Check for
Updates

COMBINATORIAL COMPRESSION AND PARTITIONING OF LARGE DICTIONARIES: THEORY AND EXPERIMENTS®

2,3

Aviezri S. Fraenkel and Moshe Mor

Department of Applied Mathematics
The Weizmann Institute of Science
Rehovot, Israel 76100

Abstract A method for compressing large dictionaries is proposed, based on transforming words into lexico-
graphically ordered strings of distinct letters, together with permutation indexes. Algorithms to generate
such strings are described. Results of applying the method to the dictionaries of two databases, in Hebrew
and English, are presented in detail. The main message is a method of partitioning the dictionary such

that the "information bearing fraction" is stored in fast memory, and the bulk in auxiliary memory.

1. INTRODUCTION

A method for compressing very large dictionaries - the larger the better! - based on combinatorial
transformations of words is proposed. The main idea is to replace each word w by a pair (L,I), where L
is an ordered string of the distinct Tetters of w, and I 1is an index which permits transforming L back
into w. The information contained in the L's is almost the same as that of the w's: the entropy inc-
rease in transforming the latter to the former is very small. The main variation investigated is when the
L's reside in fast memory and the I's are relegated to disk. This results in very high savings of fast
memory.

! This work was done within the Responsa Retrieval Project, developed initially at the Weizmann Institute
of Science and Bar-Ilan University, now located at the Institute for Information Retrieval and Computatio-
nal Linguistics (IRCOL), Bar-ITan University, Ramat Gan, Israel. The work reported herein was done at
the Weizmann Institute.

2 Partial affiliation with IRCOL.
¥ Supported in part by a grant of Bank Leumi Le'lIsrael.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-107-5/83/006/0205 $00.75

205

http://crossmark.crossref.org/dialog/?doi=10.1145%2F511793.511824&domain=pdf&date_stamp=1983-06-01

Specifically, let w = W, e be a word over a finite alphabet =, linearly ordered (under <).
A lexicographic form (lexform for short) of w 1is a lexicographically ordered sequence Wq(1)"'wq(g)

(for suitable & < k) of the distinct letters (also called characters) of w. Thus Wq(i) precedes Ya(3)
if and only if wq(i) < wq(j). Every word over I maps into a unique lexform, but any given Texform may
be induced by several distinct words.

We define a few basic notions. If a word w = W Wt twW, maps into a lexform v = ViV, oty
(% < k), then the index of w is a sequence of length k consisting of the numbers 1,2,+++,2, such that
if W, = Vj’ then the i-th sequence number is j (1 < j 8%, 1 <1 < k). Denoting by L the lexform of
w and by I its index, we observe that the transformation w - (L,I) 1is a bijection. Thus the transfor-
mation w - (L,I) has a unique inverse. A text is a sequence of words, counting repetitions. The set of
distinct words of a text is a dictionary of the text. (Of course a dictionary is a special case of a text,
namely the case in which every word appears exactly once.) The length of a word is the number of its let-
ters, counting multiplicities. For example, "of the people, by the people, for the people” is a text of
size 9, whose dictionary has size 5. The word "people" has length 6, its lexform is "elop", and its index
is (4,1,3,4,2,1).

The proposed compression and partitioning method is based on replacing words by lexforms, storing
only distinct Texforms and their corresponding indexes. The number of distinct lexforms of length & over
an alphabet 2 of size |Z]| =n dis evidently 2 . Since every combination can be represented by its

serial number in some linear ordering of all combinations (see e.g. [LEH], [EVE]), a serial combination

number (conumber for short) can be used to represent every lexform, thus achieving additional compression.

In Proposition 1 it is proved that the saving factor achieved by replacing dictionary words of length k
by conumbers is at least (2nk)'1/2(ek'1)k if x| s large. In Proposition 3 it is shown that the number
of distinct indexes of words of length k s 1.02211'k2'1'1, which is the number of Cayley-permutations (C-
permutations for short) of length k (see [MOF2]). Thus if we replace every index by its serial number

(called rank) in some linear ordering of all indexes, a further compression is achieved.

The combinatorial compression method can thus be viewed as consisting of two phases:

A. Compression by transforming dictionary words into Texforms and indexes.

B. Further compression by transforming lexforms into conumbers and indexes into ranks.

A natural partition of the dictionary is obtained by storing the file L of lexforms (or their
corresponding conumbers) in fast memory, and the file] of indexes (or their ranks) on disk. Such a par-
tition may enable storage of a large dictionary in form of its lexforms in fast memory, which otherwise
could not be kept in it because of lack of space. This is important in many applications such as data ret-
rieval over legal material or other nonnumeric material. Typical cases are: (1) Most accesses to the dic-
tionary are unsuccessful, that is, the word sought is not in the dictionary. (2) Many accesses are succes-
sful, but additional Boolean or metrical constraints (which can be verified without consulting 1) reject
the word. 1In both of these cases there are many accesses to L in fast memory, and few accesses to [on
disk, whose access time is typically 10* times slower than that of fast memory.

