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This article analyzes the transient buffer content distribution of a queue fed by a large number of
Markov fluid sources. We characterize the probability of overflow at time t, given the current buffer
level and the number of sources in the on-state. After scaling buffer and bandwidth resources by the
number of sources n, we can apply large deviations techniques. The transient overflow probability
decays exponentially in n. In case of exponential on/off sources, we derive an expression for the
decay rate of the rare event probability under consideration. For general, Markov fluid sources,
we present a plausible conjecture. We also provide the “most likely path” from the initial state to
overflow (at time t). Knowledge of the decay rate and the most likely path to overflow leads to (i)
approximations of the transient overflow probability, and (ii) efficient simulation methods of the
rare event of buffer overflow. The simulation methods, based on importance sampling, give a huge
speed-up compared to straightforward simulations. The approximations are of low computational
complexity, and accurate, as verified by means of simulation experiments.

Categories and Subject Descriptors: G.3 [Probability and Statistics]: queuing theory; I.6.1 [Sim-
ulation and Modeling]: Simulation Theory

General Terms: Algorithms, Performance
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1. INTRODUCTION

A characteristic feature of modern switches and routers is that typically a large
number of flows are multiplexed. In an ATM (Asynchronous Transfer Mode)
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switch or an IP (Internet Protocol) router, the number of flows that share buffer
and bandwidth resources can be in the order of many thousands. The key model
for representing the stochastic behavior in the buffer of the switch or router is
that of a large number of sources, alternating between bursts (the on state) and
silences (the off state), feeding into a FIFO queue that is emptied at a constant
rate. An accurate description of the stochastic properties of the buffer content
of this queue are of utmost interest, as the loss due to overflow should be very
rare. Particularly for highly loss-sensitive traffic allowed loss fractions in the
order of 10−6 − 10−9 are typical.

Until now, the literature has been very much focused on stationary overflow
probabilities, but one can argue that for specific applications transient overflow
probabilities will be of great relevance. Such a transient overflow probability
is defined by the probability of overflow at some time t, given the states of the
modulating Markov chains and the queue length at time 0. For instance, for
admission control purposes, it is essential to know the probability of overflow
during the next time interval, given current system state.

The history of the above model goes back to the mid-Seventies—see Kosten
[1974] and Cohen [1974]—and has inspired research in the teletraffic area
significantly. Modelling the traffic as fluid has meant a great simplification, and
is justified by the fact that information packets are typically small compared to
the burst size. The fluid model analyzed by Anick et al. [1982] has become the
fundamental reference for the analysis of packet-based switching or routing
elements. It consists of a number of sources with exponentially distributed
on and off times, where during the on-time traffic is sent at a constant rate.
Anick et al. [1982] succeed in giving an explicit derivation of the steady state
distribution of the buffer content.

Many generalizations followed. Kosten [1984] considered the case of sources
that are driven by a Markov chain with more than two states, with which for
instance Erlang or hypergeometric on and off times can be modelled; these more
general sources are called Markov fluid in the sequel. He also solved the model
with heterogeneous input: the sources do not share the same statistical proper-
ties, as is typically the case in a multiservice network. The solution of the buffer
content distribution—and more specifically the buffer overflow probability—
required the solution of a large eigensystem; its dimension is particularly high
if the input is heterogeneous. To cope with this numerical problem, several
types of asymptotic approximation techniques were proposed. One of them is
the diffusion approach, valid in the regime of heavy traffic, as was proposed by
Knessl and Morrison [1991]. However, in the present article, we focus on large-
deviations-based asymptotics. Within this class, the two important regimes are
the large buffer asymptotics and the large system asymptotics.

The large buffer asymptotics rely on the the exponential decay of the overflow
probability as a function of the buffer size; it is asymptotically of the form
α exp[−θB], where amplitude α and decay rate θ are positive constants and
B is the buffer size. It appears that θ is relatively easy to compute: it can
be done without solving the above-mentioned eigensystem. The calculation of
α, however, does require the entire solution of the eigensystem. Simulation
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techniques have been proposed to (quickly) capture this amplitude, see Kesidis
and Walrand [1993], Mandjes and Ridder[1995], and Ridder [1996]. Another
approach is to replace α just by 1, but unfortunately this tends to be very
inaccurate; in case many sources are multiplexed, the amplitude is orders of
magnitude smaller than 1.

We believe that large system asymptotics have more practical interest than
large buffer asymptotics. In particular, in switches or routers to be used by
delay-sensitive traffic, buffer sizes tend to be small, whereas the number of
inputs usually does grow large. As we mentioned, the amplitude of the large
buffer asymptotic tends to be small for a large number of sources; this effect is
taken care of explicitly by the large system asymptotics. Crucial is the scaling
due to Weiss [1986]: in a system in which n homogeneous sources are present,
buffer space B and link rate C are scaled with n, that is, B = nb and C = nc.
Notice that, as long as the mean input rate of a source is below c, then even the
probability of a nonempty buffer is rare as n grows. Weiss succeeds in finding
the asymptotics of the loss probability by using a pathwise large deviations
approach: the decay rate of the overflow probability is the minimum of an action
functional, were that minimum is taken over all paths that start off in the
queue’s equilibrium behavior, and that eventually arrive at buffer overflow.
Interestingly, the optimizing path has the interpretation of most likely path: as
n grows overflow becomes increasingly rare, but if it occurs, it does so according
to this trajectory. Botvich and Duffield [1995] find—with different techniques—
the decay rate for a much broader class of sources; related results can be found
in Courcoubetis and Weber [1996] and Simonian and Guibert [1995]. Mandjes
and Ridder [1999] and Wischik [2001] succeed in unifying both approaches, in
that they explicitly find the most likely trajectories that give the decay rate of
Botvich and Duffield [1995].

There are only few papers dedicated to the calculation of the transient be-
havior of a queue with Markov fluid input. The most notable contributions are
by Kobayashi and Ren [1992] and Tanaka et al. [1995]. They succeed in finding
the Laplace transform of the distribution of the queue length. Their approach
had two obvious drawbacks: in the first place the methods are numerically
demanding, as it requires both the solution of a (typically high-dimensional)
eigensystem, and a numerical inversion of the Laplace transform. Both papers
do not give explicit numerical results, nor evaluate numerical issues. In the sec-
ond place, these methods do not give any insight into the system’s behavior. For
instance, we would like to know what the influence is of the initial queue length,
or whether the system essentially returns to equilibrium before attaining the
extreme value of buffer overflow at time t. A novel study on transient behavior
is by Duffield [1998]. He only conditions on the states of the modulating chains
and does not take into account the amount of traffic in the buffer.

This article aims at finding manageable and accurate asymptotics of the
transient probability. The contribution of our study is twofold. In the first place,
by using the “large system scaling” of resources proposed by Weiss [1986], we
derive large deviations asymptotics of the transient buffer overflow probability.
The calculations involved are relatively easy, as they only require the solution
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of a low-dimensional optimization problem. As a by-product, we obtain the most
likely trajectory to overflow, which sheds light on the question how overflow is
reached. Typically, we will see that for small values of t, overflow is reached
without the queue getting idle between 0 and t, whereas for larger t, the process
first moves in the direction of its equilibrium behavior, and builds up the buffer
during the last part of time interval [0, t]. Interestingly, a “bifurcation time”
can be numerically evaluated. Our proofs strongly rely on the fundamental
theorems provided by Shwartz and Weiss [1995, Section 13.6].

