
DATA COMPRESSION TECHNIQUES FOR ECONOMIC PROCESSING
OF LARGE COMMERCIAL FILES

James E. Mulfordand Richard K. Ridall
Ridall Associates, Inc., Paoli, Pennsylvania

ABSTRACT

The application of compact coding, differen-
cing and other techniques to indexed sequential
files is discussed. The effects on system per-
fonTsnce are discussed and reductions of almost
80% in mass storage requirements for a particular
file are reported.

KEY WORDS AND PHRASES

data compression, compact coding, file com-
pression, file storage, numeric coding, alphabetic
coding, differencing, reduced alphanumeric image
coding, statistical code development

I. Introduction

This paper reports on the practical applica-
tion of data compression techniques to large com-
mercial files inan IBM System/360 and DOS environ-
merit. The result of compressing one file in par-
ticular is used to illustrate quantitatively the
achievable compression and its impact on the asso-
ciated system. Perhaps the most significant re-
sult of this effort was not the dramatic compres-
sion achieved but the fact that it was achieved
without materially altering the existing applica-
tion system or programs to which the compression
was applied.

Data compression, or compaction as it is
sometimes called, refers simply to translating a
representation of a set of data into a smaller one,
without loss of information. The practical effect
of this transformation is to save channel time in
a data comT~nications system or storage space in a
file. The process offers potential for cost sav-
ing and other benefits which can be traded-off
against cost. For example, compression has been
used to reduce bandwidth (consequently power,
weight and physical size) required for transmit-
ting weather data from satellites to earth. It
has also been used to reduce the size of very

large files of textual information, as reported by
Snyderman and Hunt.(18) It is also applicable to
many con~nerclal/industrial files containing a va-
riety of different types of information as illus-
trated by the file described below.

File con~oression yields benefits in addition
to size and consequent storage cost reduction.
Because data is transferred to and from storage
media (core, disk, etc.) in con~oressed form, pro-
gram execution time is usually reduced even after
making allowance for the decompression computa-
tional load. The saving in channel and core in-
terference times are large enough in practice to
provide savings even in a multiprograr~ning en-
vironment since CPU time is still under-utillzed in
most commercial applications.

In the next section, the attributes of a par-
ticular commercial file are described as back-
ground for a discussion of the con~oression tech-
niques applied to it. The techniques themselves,
which required no reprogranmfing of the original
application programs, are presented next. In the
last section, the results achieved from file com-
pression are reported and performance is con~pared
with that of the original system.

II. File and Program Enviror~nent

The file under consideration is the Master
File of an application system which provides daily
a list of records which meet certain search cri-
teria to the users. There are presently only four
COBOL and assembly language programs which use the
Master File for all system functions including
searching and file maintenance.

In uncompressed form, a Master File record is
fixed length at 280 bytes, of which 20 bytes may
be used as search keys. With 800,000 base records,
the file is about 250 million bytes long including
overflow, etc. The file is physically stored in
I~4's Indexed-Sequential for~t to achieve the

207

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1971 ACM

http://crossmark.crossref.org/dialog/?doi=10.1145%2F511285.511308&domain=pdf&date_stamp=1971-04-01

desired efficiency in maintenance and provide ran-
domretrieval of the relatively few records that
are accessed in the daily processing.

The record data consists of multiple personal
names, addresses, certain legal data, amounts of
money, dates, and various control codes. Within a
given record, fields may or may not be present,
and within a field, the data is variable length.
The application is required to run under DOS which
dictates that this variable ler~h data be parti-
tioned into fixed length records. In the uncom-
pressed file, each base record may have zero to
three trailers.

III. Compression Techniques

The techniques used for compressing the above
file for disk storage fall into two groups, Logi-
cal or Statistical. They are distinguished by the
data characteristic which provides the basis for
compression. However, in some cases, more than
one technique was applied to a particular datum.

Logical Techniques

Certain fields within a single record
n~y be logically related, or partly redundant.
For example, in our Master File there are three
dates describing events which must happen in a
given sequence. First, there is a date on which
a legal transaction took place. Then the date on
which the transaction data were entered into the
Master File is recorded. If any corrections are
made to a record, the date of the last correction
must also be entered.