The method was tested on the dictionaries of two large databases, one of which was in fact a da-
tabase of legal material, namely a subset of the database of the Responsa Retrieval Project [FRA]. The
subset contained some 114 million letters - excluding punctuation characters and blanks - comprising 28
million words (436,000 distinct (dictionary) words) mainly in Hebrew; and a subset of the database of seven
biweekly updates of NTIS (U.S. National Technical Information Services), containing some 14 million letters
of two million English words of length at least three (57,000 distinct words). Any word of length excee-
ding 13 was truncated to length 13.

The highlights of the results are that if phases A and B are used, then the above mentioned par-
titioning results in a fast memory space requirement of only 15% of the Responsa dictionary space; 55-60%
of the NTIS dictionary. This rather large difference in compression is due not so much to language idio-

206

syncracies as to dictionary size: the efficiency of the method increases with dictionary size! (We remark
that the above saving is on top of an additional saving factor (not counted) obtained by replacing standard
character representation by a minimal representation using only [%g|Z|] bits per character (2g stands for
f0g to the base 2, here and below). This is natural to do when working with conumbers and ranks, and is
quite consistent with other compression methods. (For example, if |Z| = 32, a 5-bit code instead of the
customary 8-bit code can be used, resulting in an additional 37.5% saving factor, not counted in the
sequel.)

The details of the method - in form of phases A and B - are presented in Section 2. In Section 3
we briefly explore an extension and a variation of the main method. The extension is front compression
applied to the file of lexforms; the variation is the use of performs instead of lexforms. A perform is a
lexicographically ordered string of the letters of a word without deleting multiple letters. The final
Section 4 contains the results of tests run on the two databases mentioned above. It ends with a short
summary on decoding times, where decoding is the process of restoring the original word from its compressed
version.

2. THE TWO PHASES OF COMBINATORIAL COMPRESSION

Phase A. This phase consists of two steps:

(i) Generation of lexforms and calculation of indexes.

(i1) Compression by sorted lexforms.

Step (i). This step transforms every word w in the dictionary D into a pair (L,I), where L
is the lexform and I the index of w. The lexform is obtained by sorting the letters of w, deleting
identical letters. Since the number of elements is small, any simple sorting algorithm such as insertion
sort [KNU] will be more efficient than elaborate algorithms. If the lexform has length &, its charac-
ters are numbered consecutively from 1 to &. To get the index I of w, every letter of w is repla-
ced by its corresponding number.

Step (ji). We start by sorting the pairs (L,I) lexicographically, where L is more signifi-
cant than I. The input is a set of pairs P = {(Lk,Ik)}gzl, where d = |D| 1is the number of dictionary
words, Lk is the lexform of the k-th word and Ik its index (1 < k € d). The sort produces a sequence

S = {(Lk,Ik) : (LI,II) < eee < (Ld,Id)} .
In particular, L1 € vee g Ld. Thereafter, all maximal blocks (Lk1’Ik1)""’(th’Ikt) for which

Lkl L < Lk1 = sse = th < th+1 are collapsed into a single element consisting of a single lexform
Lk Lkl’ and a sequence of indexes (Ikl"'°’1kt)' The result is a sequence

A = {(Lk;Ikl’...’Ikt) P << L s leksr, L <o Lr} ’

where r = |A] (1 <r <d). Since d is normally large, it is advisable to use an efficient sorting
method. For example, if D fits into fast memory at least temporarily, then quicksort, heapsort or radix
exchange sort [KNU] may be used.

We now partition the sequence A into two sequences L = {L1""’Lr} of lexforms and
1= {111"'"Ilt(l)""’Ir1’°'°’1rt(r)} of indexes. The sequence L can be stored in fast memory, I on
disk. No pointers from L to [are required if the lexforms are repeated in I, serving there as key-
fields.

Phase B. In phase B, lexforms and indexes produced in phase A are transformed into conumbers and
ranks respectively.

Step (i). Transformation of lexforms into conumbers. The number of distinct lexforms of length
n

2 over I is 9

, where n = |L|. Instead or representing a lexform v of length & by means of a

207

string of & Tletters with a range of n¥, the same as a word of length &, we may represent it by its co-
number, with a range of only 2). This saving is on top of the saving achieved by using in the lexform
only £ out of k letters of the original word.

“Saving" here means the compression achieved in L not in [. For the overall compression

achieved, also] must be considered. But since] normally resides on disk, its storage is normally
much cheaper than that of L.

Since 2 grows rapidly with £ (< n/2), it is useful to consider only words of length k < 8,
which holds for the majority of cases (see Table 7, Section 4). Longer words may be partitioned into seg-
ments of length < 8.