In the second place, we validate a number of approximations. This is done by
a quick simulation method, based on importance sampling. Knowledge of the
optimum path is used to change the underlying probability model such that the
optimum path towards the rare event of buffer overflow becomes a frequently
occurring event. The data is weighed by likelihood ratios, thus recovering an
unbiased estimate. The novelty of the present article is that the underlying
probability model has to be adapted continuously during the simulations, as
the large system regime is considered. This is essentially different from earlier
proposed importance sampling methods for the large buffer regime [Kesidis
and Walrand 1993; Mandjes and Ridder 1995; Ridder 1996]. Earlier work on
importance sampling with a changing alternative distribution can be found
in Cottrell et al. [1983] and Kroese and Nicola [1998, 1999]. The simulation
technique turns out to provide significant efficiency gains. Empirically, we show
that the proposed approximations are accurate and in general conservative.

The structure of this article is as follows: Section 2 describes the model and
presents a number of preliminaries. In Section 3, we formally find the decay
rate of the transient buffer overflow probability for the important case of expo-
nential on/off sources, and present a plausible conjecture for general Markov
fluid sources. Section 4 is concerned with the performance of the corresponding
large deviations approximation and quick simulation. In Section 5, conclusions
are drawn.

2. MODEL AND PRELIMINARIES

This section first describes the model. Then, we define the transient proba-
bility that we attempt to approximate. We end up with stating a number of
known results from large deviations theory that are needed in the analysis of
Section 3.

2.1 Model and Notation

The model of this article can be described as a queue fed by a superposition of
Markov fluid sources, an infinite buffer and a constant output rate.

A Markov fluid source is characterized by a generator and a traffic rate
vector. The generator, say 3 = (λi j )d

i, j=1 governs a finite-state (dimension d )
continuous-time Markov chain. Its state at time s is X (s). Entry λi j (for i 6= j )
denotes the transition rate from state i to state j . We follow the convention
that λii := −∑ j 6=i λi j . The transient transition probabilities are denoted by
pij (s) := P(X (s) = j |X (0) = i).
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If the Markov chain is in state i, traffic is generated at a constant rate ri ≥ 0.
One important type of Markov fluid source is the exponential on/off source, in
which d = 2 and one of the traffic rates equals 0. In the analysis, we assume
that the Markov chain is irreducible; consequently, there is a unique invariant
vector π = (π1, . . . , πd ), determined by the equation π3 = 0.

The buffer is fed by n of these sources, and is emptied at a constant rate nc.
We assume that the queuing system is stable:

∑
i πiri < c.

Let us introduce a number of functions that will be used in the remain-
der of this article. First, define A(t) := ∫ t

0 rX (s) ds as the total amount of
fluid offered to the buffer by an arbitrary source during time interval [0, t].
M (θ ; t) := E[exp(θA(t))], θ ∈ R, t ≥ 0 is the moment generating function of
A(t). We also define the “conditional mgfs”:

Mi(θ ; t) := E[exp(θA(t)) | X (0) = i].

Furthermore, define the matrix (B(θ ; t))d
i, j=1 by

Bij (θ ; t) := E[exp(θA(t))1{X (t) = j } | X (0) = i], θ ∈ R, t ≥ 0.

The above-defined moment generating functions allow for explicit calculation,
as follows. Given that the modulating chain X is in equilibrium at time 0, we
may write

M (θ ; t) =
d∑

i=1

πi Mi(θ ; t).

In Brandt and Brandt [1994] and Kesidis et al. [1993], it is proven that
Bij (θ ; t) = (exp((3+ θR)t))i j , with R := diag{r}. Consequently

Mi(θ ; t) =
d∑

j=1

Bij (θ ; t).

2.2 Problem Description

While several previous papers dealt with the stationary buffer content distri-
bution of this model, we focus on its transient. First, denote by Qn(t) the buffer
content at time t ≥ 0. The d -dimensional vector Fn(t) denotes the distribution
of the states of the n Markov chains at time t. Formally,

(Fn(t))i := 1
n

n∑
`=1

1{X `(t) = i}, i = 1, 2, . . . , d .

Obviously, for all t,

Fn(t) ∈
{

x | xi ≥ 0,
d∑

i=1

xi = 1

}
.

We are interested in the transient overflow probability, that is, the probability of
reaching a particular buffer level at time t, given observations of queue length
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Qn(0) and sources Fn(0) at time 0:

P(Qn(t) ≥ nb | Qn(0) = nb0 and Fn(0) = f0). (1)

Notice that we use the same scaling as was introduced by Weiss [1986]: in the
model with n sources, we scale buffer space and link rate by the same number.

As opposed to Kobayashi and Ren [1992] and Tanaka et al. [1995], we do
not pursue an exact evaluation of (1). Instead, we focus on the derivation of its
decay rate

I (b, t | b0, f0) := − lim
n→∞

1
n

log P(Qn(t) ≥ nb | Qn(0) = nb0 and Fn(0) = f0). (2)

ASSUMPTION 2.1. Throughout this article, we assume the event Qn(t) ≥ nb,
under conditions Qn(0) = nb0 and Fn(0) = f0, to be rare, meaning that
I (b, t | b0, f0) is strictly positive and increases in b.

Remark 2.2. In practice, one could be more interested in

P
(

sup
s∈[0,t]

Qn(s) ≥ nb | Qn(0) = nb0 and Fn(0) = f0

)
rather than (1). Analogously to the reasoning in the proof of Theorem 1 of
Botvich and Duffield [1995], one can show that the corresponding decay rate
equals infs∈[0,t] I (b, s | b0, f0).

2.3 Preliminaries

In this section, we present the pathwise LDP for Markov processes. First, define
the local rate function of Markov chains with generator 3 = (λi j )d

i, j :

Ix( y) := sup
θ∈Rd

 d∑
i=1

θi yi −
d∑

i=1

d∑
j=1
j 6=i

xiλi j (exp(θ j − θi)− 1)


= sup

θ∈Rd

 d∑
i=1

θi yi −
d∑

i, j=1

xiλi j
exp(θ j )
exp(θi)


x ∈ Rd

+,
d∑

i=1

xi = 1, y ∈ Rd ,
d∑

i=1

yi = 0. (3)

The interpretation of this local rate function is the following: Consider a large
number of Markov chains with generator3, and let the vector x = (xi)d

i=1 denote
the empirical distribution of the Markov chains: a fraction xi is in state i. Then,
Ix( y) is in fact the cost of the empirical distribution moving into direction y .
This heuristically justifies the following theorem, rigorously proven by Shwartz
and Weiss [1995, Theorem 13.37].
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THEOREM 2.3 [SHWARTZ AND WEISS: LDP FOR MARKOV PROCESSES]. For d = 2,
and a set S of absolutely continuous functions on the interval [0, t],

lim
n→∞

1
n

log P(Fn(s) ∈ S, s ∈ [0, t] | Fn(0) = f0) = − inf
f ∈S: f (0)= f0

Jt( f ). (4)

Here Jt( f ) := ∫ t
0 I f (s)( f ′(s)) ds is called the action functional.

Notice that, in Theorem 5.1 of Shwartz and Weiss [1995], this theorem is
proved for general dimension d , but under the assumption that the logarithm
of the transition rates is bounded. In our model, the rate of jumping from i to j is
mλi j if m sources are in state i. As m can attain value zero, the logarithm of this
rate is not bounded, and Theorem 5.1 does not hold. However, for the special
case d = 2, Shwartz and Weiss [1995] show in Theorem 13.37 that the process
Fn(·) satisfies a large deviations principle. For higher dimension d , the LDP is
not formally proven yet.

