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Abstract

Timely detection of changes in traffic is critical for initiating appropriate traffic engineer-
ing mechanisms. Accurate measurement of traffic is an essential step towards change detection
and traffic engineering. However, precise traffic measurement involves inspecting every packet
traversing a link, resulting in significant overhead, particularly on routers with high speed links.
Sampling techniques for traffic estimation are proposed as a way to limit the measurement
overhead. Since the efficacy of change detection depends on the accuracy of traffic estimation,
it is necessary to control error in estimation due to sampling. In this paper, we address the
problem of bounding sampling error within a pre-specified tolerance level. We derive a relation-
ship between the number of samples, the accuracy of estimation and the squared coefficient of
variation of packet size distribution. Based on this relationship, we propose an adaptive random
sampling technique that determines the minimum sampling probability adaptively according to
traffic dynamics. Using real network traffic traces, we show that the proposed adaptive random
sampling technique indeed produces the desired accuracy, while also yielding significant reduc-
tion in the amount of traffic samples. We also investigate the impact of sampling errors on the
performance of load change detection.

1 Introduction

With the rapid growth of the Internet, traffic engineering has become an important mechanism to
reduce network congestion and meet various user demands. Measurement of network traffic load
is crucial for configuring, managing, pricing, policing, and engineering the network. The network
traffic may fluctuate frequently and often unexpectedly for various reasons such as transitions in user
behavior, deployment of new applications, changes in routing policies or failure of network elements.
It is a daunting task for network administrators to manually tune the network configuration to
accommodate the traffic dynamics. Thus, there is a need for tools that enable intelligent control
and management of high speed networks.

Many practical problems arising in network performance monitoring and management are due
to the fact that changes in network conditions are observed too late. Moreover, the exact time of a
change may not be readily available. Such information on change point can help locate the source
of change and initiate an appropriate action to deal with the change. In other words, detection of
abrupt changes is an important first step towards reacting to changes by invoking the necessary
traffic engineering mechanisms. The problem of change point detection can be addressed using
time series analysis of traffic loads. Clearly, accurate measurement of traffic is a pre-requisite
for identifying the point of change. Most traffic measurement tools require a network device to



capture and store every single packet traversing a link. With today’s high-speed links, such an
approach is not feasible. It not only taxes the processing capacity of routers or requires special
measurement devices, but also generates huge volumes of data that can quickly exhaust storage
space. Furthermore, it is extremely time-consuming to process large volumes of captured data,
especially if on-line analysis of the data is needed to determine the traffic loads and detect changes in
traffic loads on-the-fly. Sampling techniques are therefore a better alternative. However, sampling
inevitably introduces errors in the traffic load estimation. Such errors may adversely affect the
change point detection of traffic loads.

In this paper we develop an adaptive random sampling technique for load change detection
using sampled traffic measurement. Our adaptive random sampling technique differs from existing
sampling techniques for traffic measurement in that it yields bounded sampling errors within a pre-
specified error tolerance level. Such error bounds are important in reducing the “noise” in change
point detection with sampled traffic measurement. Furthermore, the pre-specified error tolerance
level allows us to control the performance of load change detection algorithms as well as the amount
of packets sampled. The paper is devoted to the analysis and verification of the proposed adaptive
random sampling technique and the impact of sampling errors on the performance of traffic load
change detection. Our contributions are summarized as follows.

We observe that sampling errors in estimating traffic load arises from dynamics of packet sizes
and counts, and these traffic parameters vary over time. Consequently, static sampling (i.e., with a
fixed sampling rate) cannot guarantee errors within a given error tolerance level. From analysis, we
find that the minimum required number of samples to bound sampling error within a given toler-
ance level is proportional to the squared coefficient of variation (SCV') of packet size distribution.
Using this relationship, we propose an adaptive random sampling technique that determines the
(minimum) sampling probability adaptively based on the SCV of packet size distribution and the
packet count. More specifically, time is divided into (non-overlapping) observation periods (referred
to as (time) blocks), and packets are sampled in each observation period. At the end of each block,
in addition to estimating the traffic volume of the block, the SCV of packet size distribution and
the packet count of the block are calculated using the traffic samples. These traffic parameters are
used to predict the SCV of packet size distribution and the packet count of the next block, using
an Auto-regressive (AR) model. The sampling probability for the next block is then determined
based on these predicted values and the given error tolerance level. The procedure is depicted in
Figure 1. Through analysis, we quantify the estimation and prediction errors introduced by our
sampling technique, and devise mechanisms to control their impact on the traffic load estimation.
Using real network traffic traces, we show that the proposed adaptive random sampling technique
indeed produces the desired accuracy, while at the same time yielding significant reduction in the
amount of traffic samples. For the time series of estimated traffic load, we present a non-parametric
on-line change point detection algorithm based on singular value spectrum analysis. The algorithm
finds nonstationarities in traffic loads at some larger, configurable operational time scale using sam-
pled measurements obtained at each (smaller time-scale) observation period. The basic approach
is depicted in Figure 2. We investigate the impact of sampling errors on the performance of this
load change detection algorithm using real network traffic traces.

Before we leave this section, we would like to comment that in the context of traffic measurement
and analysis, several sampling methods have been proposed and studied for various applications.
Statistical sampling of network traffic was first used in [10] for measuring traffic on the NSFNET
backbone in the early 1990’s. Claffy et al. evaluated classical event and time driven static sampling
methods to estimate statistics of distributions of packet size and inter-arrival time. Trajectory
sampling proposed in [5] directly observes the entire traffic traversing through a network domain,
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Figure 1: Adaptive random sampling. Figure 2: System model.

and infers statistics on the spatial relations of the network traffic. A size-dependent flow sampling
method is proposed in [1] for the purpose of usage-sensitive charging. In [2], the problem of
identifying large flows is studied. A probabilistic packet sampling method is used to identify large
flows and sampling probability is computed for each packet based on its size. This method requires
each packet header to be inspected. None of these sampling techniques address the issue of bounding
sampling errors in random packet sampling, and thus cannot be applied to change point detection
with sampled traffic loads.