Not only must the three dates be in as-
cending order, but no date can be before 1940.
Allowing for system life to the year 2000, the
range of date fields must be less than 22,000 days.
Further, it is very likely that the date of data
entry will be within two days of the transaction
date, so that its range can be even more restrict-
ed if it is referenced to the transaction date. A
similar situation exists with the third date so
that the difference between dates can be stored
rather than the dates themselves. In the first
instance, the difference between the actual date
and 1940 is stored. Then, only the difference be-
tween the first date and the second are stored,
and so forth. By representing these difference in

binary, a compression from 18 bytes to less than
four bytes is achieved.

This differencing technique can be ap-
plied to other fields as well. In serial files
sequenced by keys such as Social Security, account,
purchase order, or part numbers, the application is
obvious. Differencing can also be applied to text-
ual data, such as names, and result in a saving.

The situation is analogous to transmis-
sion of a digitized photographic (TV or whatever)
image. Rather than transmitting (or storing) the
absolute value of each point scanned, its differ-
ence from the last can be used with an occasional
reference point included. This often results in
fewer bits of information transmitted because dark
and light areas are in "significant" patches rath-
er than random.

In other cases, more special techniques
were used which depended on particular relation-
ships between fields. Generally, these special
techniques were applied to fields where it was
possible to derive one field from one or more
others, and for infrequently appearing fields.

Statistical Techniques

Alphanumeric Coding -- Within this class
of techniques one in particular was the most im-
portant contributor to data cor~oression because it
applied to the greatest number of long fields. It
is called Reduced Alphanumeric Image (RAI) or com-
pact coding technique. In it, the actual frequen-
cy of occurrence for each character (obtained by
sampling the file) is used to derive a variable
length binary code. To illustrate the process
consider the following example:

The HAl technique is demonstrated
by a si~ole case where the source alpha-
bet consists of only the four letters
"A" through '~D" and a space character as
a separator. The probability that the
next character of a string will be a
particular one is assumed to be the val-
ues shown in Table I.

208

TABLE I.

Character, C i -Pr°bability~ Pi

Space 0.4
A 0.2
B 0.2
C 0.i
D 0.i

A string of such characters contains a certain a-
mount of information (E) which may be cor~outed as
follows:

i=5

E = ~,pi l°g2 i

i=l Pi

For the assumed character set, "E" is approxi-
mately 2.1 bits. That is, on the average a char-
acter conveys 2.1 bits of information. It is gen-
erally not possible to achieve this degree of com-
pression with practical codes but it is possible
to approach the limit. For example, the binary
code shown in Table II will require 2.2 binary
digits, on the average.

TABLE II.

Character Code x Probability = Binary Digits,
Average

Space i 0.4 0.4

A 01 0.2 0.4

B 000 0.2 0.6

C 0010 0.i 0.4

D 0011 0.1 0.4

Total 2.2
Binary Digits,
Average

There are many sets of codes that are Just as com-
pact. Some others, shown along with the first ex-
ample, are set forth in Table III.

TABLE III.

Character Set I Set 2 Set 3 Set 4

Space i 0 00 Ii

A 01 i0 01 i0

B 000 ll0 l0 01

C 0010 lll0 ll0 001

D 0011 llll lll 000

Although these code sets are all equivalent in
tenT~ of compression achieved, some may be pre-
ferred in a particular situation to achieve pro-
cessing efficiency. Set2, for e~le, facili-
tates parsing a binary stream into codes using
sin~ole rules. The end of a character is denoted
by a zero, or the fourth binary digit, whichever
is first.

Even greater co~oression can be achieved
if the frequency of occurrence of character pairs
is also considered. To illustrate, if the letters
"B" and "C" occur the same number of times as they
do in the above example, but "C" always Jm~nediate-
ly follows "B", then the same character set can be
coded in an average of 2.1 binary digits instead
of 2.2 by including the character "BC" and elimin-
ating the character "C".

d

This somewhat more advanced approach was,
in fact, used for certain pairs in name fields.
The format for names in both the original and com-
pressed Master File was:

Last, first e.