Note that for fully utilizing the compression of phase B, the internal representation of charac-
ters should be reduced to the minimum number of bits required, whence the saving is counted in bits rather
than bytes. This is consistent with common data compression techniques, in which characters over I are
normally represented by a minimal number of [2g n] bits which may be shorter than the standard internal
computer representation of characters.

We now get an asymptotic lower bound on the saving gained up to this point.

PROPOSITION 1. The saving factor gained by replacing dictionary words of length k by conumbers
is at Teast t = (an)'l/z(ek'l)k if |z| s large.

PROOF. We use the following form of Stirling's formula [ABR 6.1.38]:

r r
/2nr1£> <rl< /2nr]£> e1/1zr >

for all r > 0. Letting n = |Z|, we thus get,
-1 -1
(n) _ ni oL nke-((lzk) + (12(n-k))™*) L1 (E’l)k = tnk ss now
k) = KIR-KIT > 5 K K K :

since (1-(k/n))" > eX as no o,

Thus even if every lexform induced by words of length k has length k, the number of distinct
lexforms is asymptotically bounded below by tnk. Since the number of distinct words of length k over
I is nk, the saving factor is at least t. »

Note that the saving factor is independent of || as long as |z| 1is large. Table 1 exhibits
the savings projected by Proposition 1. The column headed by -2g t gives the savings in terms of the
difference of the number of bits between a representation by words and by conumbers.

Table 1 Asymptotic lower bounds on savings (in bits) obtained by replacing dictionary words by conumbers

k -2g t

0.9
2.5
4.5
6.8
9.5
12.3
15.2

0 N o W N

Table 2 displays several values of savings achievable for four values of n which are powers of
2. The table entries are also lower bounds of the savings, since the table assumes that lexforms have the
same length as words. Comparing Table 1 with the penultimate column of Table 2, it is seen that the esti-
mate of Proposition 1 is rather close to the actual Tower bound for word-lengths 2-8. If the alphabet size

208

Table 2 Actual Tower bounds on savings obtainable by replacing dictionary words by conumbers

0 K No. of bits (n) No. of bits Possible % of
for nk k for (E) S?x}zgj savings
32 2 10 496 9 1 1.0
32 3 15 4960 13 2 13.3
32 4 20 35960 16 4 20.0
32 5 25 201376 18 7 28.0
32 6 30 906192 20 10 33.3
32 7 35 3365856 22 13 37.1
32 8 40 10518300 24 16 40.0
64 2 12 2016 11 1 8.3
64 3 18 41664 16 2 11.1
64 4 24 635376 20 4 16.7
64 5 30 7624512 23 7 23.3
64 6 36 74794368 27 9 25.0
64 7 42 6.2122x10° 30 12 28.6
64 8 48 4.4262x10° 33 15 31.2
128 2 14 8128 13 1 7.1
128 3 21 341376 19 2 9.5
128 4 28 10668000 24 4 14.3
128 5 35 2.6457x10° 28 7 20.0
128 6 42 5.4236x10° 33 9 21.4
128 7 49 9.4526x10%° 37 12 24.5
128 8 56 1.4297x10'2 41 15 26.8
256 2 16 32640 15 1 6.2
256 3 24 2763520 22 2 8.3
256 4 32 1.7478x10°% 28 4 12.5
256 5 40 8.8095x10° 34 6 15.0
256 6 48 3.6853x10"! 39 9 18.7
256 7 56 1.3162x10%3 44 12 21.4
256 8 64 4.,0966x10"" 49 15 23.4

is not a power of 2, the savings by using conumbers are larger, because several possible characters are
unutilized. This situation is shown in Table 3 for n =26 and n = 36 (Latin alphabet supplemented by
the digits 0-9, say).

Table 3 Same as Table 2, for two actual alphabet sizes

n " No. of bits (n) No. of bits Possible % of
for nk k for (E) S?g}gg? savings
26 2 10 325 9 1 10.0
26 3 15 2600 12 3 20.0
26 4 20 14950 14 6 30.0
26 5 25 65780 17 8 32.0
26 6 30 230230 18 12 40.0
26 7 35 657800 20 15 42.9
26 8 40 1562275 21 19 47 .5
36 2 12 630 10 2 16.7
36 3 18 7140 13 5 27.8
36 4 24 58905 16 8 33.3
36 5 30 376992 19 11 36.7
36 6 36 1947792 21 15 41.7
36 7 42 8347680 23 19 45.2
36 8 48 30260340 25 23 47.9

209

For formulating transformations between a lexform and its conumber, define the combinatorial rep-

resentation of any nonnegative integer N with respect to a fixed positive integer k, to be (al,---,ak),

a a a
= k k-l se e 1

= () (k) ()
subject to 0 < a, < a, < v <y for uniqueness. See [LEH, p. 8].