The remainder of the paper is structured as follows. In Section 2, we formally state the problem
addressed in this paper. In Section 3, the adaptive random sampling technique is described and
analyzed. Experimental results with real network traffic traces are presented in Section 4. We
present the change point detection algorithm with sampled measurement in Section 5. Section 6
concludes the paper.

2 Sampling Problem for Load Change Detection

In this section we first formulate the sampling problem for detecting abrupt changes in traffic
loads. We then derive a lower bound on the number of samples needed to estimate the traffic load
accurately within a given tolerance level. Based on this, we determine the sampling probability
that is optimal in the sense that it guarantees the given accuracy with the minimum number of
samples. The optimal sampling probability depends on both the number of packets and the variation
in their sizes in an observation period. We see that the network traffic fluctuates significantly
over time in terms of both the number of packets and their sizes. Hence, the optimal sampling
probability also varies over time. This suggests that static sampling with fized sampling probability
may result in either erroneous undersampling or unnecessary oversampling. In other words, static
sampling cannot capture the traffic dynamics accurately or efficiently. This motivates us to develop
an adaptive random sampling technique that attempts to minimize the sampling frequency while
ensuring that the sampling error is bounded.

2.1 Bounding Sampling Errors in Traffic Load Estimation

Traffic load is the sum of the sizes of packets arriving during a certain time interval. Thus, traffic
load is determined by both the number of packets and their sizes. In determining the traffic load,
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Figure 3: Impact of packet size and packet count on traffic load.

the variability of packet sizes is often overlooked and only packet count is considered. However, as
noted in [20], average packet size plays an important role in estimating the traffic load. Consider,
for example, two network traffic traces captured at University of Auckland [8] to US link. The time
series plots of the traffic loads of the two traces (I14 and II5 in Table 2 are shown in the top row of
both Figure 3(a) and 3(b). The plots in the middle row show the average packet sizes over time,
while the plots in the bottom row show the packet counts over time. From Figure 3(a), we see that
the increase in the traffic load around 1000 sec is due to the increase in the packet size rather than
the packet count. On the other hand, the abrupt increase in the packet count near 2 x 10* sec
in Figure 3(b) does not lead to any increase in the traffic load, since the packet sizes at the time
are extremely small. These examples illustrate that the variation in packet sizes is an important
factor in estimating the traffic load using sampling. In fact, we will show later that the variation
in packet sizes is the key factor in determining the sampling rate and for controlling the accuracy
of load estimation.

The reason that we highlight the factors that affect the traffic load estimation using sampling
is that accurate estimation of traffic load is crucial in detecting changes in traffic loads. For change
point detection, the series of the estimated traffic loads must retain the change or stability of the
original traffic. Significant sampling errors in traffic load estimation can distort the original “signal”
and lead to false alerts that may adversely affect the performance of networks, for instance, if they
inadvently trigger inappropriate traffic engineering mechanisms. Hence quantifying and bounding
sampling errors is critical in applying sampling techniques to traffic load estimation for the purpose
of load change detection.

Time series analysis requires that observations be uniformly spaced in time. Packet arrivals at
a link in the Internet are by nature irregularly spaced in time and so are the packet samples. To
obtain a uniformly spaced time series, traffic loads can be estimated from packets sampled during
(non-overlapping) observation periods of fixed length (see Figure 1). We refer to an observation
period as a (load estimation) ¢time block, or simply block. The length of a block is denoted by B,
which can be configured depending on the specific engineering purposes. To preserve the trend of
the original traffic load, the sampling error in each block must be bounded quantitatively. In the
following we state the problem of bounding sampling errors in traffic load estimation formally.



Assume that there are m packets arriving in a block, and let X; be the size of the ith packet.
Hence the traffic load of this block is V' = >/, X;. To estimate the traffic load of the block,
suppose we randomly sample n, 1 < n < m, packets out of the m packets. In other words, each

packet has an equal probability p = n/m to be sampled. Let Xj, j=1,2,...,n, denote the size of
the jth sampled packet. Then the traffic load V' can be estimated by 1% using the samples, where
where V is given by

V=", (1)

It can be shown that V is an unbiased estimator of V, i.e., E[V] — V = 0.

Our objective is to bound the relative error ‘ V‘;V‘ within a prescribed error tolerance level given

by two parameters {n,ec} (0 <n,e < 1), ie.,

V-V
P

In other words, we want the relative error in traffic load estimation using random sampling to be
bounded by € with a high probability 1 — 7. Given this formulation of the bounded error sampling
problem, the question is what is the minimum number of packets that must be sampled randomly
so as to guarantee the prescribed accuracy. We address this question in the following subsection.

>€} <. (2)

2.2 Optimal Sampling Probability and Limitations of Static Sampling

From the central limit theorem of random samples [3], as the sample size n — oo, the average of
sampled data approaches the population mean, regardless of distribution of population. Thus (2)

can be rewritten as follows:
V-V 1 &
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V
where p and o are, respectively, the population mean and standard deviation of the packet size
distribution in a block, and ®(-) is the cumulative distribution function (c.d.f) of the standard
normal distribution (i.e.,N(0,1)). Hence, to satisfy the given error tolerance level, the required
number of packet samples must satisfy
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where z, = (f) and S = (o/u)* is the squared coefficient of variance (SCV') of the packet

size distribution in a block. Eq. (4) concisely relates the minimum number of packet samples to
the estimation accuracy and the variability in packet sizes. In particular, it states the minimum
required number of packet samples, n*, is linearly proportional to the squared coefficient of variance,
S, of the packet size distribution in a block.