The optimizing f , say f ∗, of variational problem (4) has an interesting in-
terpretation. Given that the rare event under consideration occurs, with over-
whelming probability it does so with Fn(·) following a path that lies close to
f ∗ (where n → ∞). A formal treatment of this concept is found in Chapter 6
of Shwartz and Weiss [1995], in particular Theorem 6.15. Clearly, this optimal
path gives much insight into the system conditional on overflow, and appears
to be useful in developing efficient simulation methods, see Section 4.

3. ANALYSIS

This section finds the decay rate (2) for the case of exponential on/off sources,
and gives support to a conjecture for the decay rate for sources of dimension d
larger than 2.

In Section 3.1, we find a variational problem corresponding to the decay rate
for d = 2 (Proposition 3.1), which we can simplify (Lemma 3.2). Then we show in
Proposition 3.3 that the variational problem is solved by an optimal path, which
is the unique solution of a specific equation (Euler equation). Section 3.2 focuses
on the intuition behind the variational problem. We then conjecture the optimal
path (on the basis of probabilistic arguments) in Heuristic 3.4, and finally we
show that the conjectured path solves the Euler equation (Proposition 3.5); both
Heuristic 3.4 and Proposition 3.5 hold for general dimension d . Combining
all results, in Section 3.3, we find decay rate and optimal path for d = 2 in
Theorem 3.6 and Corollary 3.7.

If the dimension d equals 2, the paths are essentially one dimensional, as
evidently the fraction of sources in the on-state and the fraction of sources in the
off-state sum to 1; we therefore use one dimensional paths “ f = fon”. For d = 2,
for reasons of simplicity, we assume (without loss of generality) that the traffic
rate in the on-state equals 1: “ron = 1”. This notation holds for Sections 3.1
and 3.3. In Section 3.2, we assume general dimension d , and therefore we use
multidimensional paths and we have no tacit assumption regarding the traffic
rates.
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3.1 Derivation of the Variational Problem

In this section, we focus on exponential on–off sources. In Proposition 3.1, the
decay rate under consideration is written as a variational problem, by invok-
ing Theorem 2.3. Then, in Lemma 3.2, we prove that the set over which the
action functional is minimized can be reduced considerably. Finally, we show
in Proposition 3.3 that there is a unique minimizer.

Let {q f (s), s ∈ [0, t]} denote the scaled queue length, when given q f (0) = b0
and the path of the fraction of sources in the on state is { f (s), s ∈ [0, t]}.

PROPOSITION 3.1

I (b, t | b0, f0) = inf
f ∈S′0∪S′1

∫ t

0
I f (s)( f ′(s)) ds,

with

S′0 :=
{

f | f (0) = f0, q f (u) > 0 for all u in [0, t], and
∫ t

0
f (s) ds = b− b0 + ct

}
and

S′1 :=
{

f | f (0) = f0, ∃u ∈ [0, t] with q f (u) = 0, q f (s)> 0 for all s ∈ (u, t],

and
∫ t

u
f (s) ds = b+ c(t − u)

}
.

PROOF. We invoke the LDP of Theorem 2.3. The set over which the actional
functional has to be minimized is

S := { f | f (0) = f0 and q f (t) ≥ b}.

Because the decay rate increases in b—see Assumption 2.1—S can be replaced
by S′:

S′ := { f | f (0) = f0 and q f (t) = b}.
The theorem is proven by showing that S′ = S′0 ∪ S′1. This is done as follows:

Obviously, every trajectory of the buffer content has either zero or a positive
number of idle periods. Let S′0 consist of all paths for which the buffer is always
nonempty in [0, t]; then the amount of fluid to be built up in [0, t] is at least
b− b0 + ct. Furthermore, S′1 is the set of paths that do yield an idle period; if u
is the last epoch of a zero buffer content, then the amount of traffic to be built
up after u equals at least b+ c(t −u). Therefore, the decay rate of the transient
probability equals the minimum of the action functional on the union of the
sets S′0 and S′1.

We then define two variational problems. The first variational problem cor-
responds to the decay rate of the probability of generating b− b0 + ct fluid in
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the interval [0, t]:

I0 := inf
f ∈S0

∫ t

0
I f (s)( f ′(s)) ds,

S0 :=
{

f | f (0) = f0 and
∫ t

0
f (s) ds = b− b0 + ct

}
. (5)

The second variational problem reflects the decay rate of the probability
that somewhere in [0, t] the input rate equals output rate c, and from then
b+ c(t − u) traffic is fed into the system:

I1 := inf
f ∈S1

∫ t

0
I f (s)( f ′(s)) ds,

where

S1 :=
{

f | f (0)= f0, ∃u∈ [0, t] with f (u)= c, and
∫ t

u
f (s) ds= b+ c(t−u)

}
.

LEMMA 3.2. Decay rate (2) equals the minimum of I0 and I1.

PROOF. Trivially, S′0 ⊂ S0. Noticing that q f (u) = 0 and q f (s) > 0 for all
s ∈ (u, t] implies that f (u) = c, we get that S′1 ⊂ S1.

Consider the minimum of I0 and I1, that is, the minimum of the action func-
tional over S0 ∪ S1. Say that the minimum is reached for a path f ∗(·). This
optimizing path f ∗(·) lies in S′0 ∪ S′1. That can be proven as follows:

—Suppose f ∗(·) lies in S0 \ S′0. So consequently I0 ≤ I1. Then there is a u
such that

∫ u
0 f ∗(s) ds < −b0 + cu and f ∗(u) = c. Consequently,

∫ t
u f ∗(s) ds =

b′ + c(t − u) > b+ c(t − u). In accordance with Proposition 3.2 of Simonian
and Guibert [1995], the decay rate of the probability exceeding b after t − u
time increases as a function of b. In other words, f ∗ is more expensive than
a path g (·) in S1 with g (u) = c and

∫ t
u g (s) ds = b+ c(t − u). But then would

hold that I1 < I0. Contradiction.
—Suppose f ∗(·) lies in S1 \S′1, and therefore I1 ≤ I0. Consequently, {q f ∗ (s),

s ∈ [0, t]} has no idle periods. So the buffer contents at time u is positive:
q f ∗ (u) > 0. But then the buffer contents at time t equals q f ∗ (t) = q f ∗ (u) +
b > b. This is more expensive than a path g (·) in S0 that exactly reaches b:
qg (t) = b (again essentially equivalent to Proposition 3.2 of Simonian and
Guibert [1995] and using Assumption 2.1). But then I0 < I1. Contradiction.

Trivially, arg infx∈G y(x)∈H and H ⊂G imply that infx∈G y(x) = infx∈H y(x).
Noticing that we observed that the optimal path exactly hits level b, we are
done.

Now define the following variational problems, as required in the next theo-
rem. Notice that their sum, optimized over u ∈ [0, t], equals I1.

IA
1 (u) = inf

f ∈SA
1 (u)

∫ u

0
I f (s)( f ′(s)) ds,

SA
1 (u) := { f | f (0) = f0 and f (u) = c}, (6)
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IB
1 (u) = inf

f ∈SB
1 (u)

∫ t

u
I f (s)( f ′(s)) ds, (7)

where SB
1 (u) :=

{
f | f (u) = c and

∫ t

u
f (s) ds = b+ c(t − u)

}
.