A combination ¢ out of a set of (2 combinations is fixed by selecting & positions
bysee,by with 1 <b < +ee <b, < n outof n positions. The conumber r (0gr< 2) of ¢ is

n-b, .

defined to be (n) - jél(l-jil> -1 ([LEH, p. 28], [EVE, p. 33]1). Conversely, the conumber of a combina-

where

2
tion ¢ determines the positions b1,°--,b£: Given the conumber r of a combination out of (2) combi-

nations (0 g r < (2)), represent R = 2 -r -1 1in the combinatorial representation, that is,
g 7 Cs
R = j§1(£-§+1>° Then bj =n-cy (1 £ j £1) are the desired positions.

We now partition the set of lexforms into subsets, each containing lexforms of fixed length &
(2 < 2 58). (Note that a subset containing lexforms of length & is normally derived from words of va-
rious lengths k > %.) The lexforms in each subset are transformed into conumbers. The savings thus obtai-
ned are those estimated in Proposition 1 and Tables 1, 2 and 3.

Decoding involves computing the combinatorial representation. For computing the combinatorial

representation of a nonnegative integer N with respect to k, we have to calculate the largest integer
a a a
a, satisfying (kk) < N; the largest integer a,_, satisfying (i:i) <N - (kk); the largest inteter aK_,

satisfying (at:§> s N - (ik) - (at:i);--- . It is thus of importance to give an efficient method for com-
puting the combinatorial representation. Here is one.

Let M be a positive integer. For computing efficiently the largest integer x = x, satisfying
(ﬁ) < M, recall that the proof of Proposition 1 shows that X> ~ (an)'%(exr'l)r (where ~ denotes “asy-

r
mptotic to"). Hence it makes sense to start with

1

X, = [% (VZnr M)l/r] .

Indeed, the following holds:

PROPOSITION 2. For r =2, x = [(1+/I+8M)/2]. For r > 2, x, ¢ X, < X,, where

X, = [% (v2mr M el/lzr)l/r] +r-1.

2

PROQF. For r =2, the requirement of determining the largest solution of the quadratic inequa-
Tity (;) <M is directly seen to be x = |(1+/1+8M)/2].

For any real x, x(x-2) < x2 - 2x + 1 = (x-1)2. Hence for any x > 1, x{x-1)(x-2) < (x-1)3.
Therefore for r > 2,

r)° T STV T

X
Thus Stirling's formula (see proof of Proposition 1), implies (rl) < M; hence x, < x .
On the other hand,

r
(Xz) - Xz(Xz'1)~.-(X2'Y‘+1) 5 (Xz‘Y'+1) ; W(r>Y‘M el/12Y‘ o

r ri r1 vl \e

Note that for fixed M, even very large M, we have

{% (VI M e1/1zr)1/r"| _ [% (VI M)1/r"| -0

210

as r increases, and the convergence is very fast. Hence x, - x, € r even for r not very large. Thus
the computation of X, involves relatively few steps. This is illustrated in Table 4, which exhibits the
values X, =X and X, = X, for 1<Mxg 3x10%, 3 ¢ r £ 8., It is seen that starting with X, at most

r steps are required to get to Xy

Table 4 The values x - x, and x, - X, as a function of r for 1< M« 3x10°

r
X, X 3 4 5 6 7 8
0 52744 326426 0 0 0 0
1 750965 2673574 2491963 1105362 0 0
2 1920838 0 508037 1894637 2625013 1094734
3 275453 0 0 1 374987 1905204
4 0 0 0 0 0 2
5 and 0 0 0 0 0 0
above
XZ-XO
0 0 0 0 0 0 0
1 482 0 0 0 0 0
2 2985775 1533445 72773 1 0 0
3 13743 1466555 2927227 1697737 246082 2
4 0 0 0 1302262 2753918 1813950
5 0 0 0 0 0 1186048
6 and 0 0 0 0 0 0
above

Step (ii). Transformation of indexes into ranks. Recall that a rank of an index is the serial
number of the index in some 1inear ordering of all the indexes.

PROPOSITION 3. The number of indexes of words of length k is K, = .2 ike™'™.

PROOF. A C-permutation p of length k over S = {1,++,k} is a permutation of n elements
from S with possible repetitions, such that if j appears in p, then also every i < j appears in it.
Note that an index of a word of tength k 1is precisely a C-permutation of length k on the set

S = {l,+++,k}. The result now follows since the number of C-permutations of length k over S is K
[MOF2]. =

The transformation between C-permutations and their ranks is effected by means of two algorithms
given in [MOF2].

Assuming words of length k with distinct letters, the saving gained by transforming indexes
in}o ranks is k'kKk, since kk is the number of k-digit numbers of length k. Table 5 shows several sa-

vings achievable by replacing indexes by ranks. Note that this is a saving achieved in] rather than in
L.

k

3. EXTENSIONS AND VARIATIONS

Among the various possibilities for extensions and variations of the method, we point out briefly
one extension and one variation.

