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Adaptive Random Sampling for Load Change DetectionBaek-Young Choi, Jaesung Park, Zhi-Li ZhangDept. of Computer Science & EngineeringUniversity of MinnesotaMinneapolis, MN55455fchoiby,jpark,zhzhangg@cs.umn.eduAbstractTimely detection of changes in tra�c is critical for initiating appropriate tra�c engineer-ing mechanisms. Accurate measurement of tra�c is an essential step towards change detectionand tra�c engineering. However, precise tra�c measurement involves inspecting every packettraversing a link, resulting in signi�cant overhead, particularly on routers with high speed links.Sampling techniques for tra�c estimation are proposed as a way to limit the measurementoverhead. Since the e�cacy of change detection depends on the accuracy of tra�c estimation,it is necessary to control error in estimation due to sampling. In this paper, we address theproblem of bounding sampling error within a pre-speci�ed tolerance level. We derive a relation-ship between the number of samples, the accuracy of estimation and the squared coe�cient ofvariation of packet size distribution. Based on this relationship, we propose an adaptive randomsampling technique that determines the minimum sampling probability adaptively according totra�c dynamics. Using real network tra�c traces, we show that the proposed adaptive randomsampling technique indeed produces the desired accuracy, while also yielding signi�cant reduc-tion in the amount of tra�c samples. We also investigate the impact of sampling errors on theperformance of load change detection.1 IntroductionWith the rapid growth of the Internet, tra�c engineering has become an important mechanism toreduce network congestion and meet various user demands. Measurement of network tra�c loadis crucial for con�guring, managing, pricing, policing, and engineering the network. The networktra�c may 
uctuate frequently and often unexpectedly for various reasons such as transitions in userbehavior, deployment of new applications, changes in routing policies or failure of network elements.It is a daunting task for network administrators to manually tune the network con�guration toaccommodate the tra�c dynamics. Thus, there is a need for tools that enable intelligent controland management of high speed networks.Many practical problems arising in network performance monitoring and management are dueto the fact that changes in network conditions are observed too late. Moreover, the exact time of achange may not be readily available. Such information on change point can help locate the sourceof change and initiate an appropriate action to deal with the change. In other words, detection ofabrupt changes is an important �rst step towards reacting to changes by invoking the necessarytra�c engineering mechanisms. The problem of change point detection can be addressed usingtime series analysis of tra�c loads. Clearly, accurate measurement of tra�c is a pre-requisitefor identifying the point of change. Most tra�c measurement tools require a network device to