Notice that problems (5) and (7) are contraint variational problems. We recall
from the theory of calculus of variations [Gelfand and Fomin 1963; Shwartz
and Weiss 1995] the first order necessary conditions for an optimal (absolute
continuous) f of an unconstraint problem

inf
∫ t2

t1

I f (s)( f ′(s)) ds.

The conditions are known as the Euler equations, and say that for all s ∈ [t1, t2]
it must hold that

∂

∂ f
I f (s)( f ′(s)) = d

ds
∂

∂ f ′
I f (s)( f ′(s)).

In the next proposition, we prove that our constraint variational problems can
be solved by solving the associated Euler equations.

PROPOSITION 3.3. Variational problems (5), (6), and (7) lead to Euler equa-
tions with a unique solution.

PROOF. Problems (5) and (7) are constraint variational problems, and there-
fore we apply the Euler equations to the Lagrangians. We first consider problem
(5). The Lagrangian problem reads as

I0,K := inf
f : f (0)= f0

∫ t

0
I f (s)( f ′(s)) ds− K

(∫ t

0
f (s) ds− (b− b0 + ct)

)
. (8)

This problem is similar to Lagrangian problem

I ′0,K := inf
f : f (0)=c

∫ t

0
I f (s)( f ′(s)) ds− K

(∫ t

0
f (s) ds− (b+ ct)

)
. (9)

The Euler equations are

∂

∂ f
h( f (s), f ′(s)) = d

ds
∂

∂ f ′
h( f (s), f ′(s)),

where

h( f (s), f ′(s)) := I f (s)( f ′(s))− K ( f (s)− c).

Then, Theorem 13.43 in Shwartz and Weiss [1995] says that, for any buffer level
b and time t (where t(1 − c) > b), there exists a Lagrange multiplier K such
that the solution of the variational problem (9) satisfies these Euler equations.
Furthermore, in Section 13.2 of Shwartz and Weiss [1995], it is shown that
the Euler equations corresponding to this variational problem have a unique
solution. It is easy to see that consequently this same property also holds for
(8), for all t and b such that t(1− c) > b− b0.
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Completely analogously to (5), we can show that (6) and (7) have a unique
optimizing path.

In the next section, we deal with higher dimensions. The Euler equations
that go with (8) will then be given explicitly in the proof of Proposition 3.5.

3.2 Heuristic Derivation of the Decay Rate and Optimal Path

In this section, we give—for general dimension d—a heuristic derivation of
the most likely path (see Heuristic 3.4). The type of argument we use can be
applied to find the optimal path in many other variational problems, and has
an entirely probabilistic nature. For this reason, we include its derivation.

For a path to be optimal, a necessary condition is that it solves the Euler
conditions. In Proposition 3.5, we show that the path of Heuristic 3.4 satisfies
these equations. Notice that for d = 2 this means that we have found the unique
solution, based on Proposition 3.3.

Lemma 3.2 implicitly says that if I0 is the smaller, then the queuing tra-
jectory corresponding to f ∗(·) reaches level b at time t, without an idle period
in between. Based on this observation, it can be expected that the transient
overflow probability roughly equals

P

(
n∑
`=1

A`(t) ≈ n(b− b0 + ct) | Fn(0) = f0

)
. (10)

If on the other hand I1 is the smaller, then the queuing trajectory corresponding
to f ∗(·) reaches level b at time t, with some idle time in between. This gives rise
to the following rough characterization of the overflow probability:

sup
u, f (u)

P(Fn(u) ≈ f (u) | Fn(0) = f0)

· P
(

n∑
`=1

A`(t − u) ≈ n(b+ c(t − u)) | Fn(u) = f (u)

)
, (11)

where the optimization is over u ∈ [0, t] and all f (u) such that
∑d

i=1 ri fi(u) = c.
We see that the minimization over S0 ∪ S1 determines the choice between a

direct path, and a path with one or more idle periods. The advantage of a path
in which the queue is empty for some time is that the traffic to be generated by
the sources is lower than b− b0 + ct, but its drawback is that b+ c(t − u) has
to be built up quite quickly. Consequently, for small values of t, the direct path
will be optimal. For larger t, the process first goes more or less to equilibrium,
and builds up a buffer b during the last part of [0, t]. Interestingly, there is an
epoch tb that may be called the “bifurcation time”: for t < tb, the direct path is
more likely; for t > tb, the queue will have idle time before overflow. Based on
these observations, we develop the following Heuristic.

HEURISTIC 3.4. A heuristic derivation of the optimal paths of variational
problems (5), (6), and (7) is given as follows:

—First consider problem (5). As suggested above, the transient probabil-
ity of our interest asymptotically equals (10). Notice that—with Cramér’s
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theorem—the exponential decay rate of this probability equals

sup
θ

(
θ (b− b0 + ct)−

d∑
i=1

fi,0 log Mi(θ ; t)

)
; (12)

let θ∗ be the supremizing argument. Expression (10) provides information on
the state of the sources at time 0, as well as the amount of fluid that entered the
system in the interval [0, t]. However, by invoking Laplace’s principle [Dupuis
and Ellis 1997], implicitly the entire most likely trajectory of the distribution of
the sources in the interval [0, t] is given. This can be explained in the following
three steps.

(1) First, we introduce the matrix Gn(s): its (i, j )th entry is the fraction of the
sources that were in state i at time 0 that is in state j at time s (of course,
the rowsums of G(s) equal 1). We condition probability (10) to all possible
values of G(s):∫

P

(
n∑
`=1

A`(t) ≈ n(b− b0 + ct) | Fn(0) = f0, Gn(s) ≈ g (s)

)
· P(Gn(s) = g (s) | Fn(0) = f0) dg (s). (13)

(2) Now, consider both probabilities in the integrand of (13). Both of them can
be evaluated asymptotically by means of the standard Large Deviations
theorems of Cramér and Sanov [Dupuis and Ellis 1997; Shwartz and Weiss
1995]. Denote by α and β the exponential decay rates of both probabilities;
then

α = sup
θ

θ (b− b0 + ct)−
d∑

i, j=1

f0,i gi j (s) log
(

Bij (θ ; s)M j (θ ; t − s)
pij (s)

), (14)

β =
d∑

i, j=1

f0,i gi j (s) log
(

f0,i gi j (s)
pij (s)

)
. (15)

(3) Now we apply Laplace’s principle, which states that the decay rate of an
integral equals (under specific conditions) the decay rate of the maximum
of the integrand. Heuristically, this principle says that asymptotically all
probability mass is concentrated on one point, and this point can be re-
garded as “most likely.” In this case, we minimize the sum α+ β of (14) and
(15) with respect to g (s). Tedious calculations yield

g∗i j (s) = Bij (θ∗; s)M j (θ∗; t − s)∑d
k=1 Bik(θ∗; s)Mk(θ∗; t − s)

,

to be interpreted as the the most likely fraction (of the f0,i sources that were
in state i at time 0) that are in state j at time s. Therefore, our conjecture
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for the most likely fraction of sources in state j at time s is
∑d

i=1 f0,i g∗i j (s):

f̂ j (s) =
d∑

i=1

f0,i
Bi j (θ∗; s)M j (θ∗; t − s)∑d

k=1 Bik(θ∗; s)Mk(θ∗; t − s)

=
d∑

i=1

f0,i
Bi j (θ∗; s)M j (θ∗; t − s)

Mi(θ∗; t)
. (16)

—Now consider (6). Again on the basis of the remark of the beginning of this
subsection, if I1 < I0 the transient probability of our interest asymptotically
equals (11), where at the optimizing u it holds that the distribution f (u)
is such that

∑d
i=1 ri fi(u) = c. The trajectory on the interval [0, u] can be

found analogously to the three-step recipe presented above (conditioning,
large deviations on the individual terms, and “Laplace”) (see Mandjes [1999]).
After calculations, we find

f̂ j (s) =
d∑

i,k=1

xi pi j (s)pj k(u− s) yk , s ∈ [0, u], (17)

where x and y are such that
d∑

k=1

xi pik(u) yk = fi,0 and
d∑

i=1

xi pik(u) yk = fk(u). (18)

As was extensively treated in Mandjes [1999], the resulting decay rate is
d∑

i=1

( f0,i log xi + fi(u) log yi), (19)

where it is emphasized that x and y depend on u, as they are determined
by (18).