(1) Front compression. Instead of transforming lexforms into conumbers, the stored file of lex-
forms can be compressed by front compression. That is, identical leading characters of consecutive lexforms

are replaced by their count of identical characters (except for the first lexform in the sequence) [GOT].
It is then natural to apply front compression also to all words of length exceeding 8.

211

Table 5 Savings achieved by using ranks instead of indexes

k KK [ﬁgkz}c K fﬁg.K'Sl MNo. of % of
bits of kk k bits of Kk bits saved savings

2 4 2 3 2 0 0

3 27 5 13 4 1 20.0

4 256 8 75 7 1 12.50

5 3125 12 541 10 2 16 .67

6 46656 16 4683 13 3 18.75

7 823543 20 47293 16 4 20.0

8 16777216 24 545835 20 4 16.67

Front compression can be applied to the file of conumbers instead of to the file of lexforms. In
fact, the transformation of lexforms into conumbers preserves order, and so it can be applied without addi-
tional sorting. Experimental results indicate, however, that front compression of lexforms gives better
results overall. If decoding and retrieval times are critical (as in real time applications), then a hash-
table method is advantageous. In this case front compression cannot be used and then the replacement of
lexforms by conumbers {but without front compression) is preferable. The dictionary can be stored in an
almost full hash table with a good average and worst case behavior by using a method such as that of
Schmidt and Shamir [SCS].

(i1) Performs. A permuted form (perform for short) of a word w = W eeew, is a permutation

wp(l)---wp(k) of all the - not necessarily distinct - letters of w such that wp(i) precedes Wp(j) if
Wo(i) € ¥p(§) Informally, whereas a lexform is an ordered string of the distinct letters of w, a perform
is an ordered string of all its letters. If a word w = W, *eeW, maps into a perform v = VitttV then
the index of w is a sequence of length k consisting of the numbers 1,-<<,k such that if Wy = Vs
then the i-th sequence number is j (1 < i,j < k).

The perform of any word w 1is at least as long as the lexform of w, and the numbers constitu-
ting the index of the perform of a word w are at least as large as the numbers constituting the index of
the Texform of w. Moreover, normally less words map into the same perform than intc the same lexform.
Thus transforming dictionary words into performs and indexes will normally yield less compression than
transforming words into lexforms. However, less indexes have to be checked per perform than per lexform,
so decoding time for performs is somewhat shorter than for lexforms.

Analogously to phase B above, we may transform performs into conumbers (serial numbers of linear-
1y ordered performs) and indexes into ranks. For a word of length k over an alphabet I with |Z| =n,
the number of distinct performs is evidently (n+t-1)’ which is the number of k-combinations with repeti-
tions. Thus the number of conumbers of performs is larger than the number of conumbers of lexforms. The
number of indexes of words of length k with respect to performs, however, is at most k!. This is less
than the number of indexes of lexforms, which was shown to be the number Kk of C-permutations. In fact,
it is easy to verify that (e/2)k > 2/2mk e1/12k for all k > 9. Hence by Stirling's formula,

k! < VIR (%)ke‘/”k <1 (%)k < Zkei ok
The fact that k! < Kk also for 2 g k £ 8 is seen from Table 6.

The rank of an index with respect to a perform can be computed in one of the following ways:

(1) There is a one-to-one correspondence between permutations and their ranks based on the facto-
rial representation of integers, see e.g. [LEH, p. 20]. Algorithms realizing the transformations between

212

Table 6 No. of bits needed for indexes of lexforms and performs

Perform Lexform

Length No. of possible No. of No. of possible No. of Difference
of word indexes bits indexes bits in no. of

(k) (k') needed (C-permutations) needed bits needed

1 1 1 1 1 0

2 1 3 2 1

3 3 13 4 1

4 24 5 75 7 2

5 120 7 541 10 3

6 720 10 4683 13 3

7 5040 13 47293 16 3

8 40320 16 545835 20 4

permutations and their ranks are described by Pleszcynski [PLE].

(2) An ordered table of permutations can be consulted (up to size k =8, say). The order of the
table should be such that the j! permutations of the first j symbols are generated before the (j+1)-th
symbol is moved, so that indexes of different lengths can use the same permutation table. Three algorithms
with this property are compared by Roy [ROY]. (Two of them are the well-known algorithms of Ord-Smith
[ORD] for generation of permutations in lexicographic and pseudo-lexicographic order. The third is due to
Wells [WEL].) An algorithm for permutation generation on vector processors with this property is given in
[MOF1].

To summarize, the use of performs yields less compression but gives slightly better decoding
times than the use of lexforms.

4, EXPERIMENTS

In this section we give some results obtained by applying the method to the Responsa and NTIS
dictionaries. We end with brief remarks on the decoding speed.

Phase A. Recall that in phase A every dictionary word is transformed into a lexform and a cor-
responding index. During this process, identical characters are deleted. Table 7 shows the distribution
of the dictionary words by their lengths, Table 8 presents the same thing for lexforms and Table 9 summari-
zes the data. Note that about half the words contain equal characters, and the number of equal characters
is about 11% of the total number of characters.