Due to the format, the two pairs ",b" and ".#"
occur frequently where the "b" and ~#" symbols
represent blanks and end-of-~ield respectively.
It was found advantageous to code these and i0
other pairs as unique "characters". For the ac-
tual character, frequencies, probabilities and
codes used, see Exhibit AI. Using this code, an
average of 4.14 binary digits are required to en-
code one source character from a set of 43 charac-
ters. The letter frequencies found for names

209

differ significantly from the frequencies reported
previously in english text by Nugent and Vegh (13).

Character frequencies for address data
differ significantly from those of name data and
a different code set was used. Some of the dif-
ferences are to be expected because street ad-
dresses are usually in the format:

nnn streetname st.

where '~" is a decimal digit between 0 and 9.
Note that a sequence of 2, 3, or 4 digits followed
by a space or N,E,S or W would be comon, so that
a code prefix subset and a teletype-like shift
character would provide quite compact coding.
Note also that the last four characters "bst."
could be expected to occur frequently and so code
efficiency could be i~proved by coding the se-
quence as a single character. These expectations
were verified by a sample count on address fields
and the resulting code set is shown in Exhibit A2
for the prefix code subset and Exhibit A3 for the
suffix subset. Taken together, these codes use
3.79 binary digits, on the average, to encode each
character.

The procedure for decompressing RAI
code is interesting because it is surprisingly
fast and efficient. Logically, one would think of
scanning the bit stream to determine the end of a
character and then to translate it into the normal
I~Mmachine code. Because of the unique design of
the RAI code, however, these steps can be combined.

From Exhibit AI another table (IV) can
be constructed by using the first four bits of
each code as a number and multiplylng by four to
form an address (see Table IV opposite).

This table is imbedded in the decom-
pression program in a slightly different form
which permits direct translation. In the case of
a 4 bit code, the address in bytes allows a direct
Jump to the table location which contains an in-
struction that places the correct character to be
added to the output (decon~ressed) character
stream. In those cases where the code is more
than 4 bits, the instruction placed in the table
transfers control to an instruction which looks at
additional bits before translating. Note that

Address

0
4
8

12
16
2O
24
28
32

TABLE IV.

Character or
Character Pair

,k
E
S
A
b

M/

36 L
36 C
40 0
4O T
44 ER
44 R
48 H
48 D
52 .#
52 B

56
56
56

60 IN
60 U
6O AN
Etc. Etc.

Con~nent

Four bit codes can
be translated
directly.

Five bit codes
require examination
of the next bit in
the stream.

Six bit codes
require examination
of the next two
bits in the stream.

Etc.

from the first four bits of the code, or table ad-
dress, the code length is determined, thus avoid-
ing iterations. Note also that since the charac-
ters are ordered by frequency of occurrence, and
that characters "~" through '~" account for al-
most 40% of the characters to be translated, 40%
of the time the translation will be accomplished
with one step.

210

Other Statistical Coding Techniques --
Two other techniques were used which take advan.-
tage of the statistical characteristic of the
characters to be coded. Rather than using con-
ventional 8 bit bytes or packed formats for num-
bers, binary codes were used where fixed length
fields were desired. Greater compression resulted
as compared with the RAI code technique. A se-
quence code, for example, was reduced from 2 bytes
to 7 binary digits using this technique.

A Table-lookup technique was also used
where the range of a field was much greater than
the number of values it could contain. For ex-
ample, certain names were in the uncompressed file
which required 30 characters, yet only a few ac-
tual names existed (repeated many times). Certain
types of codes also fell into this category and
are recorded in the compressed file in shorthand
notation. In one case, only 6 binary digits were
required to store what originally required 2 bytes.

Compression Module Integration

Assembly language routines were written
for each of the five techniques described above
which intercept and compress data from application
programs to be stored on disk. Additional rou-
tines intercept read requests and expand it into
the format expected by the application program.
These routines were linked to the application pro-
grams as subroutines and although this necessi-
tated recompilation, no significant progranmling
changes were necessary.

Compressed Record Formats

The increased use of variable length
fields, partly caused by variable length binary
codes, meant that selection of an optimum fixed
record length was difficult. A statistical ar~l-
ysis was made of the cumulative effect of the
various contributions to variability with the re-
suit that a base record length of 60 bytes (as
compared with the original 280 bytes) was optimum
and that, to a very high degree of confidence,
only one trailer record would ever be required to
aceormnodate overflow.