capture and store every single packet traversing a link. With today's high-speed links, such anapproach is not feasible. It not only taxes the processing capacity of routers or requires specialmeasurement devices, but also generates huge volumes of data that can quickly exhaust storagespace. Furthermore, it is extremely time-consuming to process large volumes of captured data,especially if on-line analysis of the data is needed to determine the tra�c loads and detect changes intra�c loads on-the-
y. Sampling techniques are therefore a better alternative. However, samplinginevitably introduces errors in the tra�c load estimation. Such errors may adversely a�ect thechange point detection of tra�c loads.In this paper we develop an adaptive random sampling technique for load change detectionusing sampled tra�c measurement. Our adaptive random sampling technique di�ers from existingsampling techniques for tra�c measurement in that it yields bounded sampling errors within a pre-speci�ed error tolerance level. Such error bounds are important in reducing the \noise" in changepoint detection with sampled tra�c measurement. Furthermore, the pre-speci�ed error tolerancelevel allows us to control the performance of load change detection algorithms as well as the amountof packets sampled. The paper is devoted to the analysis and veri�cation of the proposed adaptiverandom sampling technique and the impact of sampling errors on the performance of tra�c loadchange detection. Our contributions are summarized as follows.We observe that sampling errors in estimating tra�c load arises from dynamics of packet sizesand counts, and these tra�c parameters vary over time. Consequently, static sampling (i.e., with a�xed sampling rate) cannot guarantee errors within a given error tolerance level. From analysis, we�nd that the minimum required number of samples to bound sampling error within a given toler-ance level is proportional to the squared coe�cient of variation (SCV ) of packet size distribution.Using this relationship, we propose an adaptive random sampling technique that determines the(minimum) sampling probability adaptively based on the SCV of packet size distribution and thepacket count. More speci�cally, time is divided into (non-overlapping) observation periods (referredto as (time) blocks), and packets are sampled in each observation period. At the end of each block,in addition to estimating the tra�c volume of the block, the SCV of packet size distribution andthe packet count of the block are calculated using the tra�c samples. These tra�c parameters areused to predict the SCV of packet size distribution and the packet count of the next block, usingan Auto-regressive (AR) model. The sampling probability for the next block is then determinedbased on these predicted values and the given error tolerance level. The procedure is depicted inFigure 1. Through analysis, we quantify the estimation and prediction errors introduced by oursampling technique, and devise mechanisms to control their impact on the tra�c load estimation.Using real network tra�c traces, we show that the proposed adaptive random sampling techniqueindeed produces the desired accuracy, while at the same time yielding signi�cant reduction in theamount of tra�c samples. For the time series of estimated tra�c load, we present a non-parametricon-line change point detection algorithm based on singular value spectrum analysis. The algorithm�nds nonstationarities in tra�c loads at some larger, con�gurable operational time scale using sam-pled measurements obtained at each (smaller time-scale) observation period. The basic approachis depicted in Figure 2. We investigate the impact of sampling errors on the performance of thisload change detection algorithm using real network tra�c traces.Before we leave this section, we would like to comment that in the context of tra�c measurementand analysis, several sampling methods have been proposed and studied for various applications.Statistical sampling of network tra�c was �rst used in [10] for measuring tra�c on the NSFNETbackbone in the early 1990's. Cla�y et al. evaluated classical event and time driven static samplingmethods to estimate statistics of distributions of packet size and inter-arrival time. Trajectorysampling proposed in [5] directly observes the entire tra�c traversing through a network domain,2
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Figure 1: Adaptive random sampling. Figure 2: System model.and infers statistics on the spatial relations of the network tra�c. A size-dependent 
ow samplingmethod is proposed in [1] for the purpose of usage-sensitive charging. In [2], the problem ofidentifying large 
ows is studied. A probabilistic packet sampling method is used to identify large
ows and sampling probability is computed for each packet based on its size. This method requireseach packet header to be inspected. None of these sampling techniques address the issue of boundingsampling errors in random packet sampling, and thus cannot be applied to change point detectionwith sampled tra�c loads.The remainder of the paper is structured as follows. In Section 2, we formally state the problemaddressed in this paper. In Section 3, the adaptive random sampling technique is described andanalyzed. Experimental results with real network tra�c traces are presented in Section 4. Wepresent the change point detection algorithm with sampled measurement in Section 5. Section 6concludes the paper.2 Sampling Problem for Load Change DetectionIn this section we �rst formulate the sampling problem for detecting abrupt changes in tra�cloads. We then derive a lower bound on the number of samples needed to estimate the tra�c loadaccurately within a given tolerance level. Based on this, we determine the sampling probabilitythat is optimal in the sense that it guarantees the given accuracy with the minimum number ofsamples. The optimal sampling probability depends on both the number of packets and the variationin their sizes in an observation period. We see that the network tra�c 
uctuates signi�cantlyover time in terms of both the number of packets and their sizes. Hence, the optimal samplingprobability also varies over time. This suggests that static sampling with �xed sampling probabilitymay result in either erroneous undersampling or unnecessary oversampling. In other words, staticsampling cannot capture the tra�c dynamics accurately or e�ciently. This motivates us to developan adaptive random sampling technique that attempts to minimize the sampling frequency whileensuring that the sampling error is bounded.2.1 Bounding Sampling Errors in Tra�c Load EstimationTra�c load is the sum of the sizes of packets arriving during a certain time interval. Thus, tra�cload is determined by both the number of packets and their sizes. In determining the tra�c load,3
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nt (b) Auckland-II trace (�5)Figure 3: Impact of packet size and packet count on tra�c load.the variability of packet sizes is often overlooked and only packet count is considered. However, asnoted in [20], average packet size plays an important role in estimating the tra�c load. Consider,for example, two network tra�c traces captured at University of Auckland [8] to US link. The timeseries plots of the tra�c loads of the two traces (�4 and �5 in Table 2 are shown in the top row ofboth Figure 3(a) and 3(b). The plots in the middle row show the average packet sizes over time,while the plots in the bottom row show the packet counts over time. From Figure 3(a), we see thatthe increase in the tra�c load around 1000 sec is due to the increase in the packet size rather thanthe packet count. On the other hand, the abrupt increase in the packet count near 2 � 104 secin Figure 3(b) does not lead to any increase in the tra�c load, since the packet sizes at the timeare extremely small. These examples illustrate that the variation in packet sizes is an importantfactor in estimating the tra�c load using sampling. In fact, we will show later that the variationin packet sizes is the key factor in determining the sampling rate and for controlling the accuracyof load estimation.The reason that we highlight the factors that a�ect the tra�c load estimation using samplingis that accurate estimation of tra�c load is crucial in detecting changes in tra�c loads. For changepoint detection, the series of the estimated tra�c loads must retain the change or stability of theoriginal tra�c. Signi�cant sampling errors in tra�c load estimation can distort the original \signal"and lead to false alerts that may adversely a�ect the performance of networks, for instance, if theyinadvently trigger inappropriate tra�c engineering mechanisms. Hence quantifying and boundingsampling errors is critical in applying sampling techniques to tra�c load estimation for the purposeof load change detection.Time series analysis requires that observations be uniformly spaced in time. Packet arrivals ata link in the Internet are by nature irregularly spaced in time and so are the packet samples. Toobtain a uniformly spaced time series, tra�c loads can be estimated from packets sampled during(non-overlapping) observation periods of �xed length (see Figure 1). We refer to an observationperiod as a (load estimation) time block, or simply block. The length of a block is denoted by B,which can be con�gured depending on the speci�c engineering purposes. To preserve the trend ofthe original tra�c load, the sampling error in each block must be bounded quantitatively. In thefollowing we state the problem of bounding sampling errors in tra�c load estimation formally.4



