
COMBINATORIAL COMPRESSION AND PARTITIONING OF LARGE DICTIONARIES: THEORY AND EXPERIMENTS I

Aviezri S. Fraenkel z'3 and Moshe Mor

Department of Applied Mathematics
The Weizmann Inst i tute of Science

Rehovot, Israel 76100

Abstract A method for compressing large dictionaries is proposed, based on transforming words into l exico-

graphically ordered strings of d is t inct let ters, together with permutation indexes. Algorithms to generate

such strings are described. Results of applying the method to the dictionaries of two databases, in Hebrew

and English, are presented in detai l . The main message is a method of part i t ioning the dictionary such

that the "information bearing fraction" is stored in fast memory, and the bulk in auxi l iary memory.

i . INTRODUCTION

A method for compressing very large dictionaries - the larger the better! - based on combinatorial

transformations of words is proposed. The main idea is to replace each word w by a pair (L, I) , where L

is an ordered string of the d is t inct letters of w, and I is an index which permits transforming L back

into w. The information contained in the L's is almost the same as that of the w's: the entropy inc-

rease in transforming the lat ter to the former is very small. The main variation investigated is when the

L's reside in fast memory and the I 's are relegated to disk. This results in very high savings of fast

memory.

This work was done within the Responsa Retrieval Project, developed i n i t i a l l y at the Weizmann Inst i tute
of Science and Bar-llan University, now located at the Inst i tute for Information Retrieval and Computatio-
nal Linguistics (IRCOL), Bar-llan University, Ramat Gan, Israel. The work reported herein was done at
the Weizmann Inst i tute.

2 Partial a f f i l i a t i on with IRCOL.

3 Supported in part by a grant of Bank Leumi Le'Israel.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1 9 8 3 A C M 0 - 8 9 7 9 1 - 1 0 7 - 5 / 8 3 / 0 0 6 / 0 2 0 5 $ 0 0 . 7 5

205

http://crossmark.crossref.org/dialog/?doi=10.1145%2F511793.511824&domain=pdf&date_stamp=1983-06-01

Specifically, le t w : w~w2...w k be a word over a f in i te alphabet S, l inear ly ordered (under <).

A lexicographic form (lexform for short) of w is a lexicographically ordered sequence Wq(~)...Wq(~)

(for suitable ~ ~ k) of the dist inct letters (also called characters) of w. Thus Wq(i) precedes Wq(j)

i f and only i f Wq(i) < Wq(j). Every word over Z maps into a unique lexform, but any given lexform may

be induced by several dist inct words.

We define a few basic notions. I f a word w = wlw2-.-w k maps into a lexform v = vlv2.. .v ~

(~ ~ k), then the index of w is a sequence of length k consisting of the numbers 1,2,. . . ,&, such that

i f w i = vj, then the i - th sequence number is j (1 ~ j ~ ~, 1 ~ i ~ k). Denoting by L the lexform of

w and by I i ts index, we observe that the transformation w ~ (L,I) is a bijection. Thus the transfor-

mation w ÷ (L,I) has a unique inverse. A text is a sequence of words, counting repetitions. The set of

dist inct words of a text is a dictionary of the text. (Of course a dictionary is a special case of a text,

namely the case in which every word appears exactly once.) The length of a word is the number of i ts le t -

ters, counting mul t ip l ic i t ies. For example, "of the people, by the people, for the people" is a text of

size 9, whose dictionary has size 5. The word "people" has length 6, i ts lexform is "elop", and i ts index

is (4,1,3,4,2,1).

The proposed compression and partitioning method is based on replacing words by lexforms, storing

only dist inct lexforms and their corresponding indexes. The number of dist inct lexforms of length ~ over

an alphabet Z of size I~I = n is evidently (~). Since every combination can be represented by i ts
% #

serial number in some linear ordering of al l combinations (see e.g. [LEH], [EVE]), a serial combination

number (conumber for short) can be used to represent every lexform, thus achieving additional compression.