—Finally, consider (7). Based on (11), the path on [u, t] is heuristically derived
analogously to (5), and is given by

f̂ j (s) =
d∑

i=1

fi(u)
Bij (θ∗; s)M j (θ∗; t − s)

Mi(θ∗; t)
, s ∈ [u, t], (20)

where θ∗ is optimizing argument in

sup
θ

(
θ (b+ c(t − u))−

d∑
i=1

fi(u) log Mi(θ ; t)

)
. (21)

PROPOSITION 3.5. The paths f̂ (·)—given by (16), (17), and (20)—satisfy the
Euler equations that correspond to variational problems (5), (6), and (7),
respectively.

PROOF. We again distinguish between the three cases. As the proof of (20)
is completely analogous to (16), we omit this case.

—First, consider path (16). We first have to find an expression for the local rate
function (3) along the above conjectured trajectory (16). This requires the
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knowledge of the optimizing vector θ in the definition of (3). We conjecture
that this so-called “twist” along path (16) is given by

θ̂ i(s) = log Mi(θ∗; t − s)+ k(s),

for some function k(s) (constant on {1, . . . , d }). This is proved analogously to
the proof in Section 3.4 of Mandjes and Ridder [1999]. We summarize the
required steps and refer to Mandjes and Ridder [1999] for the details.

(1) Find the derivative of path (16). After some algebra:

f̂ ′j (s) =
∑
i 6= j

f̂ iλi j
M j (θ∗; t − s)
Mi(θ∗; t − s)

−
∑
i 6= j

f̂ jλ j i
Mi(θ∗; t − s)
M j (θ∗; t − s)

.

(2) Solve (3) via the first order conditions. After algebra, θ̂ (s) must satisfy

y j =
∑
i 6= j

xiλi j
exp(θ̂ j (s))
exp(θ̂ i(s))

−
∑
i 6= j

x jλ j i
exp(θ̂ i(s))
exp(θ̂ j (s))

.

(3) Substitute in the last expression x = f̂ (s), y = f̂ ′ and θ̂ i(s) = log Mi(θ∗;
t − s)+ k(s).

We then show that path f̂ solves the Euler equations associated with problem
(5). To this end, first define—similarly to Proposition 3.3—

h(x, y) := Ix( y)− K
d∑

i=1

xi(ri − c),

where K is the associated Lagrange multiplier. So, for all s ∈ [0, t] and i =
1, 2, . . . , d it must hold that

∂

∂xi
h(x, y)

∣∣∣∣
x= f̂ (s), y= f̂ ′(s)

= d
ds

(
∂

∂ yi
h(x, y)

∣∣∣∣
x= f̂ (s), y= f̂ ′(s)

)
= θ̂ ′i(s),

where the last equality is due to Theorem C.2 of Shwartz and Weiss [1995]. The
expression of Ix( y) can be worked out using the exact expressions for y = f̂ ′(s)
and θ̂ (s) given above. After algebra, similarly as in Section 3.5 of Mandjes and
Ridder [1999], we verify the Euler equations. We find that they are solved
for K = θ∗ (being the optimizing argument in (12)) and k(·) being a constant
function.

—Let us concentrate on (17). Analogously to the three steps above (with details
in Section 2.2 of Mandjes [1999]), we find that the twist along the first part
of the conjectured path is

θ̂ i(s) = log

(
d∑

k=1

pik(u− s) yk

)
.

The Euler equations associated with (unconstrained) problem (6) are

∂

∂xi
Ix( y)

∣∣∣∣
x= f̂ (s), y= f̂ ′(s)

= d
ds

(
∂

∂ yi
Ix( y)

∣∣∣∣
x= f̂ (s), y= f̂ ′(s)

)
,
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for s ∈ [0, u] and i = 1, 2, . . . , d . The rest is algebra, since we have again the
exact expressions of f̂ ′(s) and θ̂ (s).

3.3 Calculation of the Decay Rate and Optimal Path

Combining the results of the previous two sections, we derive the decay rate
and optimal path for the case d = 2.

THEOREM 3.6. For d = 2, decay rate (2) is given by

min
{

I0, min
u∈[0,t]

{
IA

1 (u)+ IB
1 (u)

}}
. (22)

Here I0 is given by (12), IA
1 (u) by (19), and IB

1 (u) by (21).

PROOF. The proof is a combination of the previous results of this section.
First, Lemma 3.2 states that decay rate (2) is given by the minimum of I0
and I1, where the latter obviously equals minu∈[0,t]{IA

1 (u) + IB
1 (u)}. I0 can be

calculated by inserting the f̂ (·) of (16) into Jt(·), justified by Propositions 3.3
and 3.5. We get (12). Similarly, we find that IA

1 (u) and IB
1 (u) equal (19) and (21),

respectively.

COROLLARY 3.7. For d = 2 and for any δ > 0,

lim
n→∞P

(
sup

v∈[0,t]
|Fn(v)− f̂ (v)| < δ | Qn(0) = nb0, Fn(0) = f0, Qn(t) ≥ nb

)
= 1.

If (22) is given by I0, then f̂ (·) is given by (16). Else, f̂ (·) is given by the concate-
nation of (17) and (20), where

u = u∗ := arg min
u∈[0,t]

{
IA

1 (u)+ IB
1 (u)

}
. (23)

In other words, for d = 2, we have f ∗(·) = f̂ (·).
PROOF. The statement that we have found the optimal path, follows from

our previous results: Proposition 3.5 says that f̂ solves the Euler equations,
and Proposition 3.3 says that the Euler equations have a unique solution.

Given the rare event, the sample paths lie close to the optimal path almost
surely. Under certain conditions, this holds more generally (see, e.g., Theo-
rem 6.15 in Shwartz and Weiss [1995]). For the Markov fluid case, we refer also
to Theorem 13.41 of Shwartz and Weiss [1995].

4. FAST SIMULATION

In this section, we consider the possibility of getting quick estimates of the
transient overflow probability (1) by simulation. The goal is twofold. In the first
place, such an efficient simulation technique is, of course, interesting on its
own right. In the second place, we use it to verify possible approximations of
the transient overflow probability.

Section 4.1 explains why variance reduction techniques are required to effi-
ciently estimate probability (1). We advocate the use of importance sampling;
this technique entails simulation under a probability model that differs from
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the actual one, such that rare behavior becomes more frequent. We empha-
size that the novelty of our method is that this alternative probability model
is adapted during the simulation continuously, in contrast with all earlier pro-
posed methods. In Section 4.2, we show how the knowledge of the optimal path
(Section 3) enables to find this new probability model. Then Section 4.3 briefly
sketches implementation details of our simulation method. In Section 4.4, we
give simulation results, and comment on approximations.