Assume that there are m packets arriving in a block, and let Xi be the size of the ith packet.Hence the tra�c load of this block is V = Pmi=iXi. To estimate the tra�c load of the block,suppose we randomly sample n, 1 � n � m, packets out of the m packets. In other words, eachpacket has an equal probability p = n=m to be sampled. Let X̂j , j = 1; 2; : : : ; n, denote the size ofthe jth sampled packet. Then the tra�c load V can be estimated by V̂ using the samples, wherewhere V̂ is given by V̂ = mn nXj=1 X̂j (1)It can be shown that V̂ is an unbiased estimator of V , i.e., E[V̂ ]� V = 0.Our objective is to bound the relative error ��� V̂�VV ��� within a prescribed error tolerance level givenby two parameters f�; "g (0 < �; " < 1), i.e.,Pr(����� V̂ � VV ����� > ") � �: (2)In other words, we want the relative error in tra�c load estimation using random sampling to bebounded by " with a high probability 1� �. Given this formulation of the bounded error samplingproblem, the question is what is the minimum number of packets that must be sampled randomlyso as to guarantee the prescribed accuracy. We address this question in the following subsection.2.2 Optimal Sampling Probability and Limitations of Static SamplingFrom the central limit theorem of random samples [3], as the sample size n ! 1, the average ofsampled data approaches the population mean, regardless of distribution of population. Thus (2)can be rewritten as follows:Pr(����� V̂ � VV ����� > ") = Pr(pn� ����� 1n nXi=1Xi � ������ > "�pn� ) � 2 1� � "�pn� !! � �; (3)where � and � are, respectively, the population mean and standard deviation of the packet sizedistribution in a block, and �(�) is the cumulative distribution function (c.d.f) of the standardnormal distribution (i.e.,N(0; 1)). Hence, to satisfy the given error tolerance level, the requirednumber of packet samples must satisfyn � n� =  ��1(1� �=2)" � ��!2 = zp � S (4)where zp = ���1(1��=2)" �2 and S = (�=�)2 is the squared coe�cient of variance (SCV ) of the packetsize distribution in a block. Eq. (4) concisely relates the minimum number of packet samples tothe estimation accuracy and the variability in packet sizes. In particular, it states the minimumrequired number of packet samples, n�, is linearly proportional to the squared coe�cient of variance,S, of the packet size distribution in a block.From (4) we conclude that the optimal sampling probability, p�, which samples the minimumrequired number of packets in a block, is given byp� = n�m : (5)5
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ow statistics. More generally, staticrandom sampling technique randomly samples a packet with a �xed probability. Both techniquesdo not take tra�c load dynamics into account, thus when applied to tra�c load estimation, theycannot guarantee that the sampling error in each block falls within a prescribed error tolerancelevel. Furthermore, it is di�cult to determine what is the appropriate �xed sampling probability(or the value for N in \one-out-of-N" sampling) to be used for all blocks.To help illustrate the importance of adjusting sampling probability to packet size variability,in Figure 4 we compare the optimal adaptive random sampling technique to the static randomsampling technique using the Auckland trace �1 shown in Table 2. To make fair comparison, the�xed sampling probability for the static random sampling technique is set such that the samplingfraction (i.e., the amount of sampled data) over the entire trace is the same as that under theoptimal adaptive random sampling technique. The top plot in Figure 4 shows the optimal samplingprobability used by the adaptive sampling technique over time (the block size B = 300sec) as wellas the �xed sampling probability used by the static random sampling. The middle plot shows theresulting relative errors by both sampling techniques. The bottom plot shows the SCV of thepacket sizes across the blocks.From the �gure we see that when the variability of packet size distribution of a block is large,static random sampling tends to undersample packets, resulting in large estimation errors. Thismay lead to false alarm or non-detection by a load change detection algorithm. On the other hand,when the variability of packet size distribution of a block is small, static random sampling tends tooversample packets, thereby wasting processing capacity and memory space of the measurement de-vice. Moreover, the frequent oscillation between oversampling and undersampling of static random6



Table 1: Notation.Sk SCV of the population of kth blockSsk SCV of the samples of kth blockŜsk predicted SCV of the samples of kth blockn�k minimum number of samples needed in kth blockn̂k predicted minimum number of samples needed in kth block~nk actual number of samples in kth blockmk actual number of packets in kth blockm̂k predicted number of packets in kth blocksampling causes undesirable increase in the variance of estimation errors. This example demon-strates that in order to ensure a desired accuracy in tra�c load estimation while without resortingto unnecessary oversampling, packet sampling probability for each block must be adjusted in ac-cordance with the tra�c load dynamics. This is the essential idea behind our proposed adaptiverandom sampling technique. The key challenge remains to be addressed is how to determine the(optimal) sampling probability for each block without a priori knowledge of the tra�c parameters{ the SCV of packet size distribution and packet count of a block. The next section is devoted tothe analysis and solution of this problem.3 Adaptive Random Sampling with Bounded ErrorsIn this section we present an AR (Auto-regressive) model for predicting two key tra�c parametersfor tra�c load estimation { the SCV of packet size distribution and packet count of a block { usingpast (sampled) data from previous blocks. The AR model is justi�ed by empirical studies usingreal network tra�c traces. In addition to estimation errors due to sampling, the prediction modelalso introduces prediction errors. We quantify and analyze the impact of these errors on the tra�cload estimation and discuss how these errors can be controlled.3.1 AR Model for Tra�c Parameter PredictionThe e�cacy of prediction depends on the correlation among the past and future values of theparameters being predicted. We have analyzed many public-domain real network tra�c traces, asubset of traces we studied is listed in Table 2. We found that the SCV 's of the packet sizes of twoconsecutive blocks are strongly correlated; the same is also true for the packet counts, m's, of twoconsecutive blocks. As an illustration, Figures 5(a) and 5(b) show, respectively, the scatter plots ofSCV and m of two consecutive blocks (the block size B = 60sec) using the trace �4 in Table 2. Itis evident that the values of SCV and m of two consecutive blocks are highly correlated. In fact,there is a strong linear relationship between these values.As a further justi�cation, we remark that the predictability of network tra�c has also beenstudied by other researchers. For instance, in [11] the authors investigated the questions of how farinto the future a tra�c rate process can be predicted for a given error constraint, and how muchthe prediction error is over a speci�ed number of future time intervals (or steps). They showedthat prediction works well for one step into the future, although the prediction accuracy degrades7
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(b) Packet countFigure 5: Relationship between past and future values of SCV and packet count.quickly as the number of steps increases. In the context of our work, note that we only need topredict the tra�c parameters for the next step (i.e., the next block).The strong linear relationship evident in Figures 5(a) and 5(b) suggests that linear regressioncan be used for the prediction of the SCV of packet sizes and packet count m of a future blockusing the values of the previous blocks. We employ an AR (Auto-regressive) model for predictingthe tra�c parameters SCV andm, as compared to other time series models, the AR model is easierto understand and computationally more e�cient. In particular, using the AR model, the modelparameters can be obtained by solving a set of simple linear equations [4], making it suitable foronline tra�c load estimation. In the following we formally describe the AR model for the tra�cparameter prediction.We �rst present an AR(u) model for predicting the SCV of the next block using the SCV ofsampled packet sizes of the u previous blocks. The notation used here and in the rest of this paperis summarized in Table 1. Let Sk be the SCV of the packet sizes in the kth block, and Ssk be theSCV of the packet sizes randomly sampled in the kth block. We can relate Sk and Ssk as follows:Ssk = Sk + Zk (6)where Zk denotes the error in estimating the actual SCV of the packet sizes using the randompacket samples. (We refer to Zk as the estimation error.)Using the AR(u) model [4], Ssk can be expressed asSsk = uXi=1 asiSsk�i + esk (7)where ai, i = 1; : : : ; u, are the model parameters, and esk is the uncorrelated error (which we referto as the prediction error). The error term esk follows a normal distribution with mean 0 andvariance var(esk) = �2Ssk(1�Pui=1 asi�Ssk;i). Here �Ssk;i is the lag-i autocorrelation of Ssk's. The modelparameters ai, i = 1; : : : ; u, can be determined by solving a set of linear equations (8) in terms ofv past values of Ssi 's, where v � 1 is a con�gurable parameter independent of u, and is typically8