In Proposition 1 i t is proved that the saving factor achieved by replacing dictionary words of length k

by conumbers is at least (2~k)-½(ek-1) k i f IZl is large. In Proposition 3 i t is shown that the number

of dist inct indexes of words of length k is i~ ik2 - i - I , - which is the number of Cay] ey-permutations (c-
permutations for short) of length k (see [MOF2]). Thus i f we replace every index by i ts serial number

(called rank) in some linear ordering of al l indexes, a further compression is achieved.

The combinatorial compression method can thus be viewed as consisting of two phases:

A. Compression by transforming dictionary words into lexforms and indexes.

B. Further compression by transforming lexforms into conumbers and indexes into ranks.

A natural partit ion of the dictionary is obtained by storing the f i l e ~ of lexforms (or their

corresponding conumbers) in fast memory, and the f i l e ~ of indexes (or their ranks) on disk. Such a par-

t i t ion may enable storage of a large dictionary in form of i ts lexforms in fast memory, which otherwise

could not be kept in i t because of lack of space. This is important in many applications such as data ret-

rieval over legal material or other nonnumeric material. Typical cases are: (1) Most accesses to the dic-

tionary are unsuccessful, that is, the word sought is not in the dictionary. (2) Many accesses are succes-

sful, but additional Boolean or metrical constraints (which can be verif ied without consulting ~) reject

the word. In both of these cases there are many accesses to ~ in fast memory, and few accesses to ~ on

disk, whose access time is typical ly 104 times slower than that of fast memory.

The method was tested on the dictionaries of two large databases, one of which was in fact a da-

tabase of legal material, namely a subset of the database of the Responsa Retrieval Project [FRA]. The

subset contained some 114 mill ion letters - excluding punctuation characters and blanks - comprising 28

mill ion words (436,000 dist inct (dictionary) words) mainly in Hebrew; and a subset of the database of seven

biweekly updates of NTIS (U.S. National Technical Information Services), containing some 14 mil l ion letters

of two mil l ion English words of length at least three (57,000 dist inct words). Any word of length excee-

ding 13 was truncated to length 13.

The highlights of the results are that i f phases A and B are used, then the above mentioned par-

t i t ioning results in a fast memory space requirement of only 15% of the Responsa dictionary space; 55-60%

of the NTIS dictionary. This rather large difference in compression is due not so much to language idio-

206

syncracies as to d ic t ionary size: the e f f i c i ency of the method increases wi th d ic t ionary size! (We remark

that the above saving is on top of an addi t ional saving factor (not counted) obtained by replacing standard

character representation by a minimal representation using only r~g lE l l b i ts per character (~g stands for

hog to the base 2, here and below). This is natural to do when working with conumbers and ranks, and is

qui te consistent wi th other compression methods. (For example, i f IZl = 32, a 5 -b i t code instead of the

customary 8 -b i t code can be used, resu l t ing in an addi t ional 37.5% saving fac tor , not counted in the

sequel.)

The de ta i l s o f the method - in form of phases A and B - are presented in Section 2. In Section 3

we b r i e f l y explore an extension and a var ia t ion of the main method. The extension is f ron t compression

applied to the f i l e of lexforms; the var ia t ion is the use of performs instead of lexforms. A per fo r m is a

lex icograph ica l l y ordered s t r ing of the l e t t e rs of a word without delet ing mul t ip le l e t t e r s . The f ina l

Section 4 contains the resu l ts of tests run on the two databases mentioned above. I t ends with a short

summary on decoding times, where decoding is the process of restor ing the o r ig ina l word from i t s compressed

version.

2. THE 1140 PHASES OF COMBINATORIAL COMPRESSION

Phase A. This phase consists of two steps:

(i) Generation of lexforms and ca lcu la t ion of indexes.