From (4) we conclude that the optimal sampling probability, p*, which samples the minimum
required number of packets in a block, is given by

* n*
pt=—. (5)
m
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Figure 4: Adaptive random sampling vs. static random sampling ({n,e} = {0.1,0.1}).

Hence, to attain the prescribed sampling accuracy {n,e}, packets in a block must be sampled
randomly with a probability at least p*. Note that to determine the optimal sampling probability
p*, we need to know the actual SCV of the packet size distribution and the packet count m in
a block. Unfortunately, in practice these traffic parameters of a block are unknown to us at the
time the sampling probability for the block must be determined. To circumvent this problem, in
Section 3 we develop an AR (Auto-regressive) model to predict these parameters of a block based
on past sampled measurements of previous blocks. Before we proceed to present this model, we
would like to conclude this section by discussing the limitations of static sampling.

Static sampling techniques such as “one-out-of-N” sampling are commonly employed in routers,
as they are simple to implement. For example, Cisco’s Sampled NetFlow [7] introduced in 10S
12.0(3)T samples one packet out of every N IP packets for flow statistics. More generally, static
random sampling technique randomly samples a packet with a fized probability. Both techniques
do not take traffic load dynamics into account, thus when applied to traffic load estimation, they
cannot guarantee that the sampling error in each block falls within a prescribed error tolerance
level. Furthermore, it is difficult to determine what is the appropriate fixed sampling probability
(or the value for N in “one-out-of-N” sampling) to be used for all blocks.

To help illustrate the importance of adjusting sampling probability to packet size variability,
in Figure 4 we compare the optimal adaptive random sampling technique to the static random
sampling technique using the Auckland trace II; shown in Table 2. To make fair comparison, the
fixed sampling probability for the static random sampling technique is set such that the sampling
fraction (i.e., the amount of sampled data) over the entire trace is the same as that under the
optimal adaptive random sampling technique. The top plot in Figure 4 shows the optimal sampling
probability used by the adaptive sampling technique over time (the block size B = 300sec) as well
as the fixed sampling probability used by the static random sampling. The middle plot shows the
resulting relative errors by both sampling techniques. The bottom plot shows the SCV of the
packet sizes across the blocks.

From the figure we see that when the variability of packet size distribution of a block is large,
static random sampling tends to undersample packets, resulting in large estimation errors. This
may lead to false alarm or non-detection by a load change detection algorithm. On the other hand,
when the variability of packet size distribution of a block is small, static random sampling tends to
oversample packets, thereby wasting processing capacity and memory space of the measurement de-
vice. Moreover, the frequent oscillation between oversampling and undersampling of static random



Table 1: Notation.

Sk | SCV of the population of kth block

S; | SCV of the samples of kth block

S; | predicted SCV of the samples of kth block

ny, | minimum number of samples needed in kth block

ny | predicted minimum number of samples needed in kth block
ng | actual number of samples in kth block

my, | actual number of packets in kth block

my. | predicted number of packets in kth block

sampling causes undesirable increase in the variance of estimation errors. This example demon-
strates that in order to ensure a desired accuracy in traffic load estimation while without resorting
to unnecessary oversampling, packet sampling probability for each block must be adjusted in ac-
cordance with the traffic load dynamics. This is the essential idea behind our proposed adaptive
random sampling technique. The key challenge remains to be addressed is how to determine the
(optimal) sampling probability for each block without a priori knowledge of the traffic parameters
— the SCV of packet size distribution and packet count of a block. The next section is devoted to
the analysis and solution of this problem.

3 Adaptive Random Sampling with Bounded Errors

In this section we present an AR (Auto-regressive) model for predicting two key traffic parameters
for traffic load estimation the SC'V of packet size distribution and packet count of a block using
past (sampled) data from previous blocks. The AR model is justified by empirical studies using
real network traffic traces. In addition to estimation errors due to sampling, the prediction model
also introduces prediction errors. We quantify and analyze the impact of these errors on the traffic
load estimation and discuss how these errors can be controlled.

3.1 AR Model for Traffic Parameter Prediction

The efficacy of prediction depends on the correlation among the past and future values of the
parameters being predicted. We have analyzed many public-domain real network traffic traces, a
subset of traces we studied is listed in Table 2. We found that the SCV’s of the packet sizes of two
consecutive blocks are strongly correlated; the same is also true for the packet counts, m’s, of two
consecutive blocks. As an illustration, Figures 5(a) and 5(b) show, respectively, the scatter plots of
SCV and m of two consecutive blocks (the block size B = 60sec) using the trace II4 in Table 2. It
is evident that the values of SC'V and m of two consecutive blocks are highly correlated. In fact,
there is a strong linear relationship between these values.

As a further justification, we remark that the predictability of network traffic has also been
studied by other researchers. For instance, in [11] the authors investigated the questions of how far
into the future a traffic rate process can be predicted for a given error constraint, and how much
the prediction error is over a specified number of future time intervals (or steps). They showed
that prediction works well for one step into the future, although the prediction accuracy degrades
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Figure 5: Relationship between past and future values of SCV and packet count.

quickly as the number of steps increases. In the context of our work, note that we only need to
predict the traffic parameters for the next step (i.e., the next block).

The strong linear relationship evident in Figures 5(a) and 5(b) suggests that linear regression
can be used for the prediction of the SCV of packet sizes and packet count m of a future block
using the values of the previous blocks. We employ an AR (Auto-regressive) model for predicting
the traffic parameters SC'V and m, as compared to other time series models, the AR model is easier
to understand and computationally more efficient. In particular, using the AR model, the model
parameters can be obtained by solving a set of simple linear equations [4], making it suitable for
online traffic load estimation. In the following we formally describe the AR model for the traffic
parameter prediction.

