement intervals for 
ows de�ned by 5-tuples

Interval MAG IND COS

0.1 s 1.085% / 4.481%/75.160% 1.419% /13.136%/86.458% 2.373% /18.597%/89.663%

0.2 s 2.906% /10.246%/85.209% 2.884% /27.138%/91.339% 3.889% /34.595%/94.541%

0.5 s 9.683% /23.896%/95.373% 6.178% /51.617%/96.293% 6.262% /50.827%/97.919%

1.0 s 16.660%/33.579%/97.728% 11.195%/65.484%/97.871% 10.943%/60.578%/99.081%

2.0 s 21.377%/43.254%/98.780% 14.309%/73.635%/98.739% 15.162%/70.080%/99.535%

5.0 s 32.745%/59.495%/99.579% 49.080%/86.646%/99.493% 38.860%/82.997%/99.856%

10.0 s 71.205%/72.380%/99.854% 76.436%/92.668%/99.829% 61.964%/89.363%/99.941%

Table 9: Comparing measurement intervals for 
ows de�ned by destination IP

Interval MAG

0.1 s 2.260% / 60.499% / 95.969%

0.2 s 3.975% / 73.242% / 98.031%

0.5 s 9.003% / 82.135% / 99.408%

1.0 s 14.522% / 87.148% / 99.727%

2.0 s 19.154% / 89.814% / 99.857%

5.0 s 29.707% / 94.430% / 99.947%

10.0 s 54.700% / 96.999% / 99.979%

Table 10: Comparing measurement intervals for 
ows de�ned by the pair of ASes

per
entage of 
ows that send all their pa
ket 
loser than the size of the measurement interval. But often

there are many small 
ows that send their pa
kets far apart while large 
ows send them 
loser. We obtained

a less biased measure if we weigh the 
ows by the total traÆ
 they send. While this is a good measure if 
ows

are de�ned at the granularity of a TCP 
onne
tion it is not that good if we look at 
oarser aggregates su
h as

all pa
kets sent to a given IP address. The reason is that there might be multiple distin
t 
onne
tions with

pa
kets 
lose to ea
h other, but spa
ed far apart. Even though most of the pa
kets of su
h an aggregate are


lose some are far and it would be 
lassi�ed as a 
ow that has pa
kets further apart than the measurement

interval. We introdu
e the third measure as the per
entage of pa
kets (weighted by pa
ket sizes) that arrived

within a measurement interval of the previous pa
ket of the same 
ow.
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Table 8 shows our results for 
ows de�ned at the granularity of TCP 
onne
tions by sour
e and destination

IP address and port and by proto
ol number, Table 9 shows our results for 
ows de�ned by the destination IP

address and Table 10 shows our results for 
ows de�ned by the sour
e and destination autonomous system.

The �rst two tables show the results of measurements on the tra
es MAG, COS and IND and the third one

only on tra
e MAG (be
ause the other two tra
es are anonymized and we 
annot perform route lookups on

them). The values in the 
ells of the tables represent the 3 measures we dis
ussed: the per
entage of 
ows

that have all their pa
kets 
loser than the given interval, the same per
entage weighted by the total amount

of traÆ
 transferred by the 
ows and the per
entage of pa
kets weighted by their size that arrived within

the interval of the previous pa
ket of the same 
ow. We 
an see that for all granularities and for all tra
es,

a measurement interval of 5 se
onds assures that 99% or more of the pa
kets (weighted by their size) arrive

within a measurement interval of the previous pa
ket of the same 
ow. Based on these results we will use a

measurement interval of 5 se
onds in all our experiments.

G Measuring sample and hold

We �rst 
ompare the measured performan
e of the sample and hold algorithm to the values predi
ted by our

analysis. Next we measure the improvement introdu
ed by preserving entries a
ross measurement intervals.

We measure the e�e
t of early removal and determine a good value for the early removal threshold. We


on
lude by summarizing our �ndings about the sample and hold algorithm. We have 3 measures for the

performan
e of the sample and hold algorithm: the average per
entage of large 
ows that were not identi�ed

(false negatives), the average error of the traÆ
 estimates for the large 
ows and the maximum number of

lo
ations used in the 
ow memory.