referred to as the memory size.�h = uXi=1 ai�h�i; where h = v; : : : ; v � u+ 1 and �h is lag-h autocorrelation of the data (8)Using the above AR(u) model, at the end of the (k � 1)th block, we predict the SCV of thekth block using the SCV values of the sampled packet sizes of the u previous blocks as follows:Ŝsk = uXi=1 asiSsk�i: (9)Combining (6), (7) and (9), we have Ŝsk = Sk + Zk + esk: (10)Hence we see that there are two types of errors in predicting the actual SCV of the packet size ofthe next block using the sampled packet sizes of the previous blocks: the estimation error Zk dueto random sampling, and the prediction esk introduced by the prediction model. The total resultingerror is Zk + esk. In Section 3.2 we analyze the properties of these errors and their impact on thetra�c load estimation.We now brie
y describe how the packet count mk of the kth block can be estimated based onthe past packet counts using the AR(u) model. Let mk denote the packet count of the kth block,then using the AR(u) model, we have mk =Pui=1 bimk�i+ em;k, where as before bi, i = 1; 2; : : : ; u,are the model parameters, and em;k is the prediction error term, which is normally distributedwith zero mean. Let m̂k denote the predicted packet count of the kth block. Using the the AR(u)prediction model, we have m̂k =Pui=1 bim̂k�i.As in the case of predicting SCV of the packet sizes using the AR(u) prediction model, theprediction of the packet count using the past sampled packet counts introduces both estimation errorand prediction error. However, in the case of predicting the packet count m, it is not unreasonableto assume that the actual packet count of a block is known at the end of the block. This is becausein the modern commercial router design, a packet counter is often included in the line card of arouter, as such a packet counter does not overly burden a router in terms of both processing andmemory capacities1.In this case, we can predict the packet count of the next block using the actual packet counts ofthe previous blocks. Namely, m̂k =Pui=1 bimk�i. Hence only the prediction error is involved whena packet counter is available. For simplicity, we will assume that this is the case our paper. (Notethat this assumption does not change the nature of the adaptive random sampling technique weproposed, only simplifying the analysis of the sampling errors.) Given the predicted SV C of thepacket size distribution and packet count of the next block, we can now calculate the (predicted)minimum number of required packet samples using (4) and the sampling probability for the nextblock: n̂k = zpŜsk and p̂k = n̂km̂k : (11)1Observe the packet count of a block can be collected without inspecting the contents of a packet. Hence it doesnot cause signi�cant burden on routers. For example, consider a link with bandwidth 10Gbps. Suppose the worstcase where only the smallest IP packets (40 bytes) are arrived. Then, there can be at most 1:875G packets in a blockof 60 seconds. The size of counter needed is only 32 bits. If we assume that I instructions are needed to incrementthe counter, then we need only 31:25 � I MIPS for maintaining the packet counter.9
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Figure 6: Tra�c parameter prediction process. Figure 7: Flow chart of adaptive random sam-pling.
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Figure 9: AR prediction error vs. training memory size.follow a normal distribution with mean 0. An example using the trace �1 is shown in Figure 8(a),we see that both the estimation error and prediction error as well as the total error (Zk + esk) havea Bell-shape centered at 0. We have performed the skewness test and kurtosis test [19], and thesetests conform the normality of these errors. Similar empirical studies have also shown that the error(em;k) in the packet count prediction is also normally distributed with zero mean. See Figure 8(b)for an example using the same network tra�c trace as in Figure 8(a).The above results suggest that we can approximate both the estimation error and predictionerror using normal distributions with zero mean. This allows us to quantify the variance of theerrors introduced by the adaptive random sampling process. For example, assume, for simplicity ,that an AR(1) model is used for predicting Sk, the SCV of the packet sizes of the kth block. Thenthe variance of the prediction error, var(esk), is given by var(esk) = �2Ssk(1� as1�Ssk;1), where �Ssk;1 isthe lag-1 autocorrelation of Ssk. From (6) and (7), we have var(Zk) = (as1)2var(Ssk�1) + var(esk)�var(Sk). Given su�cient packet samples, var(Ssk�1) � var(Sk). Thus var(Zk) = �2Ssk((as1)2 �as1�Ssk ;1). Therefore the variance of the total error in predicting Sk isvar(Zk) + var(esk) = �2Ssk(1� 2as1�Ssk;1 + (as1)2): (12)We now quantify the impact of these errors on the relative error in the tra�c load estimation.De�ne ~nk = mk � n̂km̂k , which is the actual number of packets randomly sampled (on the average)in the kth block, given the (predicted) minimum sampling probability p̂k = n̂k=m̂k. Then theestimated tra�c load of the kth block is given~Vk = mk~nk ~nkXj=1 X̂j; (13)where X̂j denotes the packet size of the jth randomly sampled packet in the kth block.Using the central limit theorem for a sum of a random number of random variables (see p.369,problem 27.14 in [6]), we can establish the following two lemma and theorem. The proofs can befound in the appendix.Lemma 1 ~nkn�k converges to 1 almost surely as n�k !1.11