4.1 Rare Event Simulation—Importance Sampling

Importance sampling has the potential to speed up simulations significantly,
given that some global knowledge of the system is available (see, e.g., Asmussen
and Rubinstein [1995] and Heidelberger [1995]). Here we briefly review its goal,
some relevant concepts, and the status of the literature.

Rare Event Simulation Requires Variance Reduction. As we assumed decay
rate (2) to be positive, the event under consideration is rare: as scaling param-
eter n grows, probability (1) decays exponentially fast. Denoting the event un-
der consideration by An, in the standard simulation procedure—“crude Monte
Carlo” (CMC)—one draws independent samples and estimates P(An) as the
fraction of samples that lie in An. The accuracy of the estimate is measured
by its relative error (RE), that is, the standard deviation divided by the expec-
tation of the estimator. Let N be the number of simulation experiments, then
RE ∼ 1/

√
P(An)N (see, e.g. Asmussen and Rubinstein [1995] and Heidelberger

[1995]). This means that to achieve some fixed accurate estimate (i.e., 10% RE)
the required sample size N is proportional to 1/P(An). In our case, the tran-
sient overflow probability decays exponentially in n, and, hence, the required
number of runs grows exponentially with n. Clearly, this justifies the need for
a variance reduction technique.

Importance Sampling—Major Concepts. In simulations with importance
sampling Monte Carlo (ISMC), the samples are drawn independently accord-
ing to another probability Q. The simulation data of sample path ω (viz.
“1” if the sample is in An and “0” else) are multiplied by a likelihood ratio
L(ω) := (dP/dQ)(ω) to keep unbiasedness. The average of the obtained num-
bers is the importance sampling estimate.

A crucial issue in this approach is to find a good alternative measure Q;
chosen wrongly, the procedure might even lead to variance increase. To measure
the quality of the new probability model, one analyzes again the RE and the
required sample size N (as explained above) of the estimate as functions of
the parameter n (see, e.g., Asmussen and Rubinstein [1995] and Heidelberger
[1995]).

—Ideal would be an estimate with bounded RE in which case the required N
may be chosen fixed. A situation where this happens is as follows: From (2),
one might suggest

P (An) ∼ k1 exp(−nI ), n→∞, (24)

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 1, January 2002.



Large Deviations Analysis of a Markov Fluid Model • 17

where f (n) ∼ g (n), n → ∞ means limn→∞ f (n)/g (n) = 1, and where k1 is
some constant, and I is the decay rate in (2). Now assume that the second
moment of the IS-estimate satisfies the asymptotic

EQ[L21(An)] ∼ k2 exp(−2In), n→∞, (25)

EQ[·], denoting expectation under Q, and 1(·) being the indicator function.

Then it is easy to see that RE ∼
√

(k2 − k2
1)/(Nk2

1) is bounded (in n) and the
required sample size N to obtain RE = ε is fixed N ≈ (k2 − k2

1)/(ε2k2
1).

—The situation sketched above is very unlikely. More generally, it holds that
the constants k1 and k2 in the asymptotics (24) and (25) are functions of n,
preferably k1(n) and k2(n) are polynomials. Then a number of properties hold
that are easy to verify:

(i) The RE is polynomial.
(ii) The required N is polynomial.

(iii) The new probability model is asymptotically optimal, meaning

lim
n→∞

log EQ[L21(An)]
log P(An)

= 2. (26)

—Without assuming the asymptotics for the second moment EQ[L21(An)], one
calculates the ratio (26) from the simulation data. By Jensen’s inequality and
because the denominator is negative, the ratio is at most 2. The closer it is to
2, the better the implemented Q. In the original probability model the ratio
equals 1, when we assume that P(An) decays exponentially.

Notice that we did not take into account the time complexity in this analysis,
that is, the computing time in the simulation experiments. For a discussion on
this matter, we refer to Section 17.2.2 in Asmussen and Rubinstein [1995].

Use of Large Deviations—Optimal Paths. As said above, given some global
knowledge on the system’s behavior, ISMC can improve the estimator’s vari-
ance properties considerably. This global knowledge involves the characteristics
of the system during its path towards the unlikely state or event. The idea is
that Q is chosen such that the average sample path during a simulation exper-
iment mimics the (rare) optimal path to overflow. Therefore, large deviations
techniques have proven to be useful for finding good Q.

This procedure has been pursued successfully in systems where the rarity
was due to a large buffer rather than a large number of sources. The crucial fea-
ture there is that the most likely path to overflow is essentially a straight line
(cf. Anantharam [1988]). Measure Q is chosen such that the resulting average
path coincides with this straight line. The alternative measure induces con-
stant probability distributions of the random variables involved. For instance,
in GI/G/1 queues, the interarrival times and the service times have given fixed
new laws. Notice that under the new measure Q the queue becomes unstable.
References for (networks of) GI/G/m queues are Parekh and Walrand [1989]
and Sadowsky [1991]; for Markov fluid driven queues, we mention Kesidis and
Walrand [1993], and Mandjes and Ridder [1995], and Ridder [1996]. In many
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cases, asymptotic optimality has been proven [Asmussen and Rubinstein 1995;
Heidelberger 1995].

The model of the present article is essentially different: the rarity is due
to a large number of sources. The optimal path to the rare event is nonlinear,
and therefore a constant change of measure cannot apply. As a consequence,
the transition rates that correspond to the alternative measure have to be up-
dated during the simulation run. Related procedures were considered in Kroese
and Nicola [1998] and Ridder [1999] and in a more abstract context by Cottrell
et al. [1983]. We have not succeeded in formally proving asymptotic optimality;
empirically, we show in Section 4.4 that a significant speed-up is achieved.

4.2 The New Transition Rates

As motivated in the previous section, measure Q has to be chosen such that the
process behaves under Q on average according to the paths from Heuristic 3.4.
We will show below that under Q the original time-homogeneous modulating
Markov chains are replaced by time-inhomogeneous Markov chains (with rate
matrix 3(s) = (λi j (s))d

i, j=1, for s ∈ [0, t]).
The average path under 3(s) is given by the distributions p(s) = (pi(s))d

i=1
that satisfy the forward Kolmogorov equations p′(s) = p(s)3(s). Or, in detail:

p′j (s) =
∑
i:i 6= j

pi(s)λi j (s)−
∑
i:i 6= j

pj (s)λ j i(s), j = 1, 2, . . . , d ; s ∈ [0, t]. (27)

As our objective was to mimic the optimal path, we have to find rate 3(s) such
that p(·) ≡ f̂ (·). The following proposition gives such a generator, which lies
within the class of exponential twists [Asmussen and Rubinstein 1995; Mandjes
and Ridder 1995; Ridder 1996].

PROPOSITION 4.1. Transition rates 3(s) that solve (27) are the following:

(i) If I0 < I1: let θ∗ defined as an optimizer of (12). Then, for s ∈ [0, t],

λi j (s) = λi j
M j (θ∗; t − s)
Mi(θ∗; t − s)

(i 6= j ). (28)

(ii) If I0≥ I1: let u∗ as in (23) and θ∗ as an optimizer of (21). Then, for s ∈ [0, u∗],

λi j (s) = λi j

∑d
k=1 pj k(u∗ − s) yk∑d
k=1 pik(u∗ − s) yk

(i 6= j ), (29)

and for s ∈ [u∗, t],

λi j (s) = λi j
M j (θ∗; t − s)
Mi(θ∗; t − s)

(i 6= j ).