For simplicity, the compressed fields
are placed in the new record in groups according

to the compression technique employed. Since the
variable and fixed length fields are segregated,
there is little problem in calculating field
boundaries so that the overload implied by decom-
pressing variable length fields is small.

Record keys are similarly segregated and
begin at a fixed place in the record. This is
useful because most references to the file only
require that the record key be known, since the
most frequent task of the system is to search for
matches on keys. To avoid unnecessary decompres-
sion, then, the search arguments themselves are
compressed, and the search (actually performed by
the ISAMmodules) compares compressed data. De-
compression is only performed after a "hit" has
been found.

Great care was taken in the design and
selection of the compression techniques applied to
the record keys. Most significant was the concern
for collating sequence and fixed length compres-
sion. Since ISAM requires that record keys adhere
to fixed byte boundaries, there is a need to uti-
lize techniques that will result in a fixed length
compression of the record keys. The requirement
to increase the compressed keys to the next byte
boundary usually results in some latitude in the
selection of techniques without penalty of added
bytes and has made it possible to select tech-
niques that will maintain the collating sequence
of the original data. By maintaining the original
file collating sequence, no special processing for
conversion and file reorganization was required.

IV. Results

As mentioned above, the basic record was com-
pressed from 280 bytes to 60 bytes, a ratio of 4.7
to i. Or saying it another way, the record was
compressed to 21% of its original volume with no
loss of information. Since trailer records will
be about as frequent in the compressed format as
they were in the uncompressed, the total volume of
the Master File has been compressed from 250 mil-
lion bytes to 54 million bytes. This means that
the Master File, which originally was physically
stored on a Data Cell, can now be held in less
than two disk drives of an IH~/2314.

This compression was obtained for two main

211

reasons. First, the "empty space" or blanks in
the original records, primarily from unfilled
fixed length fields containing variable length in-
formation, has been eliminated. Or more accurate-
ly, it has been eliminated from the individual
fields and accumulated at the end of each record.
This agglutination process results in less "empty"
space because it is effectively shared by several
fields, ~.~th longer than average fields consuming
the space unused by shorter than average ones.

Second, the information stored in a record
requires less space because more compact coding
has been used. Overall, an average of 4.03 bina-
ry digits are required to record a character in
name and address fields in the compressed record,
as compared with almost 8* in the original Master
File. Codes, amounts and other special fields
required even fewer binary digits per character.

* Less than 8 binary digits were required because
some fields used a packed format.

In addition to the elimination of empty space
within fields, some fields were eliminated in
their entirety. It was found that certain fields
contained redundant information which existed in
other fields. Often, the redundant information
was generated within the system prior to storing
the data rather than at output time. The data
elimination in these fields is technically trivial,
but produces small but significant results since
reduction to zero represents infinite compression
and major storage savings. Data compression
studies usually act as a catalyst and result in
constructive user attitudes and significant reduc-
tions in record content by elimination of unneeded
information identified and volunteered by the
users themselves.

A surmmq~y of the compression achieved is
shown in Table V. The three general categories
mentioned above (empty space, reduced representa-
tion, and elimination) are shown with the sub-
division into the various techniques comprising
reduced representation. The reader may note that
it was not possible to eliminate all empty space
since the DOS-ISAM enviror~nent requires fixed
length records.

Technique

Eliminated H~ty Space

Reduced Representation

RAI Coding
Decimal to Binary
Table Look-up
Differencing

Sub Total

Field Elimination

Total Con~resslon

TABLE V. SUMMARY OF COMPRESSION

Original Storage Compressed Storage
In Bytes In Bytes

123.6 6.6

67.4 34.0 33.4
25.0 8.5 16.5
14.0 5.9 8.1
24.0 5.0 19.0

130.4

26.0

280.0

53.4

0.0

60.o

Net Savings
In Bytes

Savings as % of
Original Record

i17.0 41.8

77.0

26.0

220.0

11.9
5.9
2.9
6.8

27.5

9.3

78.6

212

Operationally, programs which originally re-
qulred about one hour to run, require only about
I0 minutes with the compressed file. Of course,
part of this in~orovement comes from use of a
faster storage device made economically possible
by compression. If the device component of the
performance increase is removed, it is estimated
that the performance of the system would be about
the same as with the original file. That is, the
compression and decompression CPU overhead is off-
set by improved channel and buffer performance.