G.1 Comparing the behavior of the base algorithm to the analyti
 results

We �rst look at the e�e
t of oversampling on the performan
e of sample and hold. We 
on�gure sample and

hold to measure the 
ows above 0.01% of the link bandwidth and vary the oversampling fa
tor from 1 to 7

(
orresponding to a probability of between 37% and less than 0.1% of missing a 
ow at the threshold (see

Se
tion 4.1.1)). We perform ea
h experiment for the tra
e MAG, IND and COS and for the tra
e MAG we use

all 3 
ow de�nitions. For ea
h 
on�guration, we perform 50 runs with di�erent random fun
tions for 
hoosing

the sampled pa
kets. Figure 11 shows the per
entage of false negatives (large 
ows not identi�ed). We also

plot the probability of false negatives predi
ted by our 
onservative analysis (the Y axis is logarithmi
). The

measurement results are 
onsiderably better than predi
ted by the analysis. The reason is that the analysis

assumes that the size of the large 
ow is exa
tly equal to the threshold while most of the large 
ows are

mu
h above the threshold making them mu
h more likely to be identi�ed. The measurements 
on�rm that

the probability of false negatives de
reases exponentially as the oversampling in
reases. Figure 12 shows the

average error in the estimate of the size of an identi�ed large 
ow. We also plot the analyti
 estimate for

the di�eren
e between the estimate and the a
tual traÆ
 of a large 
ow from Se
tion 4.1.1. The measured

error is slightly below the error predi
ted by the analysis. The explanation is that the analysis assumed

that the size of the error is unbounded. In pra
ti
e, the size of the error is bounded by the size of the


ow. The measurements 
on�rm that the average error of the estimates is proportional to the inverse of the

oversampling. Figure 13 shows the maximum over the 900 measurement intervals for the number of entries

of 
ow memory used. The measurement results are more than an order of magnitude lower than the bound

from Se
tion 4.1.2. There are two main reasons. The most obvious one is that the links are lightly loaded

(between 13% and 27%) so the number of pa
kets sampled is mu
h smaller than for a 
ongested link as
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Figure 11: Per
entage of false negatives as the oversampling 
hanges
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Figure 12: Average error in the traÆ
 estimates for large 
ows
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Figure 13: Maximum number of 
ow memory entries used

assumed by the bound. The other reason is that many of the sampled pa
kets do not 
reate new entries

in the 
ow memory. This explains why the number of entries in
reases sub-linearly with the oversampling

and not roughly linearly as predi
ted by the analysis. The results also show that the number of entries

used depends on the number of a
tive 
ows and the dependen
e is stronger as the sampling probability (the

oversampling) in
reases.

The next set of experiments look at how the 
hoi
e of the threshold in
uen
es the performan
e of the

sample and hold algorithm. We run the algorithm with a �xed oversampling of 5 for thresholds between

0.005% and 0.1% of the link bandwidth. Figure 14 shows the per
entage of false negatives. As in the previous


ase, the a
tual per
entage is on average between 3 and 8 times lower than the one predi
ted by the analysis

(depending on the tra
e and the de�nition of the 
ow ID). The only value that is suspi
iously high is the one

for the MAG tra
e with a 
ow de�nition at the TCP granularity. Upon 
loser analysis of the tra
e we found

out that there are only 3 
ows (all 3 netnews transfers between the same two hosts but on di�erent ports)

that are above the threshold in all intervals and they are within 15% of the threshold. This explains why

in this 
ase the observed rate of false negatives so 
losely mat
hes the predi
tion of the analysis. Figure 15

shows the average error in the estimate of the size of an identi�ed large 
ow. As expe
ted, the a
tual values

are usually slightly below the expe
ted error of 20% of the threshold. The only signi�
ant deviations are

for the tra
es IND and espe
ially COS at very small values of the threshold. The explanation is that the

threshold approa
hes to the size of a large pa
ket (e.g. a threshold of 0.005% on an OC3 (COS) 
orresponds

to 4860 bytes while the size of most pa
kets of the large 
ows is 1500 bytes). Our analysis assumes that we

sample at the byte level. In pra
ti
e, if a 
ertain pa
ket gets sampled all its bytes are 
ounted, in
luding the

ones before the byte that was sampled. This results in smaller error as illustrated by our results. Figure 16

shows the maximum number of entries of 
ow memory used. As before the a
tual number is mu
h smaller
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Figure 14: Per
entage of false negatives as the threshold 
hanges