(i i) Compression by sorted lexforms.

ste P (i I . This step transforms every word w in the d ic t ionary D into a pair (L , I) , where L

is the lexform and I the index of w. The lexform is obtained by sort ing the le t te rs of w, delet ing

ident ical l e t t e r s . Since the number of elements is small, any simple sor t ing algorithm such as inser t ion

sort EKNU] w i l l be more e f f i c i e n t than elaborate algori thms. I f the lexform has length ~, i t s charac-

ters are numbered consecutively from 1 to ~. To get the index I of w, every l e t t e r of w is repla-

ced by i t s corresponding number.

Step (i i) . We s tar t by sort ing the pairs (L , I) lex icograph ica l l y , where L is more s i g n i f i -
d cant than I . The input is a set of pairs P = { (Lk , lk) }k= I , where d : IDI is the number of d ic t ionary

words, L k is the lexform of the k-th word and I k i t s index (1 ~ k g d). The sort produces a sequence

S = { (Lk , lk) : (LI,11) < . . . < (Ld, ld) } .

In par t i cu la r , L 1 ~ . - . ~ L d. Thereafter, a l l maximal blocks (L k 1 , 1 k l) , - . . , (L k t , l k t) for which

Lkz_~ < Lk~ Lkt < Lkt+~ are collapsed into a single element consist ing of a s ingle lexform

L k ~ Lkl , and a sequence of indexes (I k 1 , . - . , I k t) . The resu l t is a sequence

• . , < . . . < L r} , A = { (L k ; I k 1 , . . . , I k t) : Ik l < < Ik t , I ¢ k ~ r , L I

where r = [A I (1 ~ r ~ d). Since d is normally large, i t is advisable to use an e f f i c i e n t sort ing

method. For example, i f D f i t s into fast memory at least temporari ly, then quicksort , heapsort or radix

exchange sort [KNU] may be used.

We now pa r t i t i on the sequence A into two sequences ~ = {L , . - - , L r} o f lexforms and

I = { I 1 , - . . , l l t (1) , . - . , I r 1 , - . . , I r t (r)} of indexes. The sequence L can be stored in fast memory, I on

disk. No pointers from ~ to ~ are required i f the lexforms are repeated in ~, serving there as key-

f i el ds.
Phase B. In phase B, lexforms and indexes produced in phase A are transformed into conumbers and

ranks respect ive ly .
Transformation of lexforms into conumbers. The number of d i s t i n c t lexforms of length

over ~ is L~) , where n = I~I . Instead or representing a lexform v of length ~ by means of a

207

string of £ letters with a range of n ~, the same as a word of length £, we may represent i t by i ts co- / ~

number, with a range of only (~). This saving is on top of the saving achieved by using in the lexform
%--#

only ~ out of k letters of the original word.

"Saving" here means the compression achieved in ~ not in ! . For the overall compression

achieved, also ~ must be considered. But since ! normally resides on disk, i ts storage is normally

much cheaper than that of ~,

(~) grows rapidly with ~ (< n/2), i t is useful to consider only words of length k ~ 8, Since

which holds for the majority of cases (see Table 7, Section 4). Longer words may be partitioned into seg-

ments of length ~ 8.

Note that for fu l l y u t i l iz ing the compression of phase B, the internal representation of charac-

ters should be reduced to the minimum number of bits required, whence the saving is counted in bits rather

than bytes. This is consistent with common data compression techniques, in which characters over S are

normally represented by a minimal number of [~g nl bits which may be shorter than the standard internal

computer representation of characters.

We now get an asymptotic lower bound on the saving gained up to this point.

PROPOSITION 1. The saving factor gained by replacing dictionary words of length k by conumbers

is at least t = (2~k)-½(ek-l) k i f ISl is large.

PROOF. We use the following form of St i r l ing 's formula [ABR 6.1.38]:

v ~) r v ~) r e I < r i < /12r

for al l r > O. Letting n = IZl, we thus get,

(~) n! i nke - ((12k) - I + (~2(n-k)) -1) 1 (~__O~) k
= i ~ . > ÷ = tn k as n ÷ ~ ,

kk+½(l-k/n) n-k+½

since (l - (k / n)) n ÷ e -k as n ÷ ~.