Let P be the probability of appearance of letter i in the dictionar% (Ls1igsn-=]z|).

The "amount of information" in the dictionary using the entropy measure is H = -iL,Pi %9 Ps. Since only
about 11% of the characters are repeated, it seemed 1ikely that the transformation from dictionary words to
lexforms would not increase the entropy by much. This assumption was tested for the Responsa and NTIS dic-
tionaries by computing the frequency of the different letters. The results are summarized in Table 10,
which shows that the entropy increase does not exceed 1.3%.

Table 11 exhibits the distribution of the distinct lexforms by length and then gives some overall
figures. The latter show that the file of lexforms occupies only about 20% of the dictionary file of the
Responsa; 56% for the NTIS dictionary. Further, the number of distinct lexforms is only about 20% of the
number of distinct Responsa dictionary words; 60% for the NTIS dictionary. In order to find out whether
these large differences are due to language idiosyncracies or to dictionary sizes, phase A was also run on
a Hebrew dictionary of one of the Responsa books containing d = 60,636 distinct words - only just larger
than the NTIS dictionary. It turned out that the number of distinct Texforms was about 49% of d. This

213

Table 7 Distribution of wordlengths in dictionaries

Responsa Dictionary

NTIS Dictionary

Wordlength
No. of words % No. of words %
1 27 .006 - -
2 496 114 - -
3 5844 1.34 2767 4.86
4 37736 8.64 4313 7.57
5 105870 24,26 5698 10.00
6 135588 31.06 7295 12.80
7 92793 21.26 7762 13.62
8 38830 .90 7341 12.88
9 12927 2.96 6442 11.30
10 4068 .93 5114 8.97
11 1455 .33 3533 6.20
12 503 12 2596 4.56
2 13 353 .08 4128 7.24
Total 436490 100 56989 100

Table 8 Distribution of lengths of lexforms (with repetitions)

Word Responsa Dictionary No. of
Length of lexform repeated
Tength 1 2 3 4 5 6 7 8 characters
3 3 539 5302 545
4 249 6606 30881 7104
5 67 3145 30421 72237 36912
6 8 829 12217 54704 67830 81657
7 137 2617 18098 42080 29861 86675
8 12 378 3628 12179 16241 6392 53055
Total
Distrib. of 3 863 16031 76514 148667 122089 46102 6392 265948
lexforms
Word L!Zéihngﬁt}gzgggm rggéagzd
length 1 2 3 4 5 6 7 8 characters
3 9 336 2422 354
4 61 999 3253 1121
5 1 191 1778 3728 2163
6 1 53 709 2982 3550 4563
7 213 1417 3579 2549 7068
8 2 67 525 2079 3124 1544 9135
Total
Distrib. of 9 399 3671 6020 8652 9208 5673 1544 24404
lexforms

214

Table 9 Database overview

Responsa NTIS
Total no. of words (all word lengths) 436490 56989
Total no. of characters (all word lengths) 2656217 443672
No. of words (word lengths 3-8) 416661 35176
No. of characters (lengths 3-8) 2471545 210875
No. of words without equal characters (3-8) 212503 17046
No. of words with equal characters (3-8) 204158 18130
No. of repeated characters (3-8) 265948 24404
Percentage of repeated characters (3-8) 10.76% 11.57%

Table 10 Entropy of original dictionaries and lexforms

Entropy Responsa NTIS
Original
dictionary 4,274 4.271
Lexforms 4.330 4.314

Table 11 Distribution of different lexforms by length

Length Responsa NTIS
No. of lexforms % No. of lexforms %
1 3 .004 9 .04
2 228 276 160 .76
3 1849 2.23 1295 6.20
4 7940 9.59 2802 13.41
5 20367 24 .61 4671 22.36
6 27884 33.69 5920 28.34
7 19446 23.49 4567 21.86
8 5053 6.11 1468 7.03
Total no. of
lexforms 82770 20892
Total no. of
lexform 483451 118010
characters
No. of lexforms 9
No~ of words 19.86% 59.39%
No. of lexform
characters 9
o of word — 19.56% 55.96%
characters

result indicates that the efficiency is primaki]y a function of the size of the dictionary, though the
language does have an effect. In particular, the compression efficiency of the method increases markedly
with dictionary size.

The result of applying front compression to lexforms is shown in Table 12. It is assumed that

215

a 4-bit string is adjoined to every lexform of length 3-5 to denote the length of the identical prefix; a
5-bit string for words of length 6-8. It is seen that front compression yields a relatively large saving.
As stated eariier, however, it disables use of hashing, thus slowing down decoding. Table 13 is the analog
of Table 11 for performs. Note that the savings are considerably smaller than for lexforms.