We first present an AR(u) model for predicting the SC'V of the next block using the SCV of
sampled packet sizes of the u previous blocks. The notation used here and in the rest of this paper
is summarized in Table 1. Let Sj be the SC'V of the packet sizes in the kth block, and S} be the
SCV of the packet sizes randomly sampled in the kth block. We can relate Sj and S}, as follows:

St = Sk + 7 (6)

where Z; denotes the error in estimating the actual SCV of the packet sizes using the random
packet samples. (We refer to Zy as the estimation error.)

Using the AR(u) model [4], S} can be expressed as

u
Sp=2_aiSi_i+e; (7)
i=1
where a;, i = 1,...,u, are the model parameters, and e is the uncorrelated error (which we refer

to as the prediction error). The error term ej follows a normal distribution with mean 0 and
variance var(e}) = 0?92 (1—3Ci1 ajps;,i)- Here pgs ; is the lag-1 autocorrelation of Sj’s. The model
parameters a;, 1 = 1,...,u, can be determined by solving a set of linear equations (8) in terms of
v past values of S;’s, where v > 1 is a configurable parameter independent of u, and is typically



referred to as the memory size.

u
Pn = Z aipn_i, where h =v,...,v —u+ 1 and py is lag-h autocorrelation of the data (8)
i=1

Using the above AR(u) model, at the end of the (k — 1)th block, we predict the SCV of the
kth block using the SCV values of the sampled packet sizes of the u previous blocks as follows:

Sh=>_a}Si_; (9)
i=1
Combining (6), (7) and (9), we have
5 = Sy + Z), + €. (10)

Hence we see that there are two types of errors in predicting the actual SCV of the packet size of
the next block using the sampled packet sizes of the previous blocks: the estimation error Zj due
to random sampling, and the prediction e, introduced by the prediction model. The total resulting
error is Zj + ej,. In Section 3.2 we analyze the properties of these errors and their impact on the
traffic load estimation.

We now briefly describe how the packet count my of the kth block can be estimated based on
the past packet counts using the AR(u) model. Let my denote the packet count of the kth block,
then using the AR(u) model, we have my = Y71 bymy_; + €y, , where as before b;, i =1,2,...,u,
are the model parameters, and e, is the prediction error term, which is normally distributed
with zero mean. Let 7 denote the predicted packet count of the kth block. Using the the AR (u)
prediction model, we have rh, = > i bimg_,.

As in the case of predicting SCV of the packet sizes using the AR(u) prediction model, the
prediction of the packet count using the past sampled packet counts introduces both estimation error
and prediction error. However, in the case of predicting the packet count m, it is not unreasonable
to assume that the actual packet count of a block is known at the end of the block. This is because
in the modern commercial router design, a packet counter is often included in the line card of a
router, as such a packet counter does not overly burden a router in terms of both processing and
memory capacities!.

In this case, we can predict the packet count of the next block using the actual packet counts of
the previous blocks. Namely, my = > ;" ; bymy_;. Hence only the prediction error is involved when
a packet counter is available. For simplicity, we will assume that this is the case our paper. (Note
that this assumption does not change the nature of the adaptive random sampling technique we
proposed, only simplifying the analysis of the sampling errors.) Given the predicted SV C of the
packet size distribution and packet count of the next block, we can now calculate the (predicted)
minimum number of required packet samples using (4) and the sampling probability for the next
block:

i = 2,55 and py = Z—Z (11)

!Observe the packet count of a block can be collected without inspecting the contents of a packet. Hence it does
not cause significant burden on routers. For example, consider a link with bandwidth 10Gbps. Suppose the worst
case where only the smallest IP packets (40 bytes) are arrived. Then, there can be at most 1.875G packets in a block
of 60 seconds. The size of counter needed is only 32 bits. If we assume that I instructions are needed to increment
the counter, then we need only 31.25 * I MIPS for maintaining the packet counter.
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The entire process of predicting traffic parameters SCV and m is depicted in Figure 6. Figure 7
shows the flow chart of the adaptive random sampling procedure. Using the AR prediction model,
at the end of each block, the model parameters (a;’s for SCV', b;’s for m) need to be computed. The
complexity of the AR prediction model parameter computation is only O(v) where v is the memory
size. Through empirical studies, we have found that small values of the memory size (around 5)
are sufficient to yield good prediction. Figure 9 depicts average AR predition error compared to
memory size using the trace II; (the block size B = 300sec).

3.2 Analysis of Errors in Traffic Load Estimation via Sampling

In this subsection we analyze the impact of estimation and prediction errors on the traffic load
estimation. We first study the properties of the errors introduced by the adaptive random sampling
process. We then establish several lemmas and theorems to quantify the impact of these errors on
the relative error in the traffic load estimation.

Recall from (10) that there are two types of errors in estimating the SC'V of the packets size
of the next block using the past sampled packet sizes: the estimation error Z; and the prediction
error ej,. From empirical studies using real network traces, we have found that the errors generally

10
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follow a normal distribution with mean 0. An example using the trace II; is shown in Figure 8(a),
we see that both the estimation error and prediction error as well as the total error (Zj + ej) have
a Bell-shape centered at 0. We have performed the skewness test and kurtosis test [19], and these
tests conform the normality of these errors. Similar empirical studies have also shown that the error
(em,k) in the packet count prediction is also normally distributed with zero mean. See Figure 8(b)
for an example using the same network traffic trace as in Figure 8(a).