Thus even i f every lexform induced by words of length k has length k, the number of d i s t i n c t

l exforms is asympto t ica l l y bounded below by tn k. Since the number of d i s t i n c t words of length k over

is n k, the saving factor is at least t . •

Note that the saving factor is independent of IZI as long as I~I is large. Table 1 exhibits

the savings projected by Proposition 1. The co|umn headed by -~g t gives the savings in terms of the

difference of the number of bits between a representation by words and by conumbers.

Table 1 Asymptotic lower bounds on savings (in bits) obtained by replacing dictionary words by conumbers

k -£g t

2 0.9

3 2.5

4 4.5

5 6.8

6 9.5

7 12.3

8 15.2

Table 2 displays several values of savings achievable for four values of n which are powers of

2. The table entries are also lower bounds of the savings, since the table assumes that lexforms have the

same length as words. Comparing Table 1 with the penultimate column of Table 2, i t is seen that the esti-

mate of Proposition 1 is rather close to the actual lower bound for word-lengths 2-8. I f the alphabet size

208

Table 2 Actual lower bounds on savings obtainable by replacing d ic t ionary words by conumbers

n k
No. of b i ts

fo r n k

32 2 10
32 3 15
32 4 20
32 5 25
32 6 30
32 7 35
32 8 40

I~) No. of b i t s Possible % of
(~) savings

for (b i ts) savings

496 9 I i .0
4960 13 2 13.3

35960 16 4 20.0
201376 18 7 28.0
906192 20 i0 33.3

3365856 22 13 37.1
10518300 24 16 40.0

64 2 12 2016 11 1 8.3
64 3 18 41664 16 2 11.1
64 4 24 635376 20 4 16.7
64 5 30 7624512 23 7 23.3
64 6 36 74794368 27 9 25.0
64 7 42 6.2122xi08 30 12 28.6
64 8 48 4.4262xi09 33 15 31.2

128 2 14 8128 13 1 7.1
128 3 21 341376 19 2 9.5
128 4 28 10668000 24 4 14.3
128 5 35 2.6457xi0 e 28 7 20.0
128 6 42 5.4236xi09 33 9 21.4
128 7 49 9.4526xi0 I° 37 12 24.5
128 8 56 1.4297x1012 41 15 26.8

256 2 16 32640 15 1 6.2
256 3 24 2763520 22 2 8.3
256 4 32 1.7478x108 28 4 12.5
256 5 40 8.8095xi09 34 6 15.0
256 6 48 3.6853xi0 I I 39 9 18.7
256 7 56 1.3162xi013 44 12 21.4
256 8 64 4.0966xi0 I" 49 15 23.4

is not a power of 2, the savings by using conumbers are larger, because several possible characters are

unutilized. This situation is shown in Table 3 for n = 26 and n = 36 (Latin alphabet supplemented by

the digits 0-9, say).

Table 3 Same as Table 2, for two actual alphabet sizes

n k
No. of b i ts

for n k

26 2 10
26 3 15
26 4 20
26 5 25
26 6 30
26 7 35
26 8 40

I~) NO. of bits Possible % of
(~) savings

for (bits) savings

325 9 1 10.0
2600 12 3 20.0

14950 14 6 30.0
65780 17 8 32.0

230230 18 12 40.0
657800 20 15 42.9

1562275 21 19 47.5

36 2 12
36 3 18
36 4 24
36 5 30
36 6 36
36 7 42
36 8 48

630 10 2 16.7
7140 13 5 27.8

58905 16 8 33.3
376992 19 11 36.7

1947792 21 15 41.7
8347680 23 19 45.2

30260340 25 23 47.9

209

For formulating transformations between a lexform and i ts conumber, define the combinatorial .rep-

resentation of any nonnegative integer N with respect to a fixed positive integer k, to be (a~,.-.,ak),

where

(~) ('ak-"~ (~')
N = k + • k - l) + " ' " + '

subject to O (a I < a 2 < . . . < a k for uniqueness. See [LEH, p. 8].