Figure 15: Average error in the traÆ
 estimates for large 
ows
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Figure 16: Maximum number of 
ow memory entries used

than the bound from Se
tion 4.1.2. As the threshold de
reases, the number of entries in
reases mu
h faster

for the tra
es with many 
ows than for the ones with few.

Findings: Sample and hold performs better than predi
ted by our 
onservative analysis. The per
entage

of false negatives is roughly one order of magnitude smaller than predi
ted in se
tion 4.1.1 be
ause most large


ows are 
onsiderably above the threshold. The average error of the estimates is slightly below the expe
ted

value. When the threshold is the same order of magnitude as the size of the pa
kets, the improvement is

stronger. The memory requirement of the algorithm 
an be orders of magnitude below what Se
tion 4.1.2

predi
ts. The main reasons: links are lightly loaded and large 
ows are sampled repeatedly.

G.2 The e�e
t of preserving entries

In this se
tion we measure the improvement introdu
ed by preserving entries from one measurement interval

to the next one. We 
ompare the results with the ones from the measurements of the base algorithm. For the

false negatives and average error we omit from the 
omputation the �rst measurement interval be
ause there

no entries are preserved from the previous interval, making the behaviour of the algorithm identi
al to the

original sample and hold. We perform two sets of experiments: with �xed threshold and varying oversampling

and with �xed oversampling and varying the threshold. The improvement introdu
ed by preserving entries

is not in
uen
ed mu
h by the oversampling but it is in
uen
ed 
onsiderably by the 
hoi
e of the threshold.

We 
onje
ture that this happens be
ause the magnitude of the improvement depends on the distribution

of the durations for large 
ows and this 
hanges as we 
hange the threshold be
ause the mix of large 
ows


hanges. Figures 17 to 19 show the the number of false negatives, the average error of the estimate and the

memory usage with preserving entries. All the plots present ratios to the values obtained without preserving
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Figure 17: E�e
t of preserving entries on false negatives

Figure 18: E�e
t of preserving entries on average error
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Figure 19: E�e
t of preserving entries on memory usage

entries. As shown in Figure 17 the number of false negatives is generally redu
ed to between 15% and 50%

. The exa
t amount of the improvement depends strongly on the a
tual tra
e, the 
ow de�nition and the

threshold. The huge spike for the MAG tra
e with 
ows de�ned based on destination IP address for a

threshold of 0.07% of the link bandwidth is due to the fa
t that the original algorithm has a single false

positive in 900 intervals while when preserving entries we have 2. We don't 
onsider this an indi
ation that

preserving entries 
an in
rease the number of false negatives. The average error de
reases to between 30%

and 5% strongly depending on the tra
e and 
ow de�nition. We 
onsider this the most important gain of

preserving entries. The in
rease in memory usage is between 30% and 80% and depends strongly on the

tra
e and 
ow de�nition. We 
an see that tra
es dominated by few very heavy very long lived 
ows su
h as

MAG with 
ows de�ned by AS pairs have both a low 
ost (small in
rease in memory) and a high bene�t

(large de
rease in error) for preserving entries. For the COS tra
e where few very heavy but not very long

lived 
ows dominate, the 
ost of preserving entries is still low but the bene�ts are not as high.

Findings: Preserving entries redu
es the probability of false negatives by 50% - 85%. It redu
es the

average error by 70% - 95%. The redu
tion is strongest when large 
ows are long lived. Preserving entries

in
reases memory usage by 40% - 70%. The in
rease is smallest when large 
ows make up a larger share of

the traÆ
. The value of the oversampling does not a�e
t the magnitude of the improvements of preserving

entries.