Theorem 2 With probability 1 � �, the relative error in estimating the tra�c load Vk of the kthblock is ����� ~Vk � VkVk ����� � "+ 1pzp (1 + ")Y + o( 1m )� "+ 1pzp (1 + ")Ywhere recall that zp = ���1(1��=2)" �2, and Y is a normally distributed random variable with mean0 and variance 1, i.e., Y � N(0; 1).Theorem 2 yields a theoretic bound on the variance of adaptive random sampling, i.e.,var ����� ~V � VV �����! � (1 + ")2zp with probability 1� �. (14)Notice that the variance of adaptive random sampling is independent of the distribution of objectsbeing sampled and is controllable by the accuracy parameter. On the other hand, the variance ofstatic random sampling depends on the SCV and the number of samples. i.e.,var V̂ � VV ! = var mn Pni=1 X̂i �Pmj=1XjPmj=1Xj ! = var Pni=1 X̂in� != � 1n��2 � n � �2 = �2�2 � 1n = Sn (15)The variance bound (14) of adaptive random sampling suggests that in order to accommodate theprediction and estimation errors introduced by the tra�c parameter predictions, we can replacethe error bound " by a tighter bound "0:"0 = "� s � (1 + ")pzp (16)where s is a small adjustment parameter that can be used to control the variance of the relativeerror.4 Empirical EvaluationIn this section we empirically evaluate the performance of our adaptive random sampling techniqueusing the real network traces. The traces used in this study are obtained from NLANR [8], andtheir statistics are listed in Table 2. In this study we have primarily used the long duration traces(the Auckland-II traces) to produce more sound statistics and reliable results. But we have alsoinvestigated the short duration traces from the higher speed links. We believe that the e�cacy ofour adaptive random sampling technique as demonstrated in this section are applicable to othertraces. For consistency of illustration, the results shown in this section are based on the trace �1unless otherwise speci�ed. 12