A combination c out of a set of (~)combinations is fixed by selecting C positions

bz,.-.,b £ with 1~ bl < . . . < bc ~ n out of n positions. The conumber r (O ~ r < ~)) of c is
n-b

defined to be j=l £-j+1 - 1 ([LEH, p. 28], [EVE, p. 331). Conversely, the conumber of a combina-

tion c determineS(n~the represent positions b1""'b~:(n~ Given the conumber r of arepresentation,COmbination out of ! !) combi-
nations (O.< r < ,h l) , R = i ~ / - r - 1 in the combinatorial that i

R = ~ (cj ~ Then~ z bj = n - cj (1 \ i .< J .< £) are the desired positions.
j=1\£-j+l)"

We now partit ion the set of lexforms into subsets, each containing lexforms of fixed length

(2 ~ ~ .< 8). (Note that a subset containing lexforms of length ~ is normally derived from words of va-

rious lengths k >. ~.) The lexforms in each subset are transformed into conumbers. The savings thus obtai-

ned are those estimated in Proposition 1 and Tables 1, 2 and 3.

Decoding involves computing the combinatorial representation. For computing the combinatorial

representation of a nonnegative integer N with respect to k, we have to calculate the largest integer

! ak) (ak-1~ (ak)
a k satisfying k ~ N; the largest integer ak. ~ satisfying \ k- l) (N - k ; the largest inteter ak_ 2

C satisfying k-2 ~ N - - ~, k - l) ; " " I t is thus of importance to give an ef f ic ient method for com-

puting the combinatorial representation. Here is one.

Let M be a positive integer. For computing efficiently/..x the largest integer x = x 0 satisfying

/"'{x).< M, recall that the proof of Proposition 1shows that (x) ~ (2~r)-½(exr-~)r (where ~ denotes "asy-
% - - i

mptotic to"). Hence i t makes sense to start with

Indeed, the following holds:

PROPOSITION 2. For r = 2, x o = L(I+v~T~P[) /2J. For r > 2, xz .< x o < x 2, where

xz=[r(2v~TMeZ/~r)z/rl+r-1.
PROOF. For r = 2, the requirement of determining the largest solution of the quadratic inequa-

l i t y I~).< M is direct ly seen to be Xo = L (1 + ~) / 2] .

For any real x, x(x-2) < x 2 - 2x + 1 = (x- l) 2. Hence for any x > 1, x(x-1)(x-2) < (x- l) 3.

Therefore for r > 2,

= r ! < r ~ . < r ~ . M .

Thus St i r l ing 's formula (see proof of Proposition 1), implies (~1)< M; hence xl ~ x o.

On the other hand,

(~2) x2(xa-1)'"(x2-r+l) (x2-r+l) r ~ (r)rM e~/~2r
: r ! ~ r ! >" r'-r-F-. > M . •

Note that for fixed M, even very large M, we have

210

as r increases, and the convergence is very fast . Hence x~ - xz ~ r even for r not very large. Thus

the computation of x involves re la t i ve ly few steps. This is i l l us t ra ted in Table 4, which exhibi ts the
0

values x ° - x and x 2 - x o for 1 ~ M ~ 3x106, 3 (r ~ 8. I t is seen that s tar t ing with x I , at most

r steps are required to get to x o.