The above results suggest that we can approximate both the estimation error and prediction
error using normal distributions with zero mean. This allows us to quantify the variance of the
errors introduced by the adaptive random sampling process. For example, assume, for simplicity ,
that an AR(1) model is used for predicting Sk, the SCV of the packet sizes of the kth block. Then
the variance of the prediction error, var(e}), is given by var(e}) = 0’%; (1 —afps;.1), where pgs 1 is

the lag-1 autocorrelation of S§. From (6) and (7), we have var(Z) = (a$)?var(S;_,) + var(e}) —
2

var(Sy). Given sufficient packet samples, var(S;_ ;) ~ var(S;). Thus var(Z;) = J%i((af)

afpsg,l)- Therefore the variance of the total error in predicting Sy, is

2 2
var(Zy) + var(ej,) = Usg(l —2aipss,1 + (ai)?). (12)
We now quantify the impact of these errors on the relative error in the traffic load estimation.
Define ny, = my, - :1’;, which is the actual number of packets randomly sampled (on the average)

in the kth block, given the (predicted) minimum sampling probability py = 7 /mg. Then the
estimated traffic load of the kth block is given

3

Vi =

Il

g R
ST X, (13)

where Xj denotes the packet size of the jth randomly sampled packet in the kth block.

Using the central limit theorem for a sum of a random number of random variables (see p.369,
problem 27.14 in [6]), we can establish the following two lemma and theorem. The proofs can be
found in the appendix.

Lemma 1 7% converges to 1 almost surely as nj — oc.
k

11



Theorem 2 With probability 1 — n, the relative error in estimating the traffic load Vi of the kth
block is

Vi —V, 1 1
AR < e —(1+ )Y +o(—)
Vi VZp m
+—1 (1+¢e)Y
~ 13 E
\V?p
©=(1-1/2)

2
where recall that z, = ( - ) , and Y is a normally distributed random variable with mean

0 and variance 1, i.e., Y ~ N(0,1).

Theorem 2 yields a theoretic bound on the variance of adaptive random sampling, i.e.,

V-V 1+¢)?
var ( D < (1+¢) with probability 1 — 7. (14)
v Zp

Notice that the variance of adaptive random sampling is independent of the distribution of objects
being sampled and is controllable by the accuracy parameter. On the other hand, the variance of
static random sampling depends on the SC'V and the number of samples. i.e.,

var H = war w i1 X = 2 Xy = var 7?:1)21
4 Y X nj

1\? 21 S
_ (_) meo?=L 222 (15)
T ne n n

The variance bound (14) of adaptive random sampling suggests that in order to accommodate the
prediction and estimation errors introduced by the traffic parameter predictions, we can replace
the error bound ¢ by a tighter bound &’:

(16)

where s is a small adjustment parameter that can be used to control the variance of the relative
€ITror.

4 Empirical Evaluation

In this section we empirically evaluate the performance of our adaptive random sampling technique
using the real network traces. The traces used in this study are obtained from NLANR [8], and
their statistics are listed in Table 2. In this study we have primarily used the long duration traces
(the Auckland-II traces) to produce more sound statistics and reliable results. But we have also
investigated the short duration traces from the higher speed links. We believe that the efficacy of
our adaptive random sampling technique as demonstrated in this section are applicable to other
traces. For consistency of illustration, the results shown in this section are based on the trace II;
unless otherwise specified.
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Table 2: Summary of traces used.

Trace name Trace Arrival rate Duration
I1; Auckland-IT 19991201-192548-0 92.49KBps | 24h 02m 58sec
11, Auckland-IT 19991201-192548-1 55.16KBps | 24h 02m 57sec
115 Auckland-IT 19991209-151701-1 49KBps | 23h 11m 38sec
Iy Auckland-IT 20000117-095016-0 168KBps | 2h 23m 15sec
115 Auckland-IT 20000114-125102-0 222.14KBps 21m 37sec
T AIX (OC12c) 989950026-1 25.36MBps 90sec
11, ATX (OC12¢) 20010801-996689287-1 | 21.60MBps 90sec
IIg COS (OC3c) 983398787-1 4.95MBps 90sec

To show the effectiveness of the prediction model used in our adaptive random sampling tech-
nique, we first compare the performance our technique with that of the ideal optimal sampling. In
the ideal optimal sampling, the optimal sampling probability for each block is computed using (5),
assuming that the SCV of the packet sizes and packet count of the block is known. The results
are shown in Figure 10. The figure on the top shows the time series of the original traffic load,
the estimated traffic loads using both the ideal optimal sampling and the adaptive random sam-
pling with prediction. For the accuracy parameters of {n,e} = {0.1,0.1}, the series are very close
and hardly differentiable visually. The figure on the bottom shows the cumulative probability of
relative errors in traffic load estimation for both the ideal optimal sampling and adaptive random
sampling with prediction. The horizontal line in the figure indicates the (1 — n)th quantile of the
errors. We see that for both the sampling methods, the traffic load estimation indeed conforms to
the pre-specified accuracy parameter, i.e., the probability of relative errors larger than ¢ = 0.1 is
around n = 0.1.

To further investigate the performance of the adaptive random sampling with prediction, in
Figure 11 we vary the error bound e (while fixing 7 at 0.1), and plot the corresponding (1 — 7n)th
quantile of relative errors. We see that the (1 —n)th quantiles of relative errors for the whole range
of the error bound 7 stay close to the prescribed error bound. For comparison, in the figure we
also plot the corresponding results obtained using the static random sampling. Here to provide fair
comparison, the (fixed) sampling probability of the static random sampling is chosen such as the
sampling fraction (or, the total amount of sampled data) over the entire trace is the same as that
of the adaptive random sampling. We see that for all range of the error bound, the static random
sampling produces a much larger the (1 — n)th quantile of relative errors.

Another key metric for comparing sampling techniques is the variance of an estimator [18].
Small variance in estimation is a desired feature of a sampling method in that the estimate is more
reliable when used in place of the value of a population. This feature is especially important when
the sampling method is applied to change point detection, since large variation in estimation may
cause outliers in the estimated signal, making it difficult to detect change points (see discussion
in Section 5). In Figure 12 we compare the standard deviation of the relative errors in traffic
load estimation for both the adaptive random sampling and the static random sampling. As the
figure shows, the variation of errors of the adaptive random sampling is always bounded within
the theoretic upper bound (14). On the contrary, due to frequent excessive undersampling and
oversampling (as noted in Section 2), the static random sampling has a much larger variation
of errors. In particular, the error variance of the static random sampling is always larger than
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the theoretic variance bound for the adaptive random sampling. In summary, the above results
demonstrate the superior performance of our adaptive random sampling technique over the static
random sampling.