Table 2: Summary of traces used.Trace name Trace Arrival rate Duration�1 Auckland-II 19991201-192548-0 92.49KBps 24h 02m 58sec�2 Auckland-II 19991201-192548-1 55.16KBps 24h 02m 57sec�3 Auckland-II 19991209-151701-1 49KBps 23h 11m 38sec�4 Auckland-II 20000117-095016-0 168KBps 2h 23m 15sec�5 Auckland-II 20000114-125102-0 222.14KBps 21m 37sec�6 AIX (OC12c) 989950026-1 25.36MBps 90sec�7 AIX (OC12c) 20010801-996689287-1 21.60MBps 90sec�8 COS (OC3c) 983398787-1 4.95MBps 90secTo show the e�ectiveness of the prediction model used in our adaptive random sampling tech-nique, we �rst compare the performance our technique with that of the ideal optimal sampling. Inthe ideal optimal sampling, the optimal sampling probability for each block is computed using (5),assuming that the SCV of the packet sizes and packet count of the block is known. The resultsare shown in Figure 10. The �gure on the top shows the time series of the original tra�c load,the estimated tra�c loads using both the ideal optimal sampling and the adaptive random sam-pling with prediction. For the accuracy parameters of f�; "g = f0:1; 0:1g, the series are very closeand hardly di�erentiable visually. The �gure on the bottom shows the cumulative probability ofrelative errors in tra�c load estimation for both the ideal optimal sampling and adaptive randomsampling with prediction. The horizontal line in the �gure indicates the (1 � �)th quantile of theerrors. We see that for both the sampling methods, the tra�c load estimation indeed conforms tothe pre-speci�ed accuracy parameter, i.e., the probability of relative errors larger than " = 0:1 isaround � = 0:1.To further investigate the performance of the adaptive random sampling with prediction, inFigure 11 we vary the error bound " (while �xing � at 0:1), and plot the corresponding (1 � �)thquantile of relative errors. We see that the (1� �)th quantiles of relative errors for the whole rangeof the error bound � stay close to the prescribed error bound. For comparison, in the �gure wealso plot the corresponding results obtained using the static random sampling. Here to provide faircomparison, the (�xed) sampling probability of the static random sampling is chosen such as thesampling fraction (or, the total amount of sampled data) over the entire trace is the same as thatof the adaptive random sampling. We see that for all range of the error bound, the static randomsampling produces a much larger the (1� �)th quantile of relative errors.Another key metric for comparing sampling techniques is the variance of an estimator [18].Small variance in estimation is a desired feature of a sampling method in that the estimate is morereliable when used in place of the value of a population. This feature is especially important whenthe sampling method is applied to change point detection, since large variation in estimation maycause outliers in the estimated signal, making it di�cult to detect change points (see discussionin Section 5). In Figure 12 we compare the standard deviation of the relative errors in tra�cload estimation for both the adaptive random sampling and the static random sampling. As the�gure shows, the variation of errors of the adaptive random sampling is always bounded withinthe theoretic upper bound (14). On the contrary, due to frequent excessive undersampling andoversampling (as noted in Section 2), the static random sampling has a much larger variationof errors. In particular, the error variance of the static random sampling is always larger than13
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Figure 11: (1��)th quantile relative error (� =0:1; B = 60sec). Figure 12: Standard deviation of relative error(� = 0:1; B = 60sec).the theoretic variance bound for the adaptive random sampling. In summary, the above resultsdemonstrate the superior performance of our adaptive random sampling technique over the staticrandom sampling.We now compare the adaptive random sampling and static random sampling in terms of theirresource e�ciency. We measure the resource e�ciency using the sampling fraction { the ratio of thetotal amount of sampled data produced by a sampling technique over the total amount data in atrace. Sampling fraction provides an indirect measure of the processing and storage requirement ofa sampling technique. To compare the adaptive random sampling and static random sampling, wechoose the (�xed) sampling probability for the static random sampling in such a manner that the(1��)th quantile of relative errors satis�es the same error bound as the adaptive random sampling.Figure 13 shows the sampling fraction of the two sampling methods as we vary the error bound". For both methods, tighter error bound requires more packets to be sampled. However, for thesame error bound, the adaptive random sampling requires far fewer packets to be sampled overall.Figure 13(b) shows the impact of time block size B on the sampling fraction. For both samplingmethods, as the time block size increases, the sampling fraction decreases. This is because theestimation accuracy is determined by the number of required packet samples, which is independent14
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(b) Di�erent time intervalFigure 13: Sampling fraction (f�; "g = f0:1; 0:1g).of the number of packet arrivals. As the time block size increases, fewer packet samples are neededrelative to the total number of packet arrivals to achieve the estimation accuracy, resulting in asmaller sampling fraction. Although a larger time block yields faster decrease in the samplingfraction for the static random sampling, even with a block size of 300 seconds (5 minutes), thesampling fraction of the adaptive random sampling is still several times smaller than the staticrandom sampling. Note that the average data rate of the trace �1 (used in the studies shown inthe �gures) is less than 1 MBps. It is not hard to see that in highly loaded links and high speedlinks where the tra�c load 
uctuates more frequently, the adaptive random sampling will lead tomore gains in terms of the sampled data reduction (i.e., smaller sampling fraction). To illustratethis, we apply our adaptive random sampling technique to the trace �6 which has an average datarate of 35.36 Mpbs. For the accuracy parameters f0:1; 0:1g and a block size of 30 seconds, theresulting sampling fraction is only 0.022%!To conclude this section, we provide a more detailed study of the SCV of packet sizes in thereal network tra�c traces. Understanding of the SCV of packet size distribution is important, asthe number of required packet sizes is proportional to SCV . Thus the SCV of packet sizes in anetwork tra�c trace has a direct impact on the resulting sampling fraction. The SCV statisticsof the traces are presented in Table 3. We see that the SCVs of packet sizes of the traces varysigni�cantly, although some of the traces (�1 - �5) are captured over the same physical link overdi�erent time. For the accuracy parameters of f�; "g = f0:1; 0:1g, the sampling fractions for thesetraces (with block size B = 60sec or 300sec) are also listed in Table 3. It is clear that the SCV ofpacket sizes of the traces has a direct impact on the sampling fraction. In general, smaller SCVleads to smaller sampling fraction. Furthermore, the data arrival rate of the traces also a�ects thesampling fraction. For example, the traces �6 and �8 have similar SCV 's. However, the averagedata rate of �6 is about �ve times faster than that of �8 (see Table 2). As a result, the samplingfraction of �6 is about 5 times smaller than that of �8.Finally, Figure 14 shows the relation between SCV and tra�c load in a scatter plot using thetraces. We observe that when the link is more highly utilized (i.e., larger tra�c load), the SCVof packet sizes tends to be smaller. This seems to indicate that more packets of similar sizes arearriving on the link. Since the lower SCV leads to a smaller number of required packet samples,15