Table 4 The values x o - xl and x 2 - x o as a function of r for 1 ~ M ~ 3x106

0

i

2

3

4

5 and
above

X2-X 0

0

1

2

3

4

5

6 and
above

3 4 5 6 7 8

52744 326426 0 0 0 0

750965 2 6 7 3 5 7 4 2 4 9 1 9 6 3 1105362 0 0

1920838 0 508037 1 8 9 4 6 3 7 2 6 2 5 0 1 3 1094734

275453 0 0 I 374987 1905204

0 0 0 0 0 2

0 0 0 0 0 0

0 0 0 0 0 0

482 0 0 0 0 0

2985775 1533445 72773 1 0 0

13743 1 4 6 6 5 5 5 2 9 2 7 2 2 7 1697737 246082 2

0 0 0 1302262 2 7 5 3 9 1 8 1813950

0 0 0 0 0 1186048

0 0 0 0 0 0

Step (i i) . Transformation of indexes into ranks. Recall that a rank of an index is the ser ia l
number of the index in some l inear ordering of a l l the indexes.

PROPOSITION 3. The number of indexes of words of length k is K k : .~ ik2 - i - I
i = I

PROOF. A C-permutation p of length k over S : {1 , .o . , k } is a permutation of n elements

from S with possible repe t i t ions , such that i f j appears in p, then also every i < j appears in i t .

Note that an index of a word of length k is precisely a C-permutation of length k on the set

S : { l , . . . , k } . The resu l t now fol lows since the number of C-permutations of length k over S is K k
[MOF2]. •

The transformation between C-permutations and the i r ranks is effected by means of two algorithms
given in [MOF2].

Assuming words of length k with d i s t i nc t l e t t e r s , the saving gained by transforming indexes

into ranks is k-kK k, since k k is the number of k -d ig i t numbers of length k. Table 5 shows several sa-

vings achievable by replacing indexes by ranks. Note that th is is a saving achieved in ~ rather than in

3. EXTENSIONS AND VARIATIONS

Among the various poss i b i l i t i e s for extensions and var ia t ions of the method, we point out b r i e f l y
one extension and one var ia t ion .

(i) Front compression. Instead of transforming lexforms into conumbers, the stored f i l e of]ex-

forms can be compressed by f ron t compression. That i s , ident ica l leading characters of consecutive lexforms

are replaced by the i r count of ident ica l characters (except for the f i r s t lexform in the sequence) [GOT].
I t is then natural to apply f ron t compression also to a l l words of length exceeding 8.

211

Table 5 Savings achieved by using ranks instead of indexes

F~g kkl [~g Kk] No. of % of
k k k No. of No. of

bits of k k Kk bits saved savings bits of K k

2 4 2 3 2 0 0

3 27 5 13 4 1 20.0

4 256 8 75 7 1 12.50

5 3125 12 541 10 2 16.67

6 46656 16 4683 13 3 18.75

7 823543 20 47293 16 4 20.0

8 16777216 24 545835 20 4 16.67

Front compression can be applied to the f i l e of conumbers instead of to the f i l e of lexforms. In

fac t , the transformation of lexforms into conumbers preserves order, and so i t can be applied wi thout addi-

t ional sor t ing. Experimental resul ts ind icate, however, that f ront compression of lexforms gives better

resu l ts overa l l . I f decoding and re t r ieva l times are c r i t i c a l (as in real time app l ica t ions) , then a hash-

table method is advantageous. In th is case f ron t compression cannot be used and then the replacement of

lexforms by conumbers (but wi thout f ront compression) is preferable. The d ic t ionary can be stored in an

almost f u l l hash table wi th a good average and worst case behavior by using a method such as that of

Schmidt and Shamir [SCS].

(i i) Performs. A permuted form (perform for short) of a word w = w1-..w k is a permutation

Wp(1)-..Wp(k) of a l l the - not necessari ly d i s t i n c t - l e t t e rs of w such that Wp(i) precedes Wp(j) i f

Wp(i) ~ Wp(j). In formal ly , whereas a lexform is an ordered s t r ing of the d i s t i n c t l e t te rs of w, a perform

is an ordered s t r ing of a l l i t s l e t t e r s . I f a word w = wz...w k maps into a perform v = v~ . . -v k, then

the index of w is a sequence of length k consist ing of the numbers 1 , . . . , k such that i f w i = v j ,

then the i - t h sequence number is j (1 ~ i , j ~ k).