Table 12 Compression of lexforms by front compression

Responsa NTIS
z] = 32 |Z] = 256 lz] = 32 |z| = 256

No. of bits Saving No. of bits Saving | No. of bits Saving No. of bits Saving
Size of
lexforms 2417255 3867608 590050 944080
Lexforms
after front 870925 64.0% 1393480 64.0% 242085 59.0% 387336 59.0%
compression

Table 13 Distribution of performs by Tength

Length Responsa NTIS
No. of performs % No. of performs %
3 2151 1.16 1435 4.83
4 10596 5.68 3010 10.12
5 32338 17.34 4520 15.21
6 55790 29.92 6393 21.51
7 54822 29.40 7271 24 .46
8 30765 16.50 7095 23.87
Total no. of 186462 29724
performs
Total no. of
characters 1175141 184960
No. of performs o
_NET’E?EWEFHE__ 44 .7% 84 .5%
No. of perform
characters o 9
No. GF wor 47 .5% 87.7%
characters

Phase B. In phase B, lexforms are transformed into conumbers, and indexes into ranks. The amount
of additional savings gained by this transformation depends on the size of the alphabet x: recall that
each letter is represented by [2g|Z|] bits only. Table 14 gives the additional savings achieved when
lexforms are transformed into conumbers. In this table, N, = kN 2gn, and N3 = lezg(ﬂ (where E)
and [zg(z)] are listed in Table 2).

The result of replacing indexes by ranks is shown in Table 15: The entries in column N, are
taken from Table 7. If word length is bounded by 8, each index digit can be represented by 3 bits, hence
N, = 3kN,. Also N, =N [2g K], where [2g K] is given in Table 5.

Overall. The overall savings gained by transforming dictionary words into conumbers and ranks
are exhibited in Table 16. It shows, in particular, that transforming words into conumbers produces a file
L which occupies only about 15% of the space required for the Responsa dictionary; 40-45% of the NTIS dic-

216

Table 14 Additional savings gained by replacing lexforms by conumbers

n=lz| =32
K Responsa NTIS
Length of N N, Ny Ny N, Ny
Texform No. of No. of bits No. of bits No. of No. of bits No. of bits
lexforms for lexforms for conumbers lexforms for lexforms for conumbers
1 3 15 15 9 45 45
2 228 2280 2052 160 1600 1440
3 1849 27735 24037 1295 19425 16835
4 7940 158800 127040 2802 56040 44832
5 20367 509175 366606 4671 116775 84078
6 27884 836520 557680 5920 177600 118400
7 19446 680610 427812 4567 159845 100474
8 5053 202120 121272 1468 58720 35232
Total 82770 2417255 1626514 20892 590050 401336
Add1t10na] o 0
savings 32.7% 32.0%
n=|z] = 256
K Responsa NTIS
Length of N, N, N, N, N, . N, .
Texfor No. of No. of bits No. of bits No. of No. of bits No. of bits
exrorm lexforms for lexforms for conumbers lexforms for lexforms for conumbers
1 3 24 24 9 72 72
2 228 3648 3420 160 2560 2400
3 1849 44376 40678 1295 31080 28490
4 7940 254080 222320 2802 89664 78456
5 20367 814680 692478 4671 186840 158814
6 27884 1338432 1087476 5920 284160 230880
7 19446 1088976 855624 4567 255752 200948
8 5053 323392 247597 1468 93952 71932
Total 82770 3867608 3149617 20892 944080 771992
Additional 9
savings 18.6% 18.2%

tionary. If the ranks are kept in fast memory, only about 50% of the original Responsa dictionary space is
needed; about 80% of the NTIS dictionary. More generally, the latter compression figures hold if
both the Texforms and the ranks are stored on the same medium; either both in fast memory or both on disk.
If the lexforms are in fast memory and the ranks on disk, we have to augment the ranks with another copy of
the Texforms, A similar remark applies to the next and last compression results.

The results of applying phase A, replacing indexes by ranks and using front compression on the
Texforms and on all words of length exceeding 8, are shown in Table 17. Note in particular, that the L-
file in fast memory occupies only 11% of the Responsa dictionary; 39% of the NTIS dictionary. If the ranks
are also stored in fast memory, there is a saving of 48-63% for the Responsa dictionary; 40-48% for the
NTIS dictionary.