Table 3: SCV variability and sampling fraction (f�; "g = f0:1; 0:1g).Trace avg. min. max. sampling fraction (%)B = 60s B = 300s B = 60s B = 300s B = 60s B = 300s B = 60s B = 300s�1 1.70 1.68 0.69 0.85 5.21 3.52 5.48 0.67�2 2.11 2.09 0.39 0.60 5.29 4.32 5.85 0.83�3 2.59 2.48 0.47 0.90 7.39 6.44 5.07 1.01�4 1.18 1.12 0.32 0.55 2.55 1.38 1.67 0.30�5 0.89 0.89 0.75 0.78 1.13 0.99 0.91 0.25B = 30s B = 30s B = 30s B = 30s�6 1.26 1.25 1.27 0.022�7 1.35 1.347 1.353 0.022�8 1.22 1.16 1.32 0.12
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Figure 14: Tra�c load vs. SCV.the adaptive random sampling is likely to o�er a higher rate of sampled data reduction in timesof high load, while providing the desired degree of accuracy in tra�c load estimation. In otherwords, when a high-speed link is highly utilized, our adaptive sampling technique results in fewerpackets to be sampled, thereby reducing the burden (both in terms of processing and storage) onthe tra�c monitoring and measurement device (whether on-board a router or o�-board). Andthis is achieved without sacri�cing the sampling accuracy! Lastly, we would like to point out thatalthough our adaptive random sampling technique is designed with the application to load changedetection in mind, it can also be applied to other tra�c engineering applications.5 Load Change Detection with Sampled MeasurementSudden, persistent load changes in network tra�c are of great concern to network operators, asthey may signal network element failures or anomalous behaviors, and may signi�cantly impactthe performance of the network. Hence automatic tra�c load change detection is an important aidin network operations and tra�c engineering. In this section we present a non-parametric, on-linechange point detection algorithm based on singular value spectrum analysis. The algorithm takes16



Figure 15: Change detection algorithm.the time series of estimated tra�c loads via sampling, and detects \non-stationarities" (i.e., abruptchanges) in the estimated tra�c loads at some (con�gurable) operational time scale that is largerthan the time scale the tra�c loads are sampled. We examine the impact of sampling errors onthe performance of the load change detection algorithm using real network traces. We also brie
ytouch on the issues in designing robust load change detection algorithms and the impact of timescale of change.5.1 Non-parametric On-line Change Point Detection AlgorithmIn the problem of tra�c load change detection, we assume that the statistics of tra�c loads arenormally either constant or slowly time-varying; otherwise an abrupt change should be recognized.By abrupt changes, we mean changes in characteristics that occur very fast, if not instantly. Butbefore and after the change, the properties are fairly stationary with respect to the time scale ofinterest. Note that abrupt changes by no means imply changes with large magnitude. Many net-work management problems are concerned with detection of small changes. Traditional parametrictechniques involve estimation of certain parameters of the time series such as mean and varianceand some presumed distributions (e.g., Gaussian) of the parameters for assessing statistical signif-icance of these estimates. However, such assumptions typically cannot be applied to real networktra�c [9]. In particular, a few short bursts (outliers) may greatly distort the estimates. Thus,traditional parametric techniques may not work well in the presence of outliers. A non-parametricalgorithm based on singular-spectrum analysis is much more robust, since it e�ciently separatesnoise (outliers) from signal. Since sampling may further introduce or magnify outliers, toleranceof noise is critical in our framework. In addition, amenablity to on-line implementation is anotherconsideration in selecting tra�c load change detection algorithms. In our study we employ such anon-parametric change point detection algorithm based on singular spectrum analysis (SSA). Thealgorithm is developed in [16], which we brie
y describe below.Let y1; y2; : : : be a time series of estimated tra�c loads. (Note that the time index t here isin the unit of time block B of sampling.) For each time t = 1; 2; : : :, part of the time series,yt+1; : : : ; yt+N , is considered as the \base data." Another sub-series, yt+q+1; : : : ; yt+r+M�1, whereq > 0, is called the \test data." Intuitively, if there is no signi�cant change in the essential tra�csignals, the \distance" in statistics between the test data and the base data should stay reasonably17



YB(t) = 0BBB@ yt+1 yt+2 � � � yt+Kyt+2 yt+3 � � � vt+K+1... ... . . . ...yt+M yt+M+1 � � � yt+N 1CCCA YT (t) = 0BBB@ yt+q+1 yt+q+2 � � � yt+ryt+q+2 yt+q+3 � � � yt+r+1... ... . . . ...yt+q+M yt+q+M+1 � � � yt+r+M�11CCCAFigure 16: Base and test trajectory matrices.
200 400 600 800 1000 1200 1400