G.3 The e�e
t of early removal

To measure the e�e
t of early removal, we 
hoose 9 
on�gurations with oversampling of 1, 4 and 7 and with

thresholds of 0.005% 0.025% and 0.1% of the link bandwidth. For ea
h of these 
on�gurations, we measure
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Figure 20: E�e
t of early removal on false negatives
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Figure 21: E�e
t of early removal on error
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Figure 22: E�e
t of early removal on memory usage

Tra
e + 
ow de�nition False negatives Average error Memory

MAG 5-tuple 0% - 95.2% - 200% 77.4% - 90.6% - 92.6% 64.5% - 69.3% - 81.0%

MAG destination IP 0% - 90.5% - 100% 79.9% - 90.4% - 98.2% 66.0% - 72.3% - 87.3%

MAG AS pairs 50% - 92.4% - 100% 78.7% - 88.9% - 93.2% 74.8% - 80.5% - 91.8%

IND 5-tuple 55.6% - 92.0% - 160% 81.4% - 89.5% - 96.2% 73.6% - 80.5% - 91.4%

COS 5-tuple 0% - 84.5% - 104% 77.5% - 85.0% - 92.3% 78.6% - 82.6% - 92.5%

Table 11: Various measures of performan
e when using an early removal threshold of 15% of the threshold
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a range of values for the early removal threshold. We adjust the oversampling su
h that the probability of

missing a 
ow at the threshold stays the same as without early removal (e.g. if the early removal threshold

is one third of the threshold, we in
rease the oversampling by half, see Se
tion 4.1.4 for details). The point

of this experiment is to obtain the value for the early removal threshold that results in the smallest possible

memory usage. Figures 20 through 22 show our results for the COS tra
e with 50 runs for ea
h 
on�guration.

We 
an see that the probability of false negatives de
reases slightly as the early removal threshold in
reases.

This 
on�rms that we 
ompensated 
orre
tly for the large 
ows that might be removed early by in
reasing

the oversampling. Figure 21 
on�rms our expe
tation that the average error de
rease roughly linearly as

the early removal threshold in
reases. Figure 22 shows that there is an optimal value for the early removal

threshold (as far as memory usage is 
on
erned) around 15% of the threshold. From these results we 
an also


on
lude that the larger the threshold the more memory we save but the less we gain in a

ura
y with early

removal. Also the larger the oversampling, the more we gain in a

ura
y and memory. The results for other

tra
es and other 
ow de�nitions have very similar trends, but the a
tual improvements a
hieved for various

metri
s are sometimes di�erent. For brevity we do not present them in full. Instead we present in Table 11

the minimum, median and maximum values (among the 9 
on�gurations) for the 3 metri
s of interest when

using an early removal threshold of 15% of the threshold. As in the �gures, all values are reported as ratios

to the values obtained without early removal.

Findings: A good value for the early removal threshold is 15% of the threshold. For this value, with

oversampling is adjusted to 
ompensate, the per
entage of false negatives generally de
reases slightly, the

average error always de
reases slightly and the memory requirements de
rease typi
ally by 20% to 30%. The

de
rease in memory usage is strongest when the number of 
ows 
onsiderably below the threshold is large.

The larger the oversampling the stronger the bene�ts of early removal are.

G.4 Summary of �ndings about sample and hold

On our tra
es, basi
 sample and hold has a probability of false negatives an order of magnitude smaller

than predi
ted in se
tion 4.1.1. The memory requirements are also one to two orders of magnitude below

what the 
onservative analysis predi
ts. Preserving entries with an early removal threshold of 15% of the

threshold in
reases the memory requirements by rougly 20% but redu
es the error in the estimates by an

order of magnitude.

H Measuring multistage �lters

We �rst 
ompare the performan
e of serial and parallel multistage �lters to the bound of Theorem 3. We

measure the bene�ts of 
onservative update. Next we measure the e�e
t of preserving entries and shielding.

We 
on
lude by summarizing our �ndings about multistage �lters.

H.1 Comparing the behavior of basi
 �lters to the analyti
 results

First we 
ompare the number of false positives for serial and parallel �lters with the bound of Theorem 3.