217

Table 15 Additional savings achieved by replacing indexes by their ranks

K Responsa NTIS
Length of N, N, Ny N, N, Ns
word No. of No. of bits No. of bits No. of No. of bits No. of bits
indexes for indexes for ranks indexes for indexes for ranks
3 5844 52596 23376 2767 24903 11068
4 37736 452832 264152 4313 51756 30191
5 105870 1588050 1058700 5698 85470 56980
6 135588 2440584 1762644 7295 131310 94835
7 92793 1948653 1484688 7762 163002 124192
8 38830 931920 776600 7341 176184 146820
Total 416661 7414635 5370160 35176 632625 464086
Additional 9 0
savings 27.6% 26.6%
Table 16 Savings achieved by phases A and B {word lengths 3-8)
Responsa NTIS
|Z] = 32 Iz} = 256 |z} = 32 lz| = 256
No. of bits Saving No. of bits Saving | No. of bits Saving No. of bits Saving
Original
dictionary 12357725 19772360 1054375 1687000
Conumbers 1626514 86.8% 3149617 84.1% 401336 61.9% 771992 54.2%
Ranks 5370160 56 .5% 5370160 72.8% 464086 56.0% 464086 72.5%
Total 6996674 43.4% 8519777 56.9% 865422 17.9% 1236078 26.7%

Table 17 Overall compression by transforming dictionary words into lexforms with front compression, and

indexes into ranks

Responsa NTIS
|z] = 32 jz| = 256 2] = 32 |z| = 256
No, of - No. of : No. of . No. of :
characters saving characters Saving characters Saving characters Saving

Lexforms
and front 9 % 61.2%
compression 291648 89.0% 291648 89.0% 171961 61.2% 1?1961
on lexforms

Ranks 1074032 59.6% 671270 74.7% 92818 79.1% 58011 86.9%

Total 1365680 48 .6% 962918 63.7% 264779 40.3% 229972 48.2%

We close with some timing data relevant to decoding. The algorithms were written in PL/1-and run

on an IBM 370/165 computer.
[vz T, (T)
Table 18 are the result of divid

process.

were run for timing purposes.

ing the total time by 10°6.

218

Each program was run 10° times.
The table indicates that decoding is a fast

Some programs to compute the basic functions used in decoding such as
The times given in

Table 18 Timing results

G n]

for M = 1000, M =10° ; and v =8, r = 13 1.2 x 107" seconds
(a1l four combinations require about same time)

"
"

r=3;m=10% or m=10° 4.3 x 10~° seconds

r =8 m=10° or m= 10° 1.2 x 107" seconds

Computing (m:l) from (?)
ml) _ m+l (m -6
by (M) = T (r) 3.8 x 10~ seconds
ACKNOWLEDGEMENT

We wish to express our gratitude to Professor Y. Choueka, Head of the Institute for Information
Retrieval and Computational Linguistics (IRCOL) at Bar Ilan University, for kindly placing at our disposal
the Responsa database; to Mr. K. Keren, Head of the Israel National Center for Scientific and Technological
Information (COSTI) who cooperated with us on the NTIS database experimehts; to Messers A. Fullop, Y.
Pechenik and E. Niovits at IRCOL; Mrs. I. Sered at COSTI and all other members of IRCOL and COSTI who
helped us in various ways.

REFERENCES
[ABR] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards,
June, 1964 (Ninth printing, 1970).
(EVE] S. Even, Algorithmic Combinatorics, MacMillan, New York, N.Y., 1973.

(FRA] A.S. Fraenkel, A1l about the Responsa Retrieval Project you always wanted to know but were afraid to
ask, Expanded Summary, Proc. Third Symp. on Legal Data Processing in Europe, Oslo, 1975, 131-141,
(Rep;inted in Jurimetrics J. 16 (1976), 149-156 and in Informatica e Diritto II, No. 3 (1976), 362-
370. I

[GOT] D. Gotlieb, S.A. Hagerth, P.G.H. Lehot and H.S. Rabinowitz, A classification of compression methods
and their usefulness for a large data processing center, National Comp. Conference 44 (1975), 453-
458,

[KNU] D.E. Knuth, The Art of Computer Programming, Vol. 3 - Sorting and Searching, Addison-Wesley, Reading,
MA, 1973.

[LEH] D.E. Lehmer, The machine tools of combinatorics, in: Applied Combinatorial Mathematics (E.F. Becken-
bach, Ed.), J. Wiley, New York, N.Y., 1964, 5-31.

[MOF1] M. Mor and A.S. Fraenkel, Permutation generation on vector processors, The Computer Journal 25, 4
(November, 1982), 423-428.

[MOF2] M. Mor and A.S. Fraenkel, Cayley-Permutations, Discrete Math., in press.
[ORD] R.J. Ord-Smith, Generation of permutation sequences: Part 2, The Computer Journal 14 (1971), 136-139.

[PLE] S. Pleszcynski, On the generation of permutations, Information Processing Letters 3, 6 (July, 1975),
180-183.

[ROY] M.K. Roy, Evaluation of permutation algorithms, The Computer Journal 21, 4 (November, 1978), 296-301.

[SCS] J. Schmidt and E. Shamir, An improved program for constructing open hash tables, in: 7th Colloquium
on Automata, Languages and Programming (J.W. de Bakker and J. van Leeuwen, Eds.), July 14-18, 1980,
Springer Verlag, Berlin, 569-581.

[WEL] M.B. Wells, Elements of Combinatorial Computing, Pergamon Press, Oxford, 1971.

219