We now compare the adaptive random sampling and static random sampling in terms of their
resource efficiency. We measure the resource efficiency using the sampling fraction — the ratio of the
total amount of sampled data produced by a sampling technique over the total amount data in a
trace. Sampling fraction provides an indirect measure of the processing and storage requirement of
a sampling technique. To compare the adaptive random sampling and static random sampling, we
choose the (fixed) sampling probability for the static random sampling in such a manner that the
(1—n)th quantile of relative errors satisfies the same error bound as the adaptive random sampling.
Figure 13 shows the sampling fraction of the two sampling methods as we vary the error bound
e. For both methods, tighter error bound requires more packets to be sampled. However, for the
same error bound, the adaptive random sampling requires far fewer packets to be sampled overall.
Figure 13(b) shows the impact of time block size B on the sampling fraction. For both sampling
methods, as the time block size increases, the sampling fraction decreases. This is because the
estimation accuracy is determined by the number of required packet samples, which is independent
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Figure 13: Sampling fraction ({n,e} = {0.1,0.1}).

of the number of packet arrivals. As the time block size increases, fewer packet samples are needed
relative to the total number of packet arrivals to achieve the estimation accuracy, resulting in a
smaller sampling fraction. Although a larger time block yields faster decrease in the sampling
fraction for the static random sampling, even with a block size of 300 seconds (5 minutes), the
sampling fraction of the adaptive random sampling is still several times smaller than the static
random sampling. Note that the average data rate of the trace II; (used in the studies shown in
the figures) is less than 1 MBps. It is not hard to see that in highly loaded links and high speed
links where the traffic load fluctuates more frequently, the adaptive random sampling will lead to
more gains in terms of the sampled data reduction (i.e., smaller sampling fraction). To illustrate
this, we apply our adaptive random sampling technique to the trace Il which has an average data
rate of 35.36 Mpbs. For the accuracy parameters {0.1,0.1} and a block size of 30 seconds, the
resulting sampling fraction is only 0.022%!

To conclude this section, we provide a more detailed study of the SC'V of packet sizes in the
real network traffic traces. Understanding of the SCV of packet size distribution is important, as
the number of required packet sizes is proportional to SCV. Thus the SCV of packet sizes in a
network traffic trace has a direct impact on the resulting sampling fraction. The SCV statistics
of the traces are presented in Table 3. We see that the SCVs of packet sizes of the traces vary
significantly, although some of the traces (IIy - II5) are captured over the same physical link over
different time. For the accuracy parameters of {n,e} = {0.1,0.1}, the sampling fractions for these
traces (with block size B = 60sec or 300sec) are also listed in Table 3. It is clear that the SCV of
packet sizes of the traces has a direct impact on the sampling fraction. In general, smaller SCV
leads to smaller sampling fraction. Furthermore, the data arrival rate of the traces also affects the
sampling fraction. For example, the traces Ilg and IIg have similar SCV’s. However, the average
data rate of Ilg is about five times faster than that of IIg (see Table 2). As a result, the sampling
fraction of Ilg is about 5 times smaller than that of Ilg.

Finally, Figure 14 shows the relation between SCV and traffic load in a scatter plot using the
traces. We observe that when the link is more highly utilized (i.e., larger traffic load), the SCV
of packet sizes tends to be smaller. This seems to indicate that more packets of similar sizes are
arriving on the link. Since the lower SCV leads to a smaller number of required packet samples,
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Table 3: SCV variability and sampling fraction ({n,e} = {0.1,0.1}).

Trace avg. min. max. sampling fraction (%)
B =60s | B=300s | B=60s | B=300s | B=60s | B=300s || B=60s| B =300s
IT, 1.70 1.68 0.69 0.85 5.21 3.52 5.48 0.67
IT, 2.11 2.09 0.39 0.60 5.29 4.32 5.85 0.83
113 2.59 2.48 0.47 0.90 7.39 6.44 5.07 1.01
Iy 1.18 1.12 0.32 0.85 2.55 1.38 1.67 0.30
IT5 0.89 0.89 0.75 0.78 1.13 0.99 0.91 0.25
B = 30s B = 30s B = 30s B = 30s
T 1.26 1.25 1.27 0.022
I15 1.35 1.347 1.353 0.022
I 1.22 1.16 1.32 0.12

4000

load
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traffi

Figure 14: Traffic load vs. SCV.

the adaptive random sampling is likely to offer a higher rate of sampled data reduction in times
of high load, while providing the desired degree of accuracy in traffic load estimation. In other
words, when a high-speed link is highly utilized, our adaptive sampling technique results in fewer
packets to be sampled, thereby reducing the burden (both in terms of processing and storage) on
the traffic monitoring and measurement device (whether on-board a router or off-board). And
this is achieved without sacrificing the sampling accuracy! Lastly, we would like to point out that
although our adaptive random sampling technique is designed with the application to load change
detection in mind, it can also be applied to other traffic engineering applications.

5 Load Change Detection with Sampled Measurement

Sudden, persistent load changes in network traffic are of great concern to network operators, as
they may signal network element failures or anomalous behaviors, and may significantly impact
the performance of the network. Hence automatic traffic load change detection is an important aid
in network operations and traffic engineering. In this section we present a non-parametric, on-line
change point detection algorithm based on singular value spectrum analysis. The algorithm takes
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the time series of estimated traffic loads via sampling, and detects “non-stationarities” (i.e., abrupt
changes) in the estimated traffic loads at some (configurable) operational time scale that is larger
than the time scale the traffic loads are sampled. We examine the impact of sampling errors on
the performance of the load change detection algorithm using real network traces. We also briefly
touch on the issues in designing robust load change detection algorithms and the impact of time
scale of change.