While the number of 
ow memory lo
ations used might seem like a more meaningful measure of the per-

forman
e of the algorithm we use the number of false positives be
ause for strong �lters, the number of

entries is dominated by the entries of the a
tual large 
ows making it harder to distinguish 
hanges of even

an order of magnitude in the number of entries o

upied by false positives. To make it easier to 
ompare

results from di�erent tra
es and di�erent 
ow de�nitions (therefore di�erent numbers of a
tive 
ows) we
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Figure 23: A
tual performan
e for a stage strength of k=1
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Figure 24: A
tual performan
e for a stage strength of k=2

56



1 1.5 2 2.5 3 3.5 4

Depth of filter

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Pr
op

or
tio

n 
of

 f
al

se
 p

os
iti

ve
s 

(l
og

 s
ca

le
)

MAG serial
MAG destIP serial
MAG ASpair serial
IND serial
COS serial
MAG parallel
MAG destIP parallel
MAG ASpair parallel
IND parallel
COS parallel
Strongest bound

Figure 25: A
tual performan
e for a stage strength of k=3
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Figure 26: A
tual performan
e for a stage strength of k=4
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a
tually report the per
entage of false positives, not their number. Another important detail is that we

express the threshold as a per
entage of the maximum traÆ
, not as a per
entage of the link 
apa
ity. While

a
tual implementations do not know the traÆ
 in advan
e, this 
hoi
e of thresholds gives us information

about how the �lters would behave under extreme 
onditions (i.e. a fully loaded link). In this �rst set of

experiments, we �x the threshold to a 4096th of the maximum traÆ
 and vary the stage strength from 1

to 4 and the depth of the �lter from 1 to 4 (the number of 
ounters used by the �lter is between 4K and

64K). For ea
h 
on�guration we measure 10 runs with di�erent random hash fun
tions. Figures 23 to 26

present the results of our measurements for stage strengths from 1 to 4. We also represent the strongest

bound we obtain from Theorem 3 for the 
on�gurations we measure. Note that the y axis is logarithmi
.

We 
an see from the results that the �ltering is in general at least an order of magnitude stronger than the

bound. Parallel �lters are stronger than serial �lters with the same 
on�guration. The di�eren
e grows from

nothing in the degenerate 
ase of a single stage to up to two orders of magnitude for four stages. The a
tual

�ltering also depends on the tra
e and 
ow de�nition. We 
an see that the a
tual �ltering is strongest for

the tra
es and 
ow de�nitions for whi
h the large 
ows strongly dominate the traÆ
. We 
an also see that

the a
tual �ltering follows the straight lines that denotes exponential improvement with the numbering of

stages. For some 
on�gurations, after a 
ertain point, the �ltering doesn't improve as fast anymore. This


orresponds to the false positives being dominated by a few 
ows 
lose to threshold. Sin
e the parallel �lters


learly outperform the serial ones we use them in all of our subsequent experiments.

Findings: Multistage �lters outperform Theorem 3 by up to 4 orders of magnitude (varies with the

number of stages and stage strength). The per
entage of false positives de
reases exponentially with the

number of stages. Parallel �lters are mu
h better than serial �lters. The performan
e of the �lter depends

on the traÆ
 mix.

H.2 The e�e
t of 
onservative update

Our next set of experiments evaluates the e�e
t of 
onservative update. We run experiments with �lter

depths from 1 to 4. For ea
h 
on�guration we measure 10 runs with di�erent random hash fun
tions. For

brevity we only present in �gures 27 and 28 the results for stage strengths of 1 and 3. The improvement

introdu
ed by 
onservative update grows to more than an order of magnitude as the number of stages

in
reases. For the 
on�guration with 4 stages of strength 3 we obtained no false positives when running on

the MAG tra
e with 
ows de�ned by AS pairs and that is why the plotted line \falls o�" so abruptly. Sin
e

by extrapolating the 
urve we would expe
t to �nd approximately 1 false positive, we 
onsider that this data

point does not invalidate our 
on
lusions.

Findings: Conservative update redu
es the number of false positives by approximately an order of mag-

nitude (depending mostly on the number of stages).

H.3 The e�e
t of preserving entries and shielding

Our next set of experiments evaluates the e�e
t of preserving entries and shielding. We run experiments

with �lter depths from 1 to 4 and stage strengths of 0.5 and 2. We measure the largest number of entries

of 
ow memory used and the average error of the estimates. The improvement in the average error does

not depend mu
h on the �lter 
on�guration. Table 12 shows the results for ea
h tra
e and 
ow de�nition.