The assembly language compression routines
were written carefully to avoid waste space since
limited core was available. As a result, the to-
tal area required for the five techniques, tables,
and working storage were approximately 5k bytes.

In conclusion, this compression effort is
considered successful from technical and economic
viewpoints and demonstrates the feasibility of
retroactively applying data compression tech-
niques in a comercial enviror~nent.

REFERENCES

(i) DE MAINE, P.A.D. : SPRINGER, G.K. The COPAK
Compressor. In: File Organisation. Selected
papers from File 68 -- An IAG Conference,
Swets and Zeitlinger N.V., Amsterdam, 1969,
149-158.

(2) GAINES, H~L~N FOUCH~. Cryptanalysis, Dover,
New York, 1956.

(3) KAHN, DAVID. The Codebreakers, MacMillan
Company, New York, 1967.

(4) KALLAB, J. A linear geographical code for
~nagement information systems. In: Compu-
ters and Automation. 17, 4 (April 68) 24-30.

(5) KENYON, W.S. Errors in Transmission of Com-
pressed Data, PhD Thesis, Princeton Univ.,
Princeton, New Jersey, 1968.

(6) KERPEI~, C. (Ed.) Proposed American Na-
tional Standard; Identification of States ..
...for Information Interchange. In: Co~nun-
ications of the ACM, Vol. 13, No.8 (Aug.70),
514-515.

(7) KU~IM, L. Coding of gra~vatical data.
In: Sprachkunde und Infor~ationsverarbeitung.
No.l, 1963, 45-47 (Ge~an).

(8) LOHSE, E. (Ed.). Data code for calendar date
for machine-to-machine data interchange. In:
Con~nunlcations ACM. II, 4 (April 68) 273-274.

(9) MARRON, B.A. : DE MAINE, P.A.D. Automatic
data compression. In: Co~nunications of the
A.C.M. 10, (November 1967), 711-715.

(10) MAURER, W.D. File compression using Huff~a~n
coding. In: Computing Methods in Optimiza-
tion Problems, Vol.2, 247-256. Second In-
ternational Conference on Computing Methods
in Optimization Problems, San Ramo, Italy,
September 1968, Academic Press, New York 1969.

(ll) N ~ , P.G. Efficient Error-llmlting Vari-
able-length Codes. Thesis, Harvard Univer-
sity, Cambridge, Mass., 1961.

(12) NUGENT, W.R. Compression word coding tech-
niques for information retrieval. In:
Journal Library Automation i, 4 (Dec.68),
250-260.

(13) NUGENT, W.R. : VEGH, A. Automatic word cod-
ing techniques for computer language pro-
cessing. In: RADC-TDR-62-13, Vols. i, 2.

(14) OVERHAGE, CARL F.J. (Ed.) Project INTREX
Semiannual Activity Report PR-9, March 15,
1970, M.I.T., Page 28.

(15) PRAT~, FLETCHER. Secret and Urgent, The
Story of Codes and Ciphers, Blue Ribbon
Books, Garden City, New York, 1939.

(16) SCHWARTZ, E.S. A Dictionary for Minimal Re-
dundancy Encoding, JACM i0, (1963) 413-439.

(17) SCHWARTZ, E.S. : KLEIBOI~ER, A.J. A language
element for compression coding, In: Informa-
tion and Control, i0, 3 (March 67) 315-333.

(18) SNYDERMAN, MARTIN: HUNT, BERNARD. The
myriad virtues of text compaction. In: Da-
tamation, 16, 16(I December 70), P. 36.

(19) VERHOEFF, J. Error detecting and correcting
codes for the decimal number system. In:
Proceedings International Symposium on Auto-
marion of Population Register Systems, Vol.
I, 447-454.

(20) WRIGHT, M.A. Mechanizing a large index;
appendix: the soundex code. In: The Com-
puter Journal, 3(July 1960), p. 83.