5.1 Non-parametric On-line Change Point Detection Algorithm

In the problem of traffic load change detection, we assume that the statistics of traffic loads are
normally either constant or slowly time-varying; otherwise an abrupt change should be recognized.
By abrupt changes, we mean changes in characteristics that occur very fast, if not instantly. But
before and after the change, the properties are fairly stationary with respect to the time scale of
interest. Note that abrupt changes by no means imply changes with large magnitude. Many net-
work management problems are concerned with detection of small changes. Traditional parametric
techniques involve estimation of certain parameters of the time series such as mean and variance
and some presumed distributions (e.g., Gaussian) of the parameters for assessing statistical signif-
icance of these estimates. However, such assumptions typically cannot be applied to real network
traffic [9]. In particular, a few short bursts (outliers) may greatly distort the estimates. Thus,
traditional parametric techniques may not work well in the presence of outliers. A non-parametric
algorithm based on singular-spectrum analysis is much more robust, since it efficiently separates
noise (outliers) from signal. Since sampling may further introduce or magnify outliers, tolerance
of noise is critical in our framework. In addition, amenablity to on-line implementation is another
consideration in selecting traffic load change detection algorithms. In our study we employ such a
non-parametric change point detection algorithm based on singular spectrum analysis (SSA). The
algorithm is developed in [16], which we briefly describe below.

Let y1,y2,... be a time series of estimated traffic loads. (Note that the time index ¢ here is
in the unit of time block B of sampling.) For each time ¢ = 1,2,..., part of the time series,
Yi+1s-- > YN, is considered as the “base data.” Another sub-series, yiyq+41,-- -, Yitr+1—1, Where
q > 0, is called the “test data.” Intuitively, if there is no significant change in the essential traffic
signals, the “distance” in statistics between the test data and the base data should stay reasonably
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small. If the “distance” in statistics is larger, it signals an abrupt change. The basic idea of the
change point detection algorithm is depicted in Figure 5.1. The steps involved in the change point
detection procedure are given below (please refer to [16] for more details).

Let N, M,l,p and g be some integers such that M < N/2, 0 < g <r and N <r. An integer K
is set to be K = N — M + 1. For each time index ¢t = 0,1, ..., compute the following :

1. Build the lag-covariance matrix Rp) = %YB(”(YB(”)T of the trajectory matrix Y®) with

3. Determine a I-dimensional subspace spanned by the first [ eigenvectors (U;) of R% .

the base data (as shown in Figure 16).

Perform SVD (Singular Value Decomposition) of Rg): Rg) =UAUT.
t)

4. Similarly, build the lag-covariance matrix Rp® = Ly;:® (YT of the trajectory matrix

- K
with the training data.
Compute the detection statistics Dy, ., the sum of the squared Euclidean distances between

the vectors Yj(t)(j =q+1,...,r) and U;. i.e., |Rr|* — UL Rr|?.

Decide if there is an abrupt change (Dy;,, > threshold), and generate an alarm with esti-
mated time 7(=t 4 r 4+ M — 1) of change with the detection statistic Dy 4.

5.2 Experiments

The detection statistics Dy 4, holds asymptotic normality under the conditions that the window

size N and the lag M are sufficiently large [16]; from this result, an asymptotic probability of a
change can also be derived. In the results shown in this section, we use a 99% of significance level as
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the detection threshold. Figure 17 illustrates the impact of sampling errors on the performance of
the load change detection algorithm. The second plot of Figure 17 depicts the detection statistics
of the time series of the original traffic loads (with a time block of B = 60 seconds), which is shown
on the top row. The third and fourth plots are the detection statistics of the estimated traffic loads
with the sampling accuracy parameters {n = 0.05,e = 0.05} and {n = 0.20, = 0.25}, respectively.
With the sampling accuracy parameters { = 0.05,e = 0.05}, all of the changes detected using
the original traffic loads are also detected using the estimated traffic loads. However, with the
sampling accuracy parameters {n = 0.20,¢ = 0.25}, one false-alarm (around 200min)is generated,
and two small load changes in the neighborhood of 600min and another small load change around
1200min are not detected. This evidently tells that bounding estimation errors is critical in traffic
load change detection. Note here that the detection algorithm also finds subtle load change points
otherwise undetectable via visual inspection by humans without further data processing.

The parameters in the detection algorithm can be tuned to control the time scale of load changes
as well as sensitivity (or magnitude) of load changes that are of interest to network operators.
Depending on the type of load changes we are looking for, the window size of the base and test
matrices, M, and the location and length of the test data (¢,r) can be configured accordingly.
Observe that if M is too small, then an outlier may be recognized as a structural change. Hence it
is recommended that M is chosen to be sufficiently but smaller than the time scale of load changes
to be detected so as not to miss out all the changes in the time series of traffic loads. In Figure 18,
we show the effect of varying M on the detection statistics. For ease of observation, we use a
larger sampling time block (B = 300 seconds). The top plot in Figure 18 shows the time series
of the original traffic loads. The detection statistics corresponding to M = 30, 50,80 are shown,
respectively, in the second, third, and fourth plot. We see that using smaller M detects load changes
that occur in a smaller time scale. For example, close visual inspection reveals a small load change
in the time scale of 10 units or so (i.e., a duration of about 3000 seconds) before and after the
time index 100; a load change of much larger time scale and magnitude occurs around the time
index 150, and a few other load changes of smaller time scale occur afterwards. A larger M ignores
load changes that occur at the smaller time scale and with smaller magnitude that are otherwise
detected by a smaller M. We have further investigated the impact of the control parameters in the
detection algorithm on various aspects of load changes (such as speed, time scale of change and
sensitivity) for a variety of traffic engineering applications. The initial results are reported in [21].
Due to space limitation, we will not reproduce them here.