The diagonal elements λii(s) are given by −∑ j : j 6=i λi j (s).

PROOF. First consider the case I0 < I1. Rewrite the expression (16) of the
optimal path

f̂ j (s) =
d∑

i=1

f0,i

Mi(θ∗; t)

d∑
k=1

Bij (θ∗; s)Bj k(θ∗; t − s),

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 1, January 2002.



Large Deviations Analysis of a Markov Fluid Model • 19

where θ∗ stems from (12). Take the derivative with respect to s:

f̂ ′j (s) =
d∑

i=1

f0,i

Mi(θ∗; t)

d∑
k=1

(
∂

∂s
Bij (θ∗; s)Bj k(θ∗; t − s)+ Bij (θ∗; s)

∂

∂s
Bj k(θ∗; t− s)

)
.

(30)

The partial derivative of the matrix element Bij (θ ; s) follows from the definition
B(θ ; s) := exp((3+ θR)s):

∂

∂s
Bij (θ ; s) =

d∑
k=1

Bik(θ ; s)(3+ θR)k j

∂

∂s
Bij (θ ; s) =

d∑
k=1

(3+ θR)ik Bkj (θ ; s),

where R := diag{r}. Apply the first variant to the first term in (30) and the
second variant to the second term. Then, after some obvious manipulations, we
obtain that the right hand side of (30) is indeed∑

i:i 6= j

f̂ i(s)λi j (s)−
∑
i:i 6= j

f̂ j (s)λ j i(s),

when the transition rates are given by (28).
For the second case, the line of reasoning is similar as above. First, consider

the [0, u∗] part. The expression of the optimal path is given in (17). Take the
derivative with respect to s, and apply the property that transition matrix P (s)
satisfies the differential equations

P ′(s) = P (s)3 and P ′(s) = 3P (s).

After manipulations, we get

f̂ ′j (s) =
∑
i:i 6= j

f̂ i(s)λi j (s)−
∑
i:i 6= j

f̂ j (s)λ j i(s),

when the transition rates are given by (29). For the [u∗, t] part, the optimal
path is given in (20). Taking the derivative goes similarly as above. Again, we
conclude that the optimal path f̂ (·) satisfies Eq. (27).

4.3 Implementation Issues

In the previous section, we have found the time-inhomogeneous Markov chain
that should be used as probability measure in the ISMC simulation. This section
presents details on the implementation.

First, we introduce the d -dimensional vector Y (s); its ith component records
the number of modulating Markov chains in state i (i ∈ {1, . . . , d }). We have
simulated the jumps of this process by applying uniformization (see, e.g., Tijms
[1994, p. 154]). This is done as follows. Choose γ such that

γ ≥ n max
s∈[0,t]

max
i∈{1,...,d }

∑
j : j 6=i

λi j (s)

 . (31)
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The simulation of the time-inhomogeneous Markov chain is done as follows.
In the simulation, we realize so-called jump epochs according to a Poisson(γ )
process. Only at these epochs the process Y (·) can change state. If yi denotes
the number of sources in state i at that jump, then the probability of a source
moving from i to j is λi j yi/γ (note that there is a possibly positive probability
of a self-transition).

The above implementation would require on-line calculation of the rates3(s),
and consequently Mi(θ∗; t − s) or pij (s). To avoid this, we propose the following
alternative. Divide interval [0, t] in K subintervals. Say that [tk , tk+1] is the kth
subinterval. Then, we let all transition rates in this subinterval obey, the same
rule, in that there is in that interval a fixed change of measure. For s ∈ [tk , tk+1],
the approximation for λi j (s) is

λ̂i j (s) := 1
2

(λi j (tk)+ λi j (tk+1)).

The advantage is that the alternative transition rates can be computed off-line,
once for all simulation runs. Experiments show that the loss of efficiency in
variance reduction is marginal, but the gain in simulation times is considerable
[Ridder 1999]. We let the number of subintervals depend on the overflow time t,
keeping the widths small enough. In the experiments, we took the uniformiza-
tion constant γ in (31) as small as possible, and the widths of the subintervals
about 1/50 of the overflow time t.

4.4 Simulation Study

In this section, we consider the following model. We assume that sources are
of the exponential on/off type; the mean time in the on-state is 0.5 seconds
and the mean off-time is 1.0 seconds. This model is commonly used for voice
[Schwartz 1996, p. 26]. While in the on-state a source transmits at a rate of 100
per second. The scaled link rate is c = 50, the scaled initial content b0 = 0.25,
the scaled target buffer value is b = 1.0, and the initial fraction in the on-state
is f0 = 0.55.

The goal of this section is twofold. First, we comment on a number of approx-
imations of the transient overflow probability, and then we assess the quality
of the proposed simulation approach.

4.4.1 Approximations. First, we derive from Cramér’s theorem the most
likely overflow time, and denote it by t∗. It is the time t that minimizes the
exponential decay rate (12) of the overflow probability:

t∗ := arg inf
t>0

sup
θ

(
θ (b− b0 + ct)−

d∑
i=1

fi,0 log Mi(θ ; t)

)
.

Furthermore, we denote the bifurcation time by tb. This is the time epoch where
the large deviations rate function switches from I0 to I1. In the example, we
found numerically the most likely overflow time t∗ = 0.2181, and the bifurcation
time tb = 1.4894. So, in a natural way, we discriminate between three cases for
the overflow time t: (i) t < t∗, (ii) t∗ < t < tb, and (iii) t > tb. These three cases
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Fig. 1. Optimal paths f (s) and buffers q f (s), where f (s) := fon(s), the fraction of sources in the
on-state.

show essentially different overflow behavior, as demonstrated by the optimal
paths below. Figure 1 shows the optimal paths of the fraction of sources in the
on-state and the buffer contents. These are numerically determined from the
expressions (16), (17), and (20). Remarkably, we see that, in the case of t∗ < tb,
the buffer content reaches higher levels before dropping down to b at time t.

For the three regimes identified above, a number of possible approximations
are the following:

—The first approximation is simply based on (2):

P(Qn(t) ≥ nb | Qn(0) = nb0 and Fn(0) = f0) ≈ exp[−nI (b, t | b0, f0)].
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—The second approximation applies the Bahadur–Rao refinement of Cramér’s
theorem [Bahadur and Rao 1960].

P(Qn(t) ≥ nb | Qn(0) = nb0 and

Fn(0) = f0) ≈ 1√
2πn σθ∗

exp[−nI (b, t | b0, f0)],

where θ∗ solves Cramér’s equation (12) and σ 2 is the variance of the to-
tal input of a source generated during [0, t] given the distribution of initial
state of the source, and assuming that the on/off times of the source are
θ∗-exponentially tilted. σ 2 is computed by

σ 2 =
d∑

i=1

fi,0

[
M ′′

i (θ∗; t)
Mi(θ∗; t)

−
(

M ′
i(θ
∗; t)

Mi(θ∗; t)

)2
]
.

This approximation is only possible when Cramér’s theorem is applied for
determining the large deviations decay rate (see Section 3.2). That is, when
the overflow time t is smaller than the bifurcation time tb.