213

EXHIBIT AI

SOURCE ALPHABET AND CODES
USED FOR NAME FIELDS

Character Frequency Probability Code

sb
E
S
A
b
I

M
L
C
O
T
ER
R
H
D
.#
B
P
G
AR
W
IN
U
AN
Y
N
AL

21.654
21 572
17.718
17 381
16.914
14.523
14.309
13 990
13,779
12 078
ii 856
ii 853
i0 967
i0 860
i0 747
i0 318
9,701
7,532
7,319
7,191
7,014
6,122
5,983
5,768
5,626
5,414
5,203
4,850

Character

.08726 0000 J

.06231 0001 ON

.06208 0010 IL

.05099 0011 K

.O5OO2 0100 F

.04867 0101 EL

.04180 0110 OR

.04117 0111 EN

.04026 I000 V

.03966 I0010 -

.03475 i0011 Z

.03412 i0100

.03411 i0101 X

.03156 i0110 7

.03125 i0111 Q

.03093 ii000

.02969 ii001 1

.02792 ii010 9

.02167 ii011 6

.02107 iii000 ,

.02069 iii001 3

.02018 iii010 5

.01762 iii011 4

.01721 iiii000 2

.01660 iiii001 8

.01619 llll010 &

.01558 iiii011

.01498 iiiii00

.01395 lllll01 Totals

Frequency

4,669
4,204
4,005
3,927
3,412
3,372
3,227
3,084
2,666
2,381
2,002
1,000

499
123
117
102
97
51
24

221
19
16
15
15
6
1

347,497

Probability Code

.01344

.01210

.01152~

.01130

.00982

.00971

.00928

.00888

.00767

.00685

.00576

. 0 0 2 8 8

.00143

.00035

.00033

.00029

.00028

.00015

.00007

.00064

.00005

/
.99969

iiiiii0
iiiiiii

0000
0001
0010
0011
0100
0101
0110
0111
i000

1oo1o
i0011
i0100
i0101
i0110
i0111
ii000
ii001
ii010
ii011

iii000
iii001
iii010
iii011

iiii000
iiii001

214

Character

EXHIBIT A2

PREFIX CODES
USED IN ADDRESS FIELDS

Frequency Probability

29,500 .1965
24,010 .1600

1 14,693 .0980
2 12,945 .0863
3 9,196 .0612

9,000 .0600
5 7,907 .0527
0 7,639 .0508
4 7,319 .0487
6 5,858 .0397
7 4,607 .0307
8 4,229 .0282
N 4,000 .0267
9 3,534 .0235
W 1,500 .0100
S 1,500 .0100
E 1,500 .0100

Totals 148,937 .9930

Code

000
001
010

0110
0111
i000
i001
I010
i011

ii000
ii001
ii010
ii011
iii00
iii01
iiii0
iiiii

EXHIBIT A3

SUFFIX CODES --USED FOR ADDRESS

Character

E
R
T
N
A
bST.#

0
S
L

D

I
H
C
M
W
G
g

P
B
bArE.#
K

Y
F
V
s

0
1
2
3
4
5
6
7
8
9
J
Z

X
Q
@
&

T o t a l s

Frequency

18824
15 931
15,866
14,489
13,633
12,500
12,220
11,898
11,196
9,875
8,510
8,416

7,748
7,397
5,021
4,256
3,727
3,509
3,449
3,278
3,149
3,000
2,601
2,430
2,354
2,235
1,702

974
80O
8OO
8OO
80O
8O0
800
8O0
80O
800
800
441
410
257
249
121
42
00

219,708

FIELDS

Probability Code

.0858 0000

.0726 0001

.0723 0010

.0660 0011

.0622 0100

.0570 0101

.0557 0110

.0542 0111

.0510 i000

.0449 I0010

.0387 i0011

.0383 i0100

.0360 i0101

.0352 I0110

.0337 I0111

.0228 ii000

.0194 ii001

.0170 ii010

.0160 ii011

.0157 iii000

.0149 iii001

.0143 iii010

.0137 iii011

.0118 iiii000

.0111 iiii001

.0107 iiii010

.0102 iiii011

.0078 iiiii00

.0044 iiiii01

.0036 iiiiii0

.0036 1111111

.oo3~\ oooo

.0036 i 0001

.0036~ 0010

.0037| 0011

.0036~ 0100

.0036~ 0101

.0037~/~ 0110

.0036 / / 0111

. o o 2 o (1ooo

.0019| i0010

. 0 0 1 2 ~ 10011

.0011 ' L 10100

.0005 ~ I0101

.0002 / i0110

.0000_/ i0111

1.0006

215