6 Conclusions

Network traffic may fluctuate frequently and often unexpectedly for various reasons such as transi-
tions in user behavior and failure of network elements. Timely detection of such changes in traffic
is critical for initiating appropriate traffic engineering mechanisms. The performance of a change
detection algorithm depends on the accuracy of traffic measurement. But, inspecting every packet
traversing a link to obtain the ezact amount of traffic load impairs the processing capacity of a
router. Therefore sampling techniques that estimate traffic accurately with minimal measurement
overhead are needed. Static sampling techniques may result in either inaccurate undersampling
or unnecessary oversampling. In this paper, we proposed an adaptive random sampling technique
that bounds the sampling error to a pre-specified tolerance level while minimizing the number of
samples.

We have shown that the minimum number of samples needed to maintain the prescribed accu-
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racy is proportional to the squared coefficient of variation (SCV') of packet size distribution. Since
we do not have a priori knowledge about key traffic parameters SCV of packet size distribu-
tion and the number of packets, these parameters are predicted using AR model. The sampling
probability is then determined based on these predicted parameters and thus varied adaptively
according to traffic dynamics. From the sampled packets, the traffic load is then estimated. We
have also derived a theoretical upper bound on the variance of estimation error which affects the
robustness of a change detection algorithm. We have experimented with real traffic traces and
demonstrated that the proposed adaptive random sampling is very effective in that it achieves the
desired accuracy, while also yielding significant reduction in the fraction of sampled data.

The time series of traffic loads thus estimated are then analyzed using a non-parametric on-
line change detection algorithm to find non-stationarities. This algorithm detects changes in the
estimated traffic loads at some (configurable) operational time scale that is larger than the time scale
at which the traffic loads are estimated. We have investigated the impact of sampling error on the
performance of change detection algorithm and illustrated the desirability of bounding estimation
error. We believe that our adaptive random sampling technique combined with on-line change
detection algorithm can enable intelligent traffic control and engineering in a scalable manner.

References

[1] Nick Duffield, Carsten Lund, and Mikkel Thorup, Charging from Sampled Network Usage, ACM SIG-
COMM Internet Measurement Workshop 2001
[2] Cristian Estan and George Varghese, New Directions in Traffic Measurement and Accounting, ACM
SIGCOMM Internet Measurement Workshop 2001
[3] Donald A. Berry and Bernard W. Lindgren, “Statistics theory and Methods”, 2nd ed., Duxbury Press,
ITP, 1996
[4} John M. Gottman, “Time-series analysis”, Cambridge University Press, 1981
5] Nick G. Duffield and Matthias Grossglauser, ” Trajectory sampling for direct traffic observation”, Pro-
ceedings of ACM SIGCOMM 2000 pp271-28.
P. Billingsley, “Convergence of Probability Measures”, New York Wisley, 1968 (p.369)
Sampled NetFlow. http://www.cisco.com/univercd/cc/tc/doc/product /software /i0s120/120newft
PMA Traces Archive http://moat.nlanr.net utilization
Walter Willinger, Murad Taqqu, and Ashok Erramilli, “A Bibliographical Guide to Self-Similar Traf-
fic and Performance Modeling for Modern High-Speed Networks Stochastic Networks: Theory and
Applications”, Royal Statistical Society Lecture Notes Series, Vol. 4, Oxford University Press, 1996.
[10] Kimberly C. Claffy, George C. Polyzos and Hans-Werner Braun, Application of sampling methodologies
to network traffic characterization, in Proceedings ACM SIGCOMM’93, San Francisco, CA, September
13-17, 1993.
[11] Aimin Sang, S. Q. Li, A Predictability Analysis of Network Traffic, in Proceedings of IEEE INFO-
COM’2000.
[12] R.E. Moore, Problem detection, isolation and notification in systems network architecture, in Proc. of
IEEE Infocom’86 1986.
[13] The  Surveyor  Project  Advanced  Networks, http://www.advanced.org/surveyor  and
http://betelgeuse.advanced.org/csg-ippm/
[14 John R. Wolberg, “Prediction Analysis”, Princeton, N.J., B. Van Nostrand, 1967
15
[16

© 00~

Michele Basseville and Igor V. Nikiforov, “Detection of Abrupt Changes: theory and Application”,
Prentice-Hall, Inc. Englewood Cliffs, N.J., ISBN 0-13-126780-9, April 1993
] V. Moskvina and A. Zhigljavsky. “Change-point detection algorithm based on the singular-spectrum

analysis, Detection®, School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24
4YH, UK, Preprint

[17] V. Moskvina, “ Distribution of random quadratic forms arising in singular-spectrum analysis“, Mathe-
matical Communications, 5, 161-171, 2000

18] C. R. Rao, “Sampling Techniques” 2nd ed., N.Y., Wiley. 1973

19] A.K. Bera and C.M. Jarque, “An efficient large-sample test for normality of observations and regression
residuals”, Working Papers in Economics and Econometrics, 40, Australian National University, 1981

[20] K. Thompson, G. Miller and R. Wilder, “Wide-Area Iternet Traffic Patterns and Characteristics”,
IEEE Network Nov/Dec. 1997

[21] B. Choi, J. Park, Z. Zhang, “On Abrupt Traffic Change Detection”, in preparation

20



A Appendix

In this appendix we sketch the proofs of Lemma 1 and Theorem 2. For simplicty of notation, we
drop the subscript k£ in the notation.

Proof [: of Lemma 1] Note first that
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Proof [: Theorem 2]
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where, Z is a normal random variable with mean 0, and Y is standard normal random variable.
Note that
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Therefore, the relative error is given by
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