We use simulation to validate these approximations of the transient overflow
probabibility. Figure 2 shows the estimates and approximations of the transient
overflow probabilities for the three cases t = 0.15, 1.0, 2.0 for varying number
of n sources. The simulations were executed until the relative half width of the
95%-confidence interval of the estimate is 15% to both sides of the estimate:
we call this (95%, 15%)-efficiency. The order of the probability estimates goes
down to 10−10, which can be seen from the plots: the values are given in 10log
scale. Clearly, the Bahadur–Rao approximations perform very well (Note: This
approximation is possible only for t < tb ≈ 1.5). The large deviations approx-
imations form an upper bound and exceed the estimates by a factor 10. As a
more detailed comparison, we give in Table I these probability estimates for
values larger than 10−6. The differences are due to (i) we performed each ex-
periment one time, and (ii) only in 95% of the cases we are sure that the true
probability differs at most 15% of both the CMC and the ISMC values. Also, in
Table I, we give the number of simulations runs that were executed to obtain
these estimates.

4.4.2 Comparison of Simulation Methods. We consider three ways of
comparing the CMC and ISMC simulation methods.

—The first possibility is by keeping the number of simulation runs constant
and calculating the relative error (RE) of the estimates. A smaller RE means
variance reduction. A simulation run starts at time 0 with a given number
of sources n, the given initial buffer content nb0 and fraction f0. A run ends
at time t.

Table II shows these relative errors of the probability estimates for in-
creasing number of sources n, when the number of runs is fixed: 200000 in
CMC and 10000 in ISMC. From the numbers, we conjecture that the CMC
relative error increases exponentially (as a function of the number of sources
n), while the ISMC relative error increases linearly. This indicates a huge ac-
celeration of the simulations. There are no overflow observations in the CMC
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Fig. 2. Simulation estimates of the overflow probability (◦: CMC, +: ISMC) and approximations
(top: Cramér, bottom: Bahadur–Rao). No B-R for t = 2.

simulations for large n. In these cases, we give (between parentheses) the es-
timated relative error using the estimated probability p̂ from the ISMC sim-
ulations: as mentioned above, RE∼ 1/

√
p̂N , where N is the number of runs.

—In an alternative comparison, we require that the relative width of the 95%-
confidence interval of the estimate is 15% to both sides of the estimate, that
is, a (95%, 15%)-efficiency. The relative error of the estimate is approximately
0.0765 in such cases. Then we compare the number of simulation runs that is
required before this happens. In Table I, we have listed these figures (below
the corresponding estimates). We conclude that the number of runs increases
roughly linearly under ISMC and exponentially under CMC, and hence there
is significant variance reduction.
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Table I. (95%, 15%)-Efficient Probability Estimates and the Corresponding Required Number of
Simulation Runs (in parentheses)

t = 0.15 t = 1.0 t = 2.0
n CMC ISMC n CMC ISMC n CMC ISMC

50 6.5735e-02 5.8970e-02 20 8.6788e-02 7.7276e-02 20 4.3850e-02 4.0011e-02
(2434) (479) (1809) (1167) (3740) (2186)

100 3.2108e-02 3.3204e-02 40 1.5803e-02 1.5023e-02 40 3.6441e-03 3.1320e-03
(5170) (684) (10694) (972) (46925) (4786)

150 1.0652e-02 7.9807e-03 60 3.6214e-03 3.6431e-03 60 3.6417e-04 2.6619e-04
(15865) (937) (47219) (2110) (469559) (2028)

200 5.8968e-03 4.3287e-03 80 9.4180e-04 7.6056e-04 80 3.1311e-05 3.0851e-05
(28829) (1322) (181567) (2815) (5461423) (4092)

250 1.4851e-03 1.3477e-03 100 2.6500e-04 1.5055e-04 100 2.5805e-06
(115145) (1595) (645283) (2846) (2881)

300 9.1527e-04 7.2262e-04 120 7.5268e-05 4.5558e-05
(186831) (1756) (2271873) (5873)

350 2.9039e-04 2.1591e-04 140 1.7016e-05 1.1509e-05
(588866) (2111) (10049560) (3722)

400 1.6495e-04 1.3100e-04 160 3.0628e-06
(1036699) (3081) (10364)

450 5.7827e-05 4.1582e-05
(2957097) (3787)

500 2.2524e-05 2.0444e-05
(7591867) (4176)

550 6.0543e-06
(4646)

Table II. Relative Errors (200000 Runs in CMC and 10000 Runs in ISMC)

t = 0.15 t = 1.0 t = 2.0
n CMC ISMC n CMC ISMC n CMC ISMC
100 0.0117 0.0195 40 0.0174 0.0404 40 0.0365 0.0824
200 0.0304 0.0290 60 0.0362 0.475 50 0.0646 0.0660
300 0.0716 0.0368 80 0.0675 0.0408 60 0.1132 0.0813
400 0.1562 0.0444 100 0.1291 0.0675 70 0.2425 0.0501
500 0.5000 0.0958 120 0.2887 0.0565 80 0.4082 0.0616
600 (1.15) 0.0869 140 0.5773 0.0666 90 0.5773 0.0480
700 (2.64) 0.0712 200 (5.21) 0.1008 150 (21.7) 0.0795
800 (6.45) 0.0747 300 (127.7) 0.1487 200 (353.3) 0.0522
900 (15.80) 0.1120 400 (3332.6) 0.2084 250 (6241.7) 0.0677

1000 (36.62) 0.1023 500 (101241) 0.1656 300 (86771) 0.1117

—Finally, we checked whether the ratios of (26) converge to 2, which would
indicate that the new model is asymptotically optimal. We found in the ex-
periments of Table I that the ratios remain between 1.7 and 1.85, however
slowly increasing when the number of sources gets larger.

5. CONCLUSION

In this article, we have studied the Markov fluid model with many sources and
infinite buffer. Given initial conditions (states of the Markov sources and the
buffer content at time 0), we were interested in the probability that the buffer
content exceeds a certain level at a finite time t (which we call the transient
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overflow probability). The emphasis of our study was on the determination of
the decay rate of this probability as the number of sources increases; as a by-
product, we gain insight into the typical statistical behavior of the sources and
the buffer content during the trajectory to overflow. Asymptotically, that is, as
the number of sources is growing large, this problem becomes a variational
problem of which no solutions were known. For exponential on–off sources,
we solved this variational problem; for general Markov fluid sources, we have
proposed a plausible heuristic. This heuristic is based on the standard large
deviations theorems of Cramér and Sanov and on Laplace’s principle.

We have considered some interesting consequences of these large deviations
results. Most importantly, we have described and implemented a technique for
quick simulation of transient overflow probabilities, based on importance sam-
pling. The idea is to use a change of measure, in such a way that the average
statistical behavior under the new measure coincides with the deviant behav-
ior of reaching buffer overflow at time t under the old measure. This approach
led to a probability model in which the Markov sources have time dependent
transition rates. The results showed that the importance sampling simulations
yield strong variance reduction compared to standard simulations. We could
not prove that the importance sampling simulation approach is asymptotically
optimal. A second consequence of our large deviations results is the use of the
asymptotic decay rate of the transient overflow probability in two approxima-
tions (of this probability) that perform very well; particularly, the Bahadur–Rao
based approximation in the small t region is very accurate.

Further investigations are needed to develop more accurate approximations
in the large t region. Also, further analysis is required to prove the large de-
viations principle to hold for higher dimensions (d > 2, general Markov fluid
sources). Also, the asymptotic optimality of the simulation method may be ver-
ified formally.
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