The perform of any word w is at least as long as the lexform of w, and the numbers cons t i tu -

t ing the index of the perform of a word w are at least as large as the numbers cons t i tu t ing the index of

the lexform of w. Moreover, normally less words map in to the same perform than into the same lexform.

Thus transforming d ic t ionary words into performs and indexes w i l l normally y i e l d less compression than

transforming words into lexforms. However, less indexes have to be checked per perform than per lexform,

so decoding time for performs is somewhat shorter than for lexforms.

Analogously to phase B above, we may transform performs into conumbers (ser ia l numbers of l i nea r -

l y ordered performs) and indexes into ranks. For a word of length k over an alphabet x with ix] = n,

the number of d i s t i n c t performs is ev ident ly (n+~-1), which is the number of k-combinations with repe t i -

t ions. Thus the number of conumbers of performs is larger than the number o f conumbers of lexforms. The

number of indexes of words of length k with respect to performs, however, is at most k! . This is less

than the number of indexes of lexforms, which was shown to be the number K k of C-permutations. In fac t ,

i t is easy to ve r i f y that (e/2) k > 2{T~-ke z/z2k for a l l k ~ 9. Hence by S t i r l i n g ' s formula,

(~)kel/~2k ½(~)k ~ ik2_i_~
k! < ~ < < i~ I : K k .

The fact that k! < K k also for 2 ~ k ~ 8 is seen from Table 6.

The rank of an index with respect to a perform can be computed in one of the fo l lowing ways:

(I) There is a one-to-one correspondence between permutations and the i r ranks based on the facto-

r i a l representation of integers, see e.g. [LEH, p. 20]. Algorithms rea l i z ing the transformations between

212

Table 6 No. of bits needed for indexes of lexforms and performs

Perform Lexform

Length No. of possible No. of No. of possible No. of Difference
of word indexes bits indexes bits in no. of

(k) (k!) needed (C-permutations) needed bits needed

1 I I

2 2 1

3 6 3

4 24 5

5 120 7

6 720 10

7 5040 13

8 40320 16

1 1 0

3 2 1

13 4 1

75 7 2

541 10 3

4683 13 3

47293 16 3

545835 20 4

permutations and their ranks are described by Pleszcynski [PLE].

(2) An ordered table of permutations can be consulted (up to size k = 8, say). The order of the

table should be such that the j ! permutations of the f i r s t j symbols are generated before the (j+1)-th

symbol is moved, so that indexes of different lengths can use the same permutation table. Three algorithms

with this property are compared by Roy [ROY]. (Two of them are the well-known algorithms of Ord-Smith

[ORD] for generation of permutations in lexicographic and pseudo-lexicographic order. The third is due to

Wells [WELl.) An algorithm for permutation generation on vector processors with this property is given in

[MOF1].

To summarize, the use of performs yields less compression but gives s l ight ly better decoding

times than the use of lexforms.

4. EXPERIMENTS

In this section we give some results obtained by applying the method to the Responsa and NTIS

dictionaries. We end with brief remarks on the decoding speed.

phas e A. Recall that in phase A every dictionary word is transformed into a lexform and a cor-

responding index. During this process, identical characters are deleted. Table 7 shows the distribution

of the dictionary words by their lengths, Table 8 presents the same thing for lexforms and Table 9 summari-

zes the data. Note that about half the words contain equal characters, and the number of equal characters

is about 11% of the total number of characters.

Let Pi be the probability of appearance of le t ter i in the dictionary (1 ~ i ~ n = IZl).
n

The "amount of information" in the dictionary using the entropy measure is H = -i~ip i ~g Pi" Since only

about 11% of the characters are repeated, i t seemed l ike ly that the transformation from dictionary words to

lexforms would not increase the entropy by much. This assumption was tested for the Responsa and NTIS dic-

tionaries by computing the frequency of the different letters. The results are summarized in Table 10,

which shows that the entropy increase does not exceed 1.3%.