Usually for the weak �lters (few, weak stages) the redu
tion in the average error is slightly larger than for

the strong ones.

There are two 
on
i
ting e�e
ts of preserving entries on the memory requirements. On one hand by

preserving entries we in
rease the number of entries used. On the other hand shielding in
reases the strength
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Figure 27: Conservative update for a stage strength of k=1

Figure 28: Conservative update for a stage strength of k=3
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Tra
e + 
ow de�nition Error when preserving entries

MAG 5-tuple 19.12% - 26.24%

MAG destination IP 23.50% - 29.17%

MAG AS pairs 16.44% - 17.21%

IND 5-tuple 23.46% - 26.00%

COS 5-tuple 30.97% - 31.18%

Table 12: Average error when preserving entries 
ompared to the average error in the base 
ase
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Figure 29: Change in memory usage due to preserving entries and shielding
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Tra
e + Sample and hold Multistage �lters


ow ID o=1 o=4 o=7 d=2 d=3 d=4

MAG 78.0%/92.8% 87.2%/94.4% 91.0%/95.0% 72.6%/91.3% 76.4%/92.1% 81.5%/93.0%

MAG destIP 73.6%/93.1% 88.6%/94.8% 90.2%/95.7% 65.1%/92.8% 65.7%/94.3% 85.5%/94.7%

MAG ASpair 82.3%/92.1% 87.1%/93.0% 87.8%/93.7% 63.9%/92.1% 69.5%/93.4% 70.0%/93.8%

IND 78.0%/92.5% 88.8%/94.2% 87.9%/94.4% 75.5%/91.7% 67.0%/92.4% 32.0%/92.0%

COS 83.9%/90.0% 85.7%/90.7% 86.6%/91.6% 72.1%/89.0% 66.7%/89.2% 52.1%/89.2%

Table 13: The average to maximum memory usage ratios for various 
on�gurations

of the �lter (see se
tion 4.2.3 for details) whi
h leads to a de
rease in the number of false positives. Figure 29

shows how memory usage is in
uen
ed by preserving entries. The �rst e�e
t predominates for strong �lters

leading to an in
rease in memory usage while the se
ond one predominates for weak �lters leading to a

de
rease. The in
reases in memory usage are small while the improvements due to shielding 
an be signi�
ant.

When 
omputing the maximum memory requirement we ignored the �rst two measurement intervals in ea
h

experiment be
ause the e�e
t of shielding is fully visible only from the third measurement interval on.

Findings: Preserving entries redu
es the average error of the estimates by 70% to 85%. The e�e
t

depends on the traÆ
 mix. Preserving entries in
reases the number of 
ow memory entries used by up to

30%. Shielding 
onsiderably strengthens weak �lters. This 
an lead to redu
ing the number of 
ow memory

entries by as mu
h as 70%.

H.4 Summary of �ndings about multistage �lters

Multistage �lters outperform Theorem 3 by many orders of magnitude (varies with 
on�guration and traÆ


mix). Parallel �lters are better than serial ones and 
onservative update helps a lot. Shielding further

in
reases the strength of weak �lters. Preserving entries improves the a

ura
y of results by almost an order

of magnitude (depends on traÆ
 mix) 
ausing an in
rease of up to 30% in the number of 
ow memory entries

used.

I Calibrating the threshold adaptation algorithm

In this se
tion we use measurements to determine the right 
onstants to be used by the algorithm for dynam-

i
ally adapting the threshold. We will determine di�erent parameters for sample and hold and multistage

�lters. We �rst determine the safety margin and then the range of adjustment ratios.