0.5

1

1.5

2

x 10
7 original trace

200 400 600 800 1000 1200 1400
0

1

2

D
st

at
:o

rig
in

al

200 400 600 800 1000 1200 1400
0

1

2

et
a=

0.
05

, e
p=

0.
05

200 400 600 800 1000 1200 1400
0

1

2

et
a=

0.
20

, e
p=

0.
25

50 100 150 200 250

2

4

6

8
x 10

7 Traffic trace for a day

50 100 150 200 250
0

2

4

6

detection statistic

50 100 150 200 250
0

2

4

6

detection statistic

50 100 150 200 250
0

2

4

6

8
detection statisticFigure 17: Detection statistics for populationand estimated tra�c load. Figure 18: Detection statistics with varying lagparameter.small. If the \distance" in statistics is larger, it signals an abrupt change. The basic idea of thechange point detection algorithm is depicted in Figure 5.1. The steps involved in the change pointdetection procedure are given below (please refer to [16] for more details).Let N;M; l; p and q be some integers such that M � N=2, 0 � q < r and N � r. An integer Kis set to be K = N �M + 1. For each time index t = 0; 1; : : :, compute the following :1. Build the lag-covariance matrix RB(t) = 1KYB(t)(YB(t))T of the trajectory matrix Y (t) withthe base data (as shown in Figure 16).2. Perform SVD (Singular Value Decomposition) of R(t)B : R(t)B = U�UT .3. Determine a l-dimensional subspace spanned by the �rst l eigenvectors (Ul) of R(t)B .4. Similarly, build the lag-covariance matrix RT (t) = 1KYT (t)(YT (t))T of the trajectory matrixwith the training data.5. Compute the detection statistics Dt;l;q;r, the sum of the squared Euclidean distances betweenthe vectors Y (t)j (j = q + 1; : : : ; r) and Ul. i.e., kRT k2 � kUTl RT k2.6. Decide if there is an abrupt change (Dt;l;q;r > threshold), and generate an alarm with esti-mated time �(= t+ r +M � 1) of change with the detection statistic Dt;l;q;r.5.2 ExperimentsThe detection statistics Dt;l;q;r holds asymptotic normality under the conditions that the windowsize N and the lag M are su�ciently large [16]; from this result, an asymptotic probability of achange can also be derived. In the results shown in this section, we use a 99% of signi�cance level as18



the detection threshold. Figure 17 illustrates the impact of sampling errors on the performance ofthe load change detection algorithm. The second plot of Figure 17 depicts the detection statisticsof the time series of the original tra�c loads (with a time block of B = 60 seconds), which is shownon the top row. The third and fourth plots are the detection statistics of the estimated tra�c loadswith the sampling accuracy parameters f� = 0:05; " = 0:05g and f� = 0:20; " = 0:25g, respectively.With the sampling accuracy parameters f� = 0:05; " = 0:05g, all of the changes detected usingthe original tra�c loads are also detected using the estimated tra�c loads. However, with thesampling accuracy parameters f� = 0:20; " = 0:25g, one false-alarm (around 200min)is generated,and two small load changes in the neighborhood of 600min and another small load change around1200min are not detected. This evidently tells that bounding estimation errors is critical in tra�cload change detection. Note here that the detection algorithm also �nds subtle load change pointsotherwise undetectable via visual inspection by humans without further data processing.The parameters in the detection algorithm can be tuned to control the time scale of load changesas well as sensitivity (or magnitude) of load changes that are of interest to network operators.Depending on the type of load changes we are looking for, the window size of the base and testmatrices, M , and the location and length of the test data (q; r) can be con�gured accordingly.Observe that if M is too small, then an outlier may be recognized as a structural change. Hence itis recommended that M is chosen to be su�ciently but smaller than the time scale of load changesto be detected so as not to miss out all the changes in the time series of tra�c loads. In Figure 18,we show the e�ect of varying M on the detection statistics. For ease of observation, we use alarger sampling time block (B = 300 seconds). The top plot in Figure 18 shows the time seriesof the original tra�c loads. The detection statistics corresponding to M = 30; 50; 80 are shown,respectively, in the second, third, and fourth plot. We see that using smallerM detects load changesthat occur in a smaller time scale. For example, close visual inspection reveals a small load changein the time scale of 10 units or so (i.e., a duration of about 3000 seconds) before and after thetime index 100; a load change of much larger time scale and magnitude occurs around the timeindex 150, and a few other load changes of smaller time scale occur afterwards. A larger M ignoresload changes that occur at the smaller time scale and with smaller magnitude that are otherwisedetected by a smaller M . We have further investigated the impact of the control parameters in thedetection algorithm on various aspects of load changes (such as speed, time scale of change andsensitivity) for a variety of tra�c engineering applications. The initial results are reported in [21].Due to space limitation, we will not reproduce them here.6 ConclusionsNetwork tra�c may 
uctuate frequently and often unexpectedly for various reasons such as transi-tions in user behavior and failure of network elements. Timely detection of such changes in tra�cis critical for initiating appropriate tra�c engineering mechanisms. The performance of a changedetection algorithm depends on the accuracy of tra�c measurement. But, inspecting every packettraversing a link to obtain the exact amount of tra�c load impairs the processing capacity of arouter. Therefore sampling techniques that estimate tra�c accurately with minimal measurementoverhead are needed. Static sampling techniques may result in either inaccurate undersamplingor unnecessary oversampling. In this paper, we proposed an adaptive random sampling techniquethat bounds the sampling error to a pre-speci�ed tolerance level while minimizing the number ofsamples.We have shown that the minimum number of samples needed to maintain the prescribed accu-19
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A AppendixIn this appendix we sketch the proofs of Lemma 1 and Theorem 2. For simplicty of notation, wedrop the subscript k in the notation.Proof [: of Lemma 1] Note �rst thatlimm!1 m̂m = limm!1 mm+ em = 1:Since Ss ! S as n!1, n̂ = zpSs ! zpS = n. From ~nk = n̂ � m̂m , we have limn!1 ~nn = 1.Proof [: Theorem 2] ~V = m~n ~nXi=1Xi= m~n (~n�s + �spnY + o(pn))= V̂ + (�spnY + o(pn))m̂n̂� V̂ + m̂zpŜspSs�sqzpSY= V̂ + m̂�spzp � pS(S + Z)S + Z + es Y (17)where, Z is a normal random variable with mean 0, and Y is standard normal random variable.Note that pS(S + Z)S + Z + es � S + Z=2S + Z + es � S + Z=2S + Z � 1Since ��� V̂�VV ��� < " with probability 1� �, the following holds with probability 1� �.��� ~V � V ��� < V "+ Vpzp (1 + ")Y + em�spzp Y (18)Therefore, the relative error is given by����� ~V � VV ����� < "+ 1pzp (1 + ")Y + o( 1m)� "+ 1pzp (1 + ")Y
21