I.1 Finding the right target usage

We use a brute for
e approa
h to �nding the right measurement interval: we run the algorithms with a

large number of 
on�gurations and thresholds on all tra
es and with all 
ow de�nitions and re
ord the ratio

between the average and maximum memory usage for ea
h 
on�guration. The results in table Table 13 show

the minimum and average values (over all 
on�gurations). We tested thresholds between 0.005% and 1% of

the link bandwidths in in
rements of around 40%. For sample and hold we preserved entries, used an early

removal threshold of 15% and used oversampling of 1, 4 and 7. For multistage �lters we used parallel �lters

with 
onservative update, preserving entries and shielding. The number of 
ounters goes from less than the
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Tra
e + Perfe
t Sample and hold Multistage �lters


ow ID knowledge o=1 o=4 o=7 d=2 d=3 d=4

MAG 0.34/1.48 1.00/1.78 1.18/1.98 1.25/2.13 0.24/7.78 0.16/10.2 0.12/12.5

MAG destIP 0.45/2.86 1.00/2.78 1.21/2.97 1.31/3.06 0.15/9.67 0.10/12.9 0.08/17.5

MAG ASpair 0.80/3.30 1.09/3.40 1.38/3.63 1.56/3.81 0.34/10.2 0.16/18.3 0.12/30.0

IND 0.95/2.27 1.23/2.97 1.38/3.64 1.35/3.76 0.35/14.0 0.17/15.9 0.17/21.4

COS 0.77/3.02 1.17/2.23 1.35/2.31 1.44/2.80 0.58/7.31 0.58/9.19 0.37/10.9

Table 14: The range of measured adjustment ratios

number of new large 
ows per interval for the smallest threshold up to 8 to 64 times more in in
rements

of a fa
tor of 2 (4 to 7 
on�gurations) and for ea
h number of 
ounters we measure �lters with depths of

2, 3 and 4 stages. To avoid pathologi
al 
ases we do not 
onsider the 
on�gurations where the average

number of memory lo
ations used is less than 100. We 
an see that for all algorithms and all tra
es the

average ratio between the average and maximum memory usage is between 89% and 96%, but the worst


ase numbers are mu
h smaller. Furthermore these numbers do not depend signi�
antly on the number of

stages or oversampling. We 
an also see that the minimum ratios are smaller for multistage �lters than

for sample and hold espe
ially as the number of stages goes up. A 
onservative way to 
hoose the target

usage would be the smallest ratio seen. Sin
e the 
onsequen
e of o

asional memory over
ows is not that

severe (espe
ially not for sample and hold that uses early removal, so most of the entries 
reated towards

the end of the measurement interval are not reported on anyway), we use the bolder values of 90% for traÆ


measurement devi
es using sample and hold and 85% for the ones using multistage �lters.

I.2 Finding the right adjustment ratios

We used the same measurements as above to get minimum and maximum values for the adjustment ratio.

We it based on the ratio of the average memory usage for 
onse
utive thresholds (approximately 40% apart).

Table 14 
ontains our maximum and minimum values for the adjustment ratio over all thresholds and


on�gurations. We also added the perfe
t knowledge algorithm (it de
ides whi
h 
ows to add to the 
ow

memory based on knowledge of their exa
t traÆ
) to be able to separate the e�e
ts of the pe
uliarities of the

distributions of 
ows sizes from the behaviors introdu
ed by our algorithms. We 
an see that sample and

hold is mu
h more robust than multistage �lters (adjustment ratios 
loser to 1) and that it is very 
lose (from

this point of view) to the perfe
t knowledge algorithm. For 
ertain settings (e.g. the MAG tra
e with 
ow ID

destination IP and an oversampling of 1) it is even more robust than the perfe
t knowledge algorithm. We 
an

see that the robustness of sample and hold does not depend signi�
antly on the oversampling fa
tor. Based

on these results we use a value of 1 for adjustdown and 3 for adjustup for traÆ
 measurement devi
es using

sample and hold. Multistage �lters have huge maximum adjustment ratios, espe
ially when the number of

stages is large. This is be
ause when �lters are overwhelmed with traÆ
 they qui
kly go from strong �ltering

to very little �ltering. Based on the results we would use the following values for adjustdown and adjustup:

0.24 and 10 for 2 stage �lters; 0.16 and 16 for 3 stage �lters and 0.12 and 21 for 4 stage �lters. However,

after a number of sample runs it turns down that these adjustment ratios are too 
onservative, so we use an

adjustdown of 0.5 and an adjustup of 3 instead.
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