Table 11 exhibits the distribution of the dist inct lexforms by length and then gives some overall

figures. The la t ter show that the f i l e of lexforms occupies only about 20% of the dictionary f i l e of the

Responsa; 56% for the NTIS dictionary. Further, the number of dist inct lexforms is only about 20% of the

number of dist inct Responsa dictionary words; 60% for the NTIS dictionary. In order to find out whether

these large differences are due to language idiosyncracies or to dictionary sizes, phase A was also run on

a Hebrew dictionary of one of the Responsa books containing d = 60,636 dist inct words - only just larger

than the NTIS dictionary. I t turned out that the number of dist inct lexforms was about 49% of d. This

213

Table 7 Distribution of wordlengths in dictionaries

Wordlength Responsa Dictionary NTIS Dictionary
No. of words % No, of words %

1 27 .006 - -

2 496 .114 -

3 5844 1.34 2767 4.86

4 37736 8.64 4313 7.57

5 105870 24.26 5698 10.00

6 135588 31.06 7295 12.80

7 92793 21.26 7762 13.62

8 38830 8.90 7341 12.88

9 12927 2.96 6442 11.30

10 4068 .93 5114 8.97

11 1455 .33 3533 6.20

12 503 .12 2596 4.56

13 353 .08 4128 7.24

Total 436490 100 56989 100

Table 8 Distribution of lengths of lexforms (with repetitions)

Word

length

Responsa Dictionary
Length of)exform

1 2 3 4 5 6 7 8

No. of
repeated

characters

539 5302

249 6606 30881

67 3145 30421

8 829 12217

137 2617

12 378

72237

54704 67830

18098 42080 29861

3628 12179 16241 6392

545

7104

36912

81657

86675

53055

Total
Distr ib. of
lexforms

3 863 16031 76514 148667 122089 46102 6392 265948

Word

length 1 2 3

NTIS Dictionary
Length of lexform

4 5 6 7 8

No. of
repeated

characters

336

61

1

1

2422

999 3253

191 1778 3728

53 709 2982 3550

4 213 1417 3579 2549

2 67 525 2079 3124 1544

354

1121

2163

4563

7068

9135

Total
Di str ib, of
I exforms

9 399 3671 6020 8652 9208 5673 1544 24404

214

Table 9 Database overview

Responsa NTIS

Total no. of words (al l word lengths) 436490 56989

Total no. of characters (al l word lengths) 2656217 443672

No. of words (word lengths 3-8) 416661 35176

No. of characters (lengths 3-8) 2471545 210875

No. of words without equal characters (3-8) 212503 17046

No. of words with equal characters (3-8) 204158 18130

No. of repeated characters (3-8) 265948 24404

Percentage of repeated characters (3-8) 10.76% 11.57%

Table 10 Entropy of original dictionaries and lexforms

Entropy Responsa NTIS

Original 4.274 4.271
dictionary

Lexforms 4.330 4.314

Table 11 Distribution of different lexforms by length

Length Responsa NTIS
No. of lexforms % No. of lexforms %

i 3 .0O4 9 .04

2 228 .276 160 ,76

3 1849 2.23 1295 6.20

4 7940 9.59 2802 13.41

5 20367 24.61 4671 22.36

6 27884 33.69 5920 28.34

7 19446 23.49 4567 21.86

8 5053 6.11 1468 7.03

Total no. of 82770 20892
lexforms

Total no. of
lexform 483451 118010

characters

No. of lexforms 19.86% 59.39%
No. o~ words

No. of lexform
characters 19.56% 55.96%

No. of word
characters

result indicates that the efficiency is primarily a function of the size of the dictionary, though the

language does have an effect. In particular, the compression efficiency of the method increases markedly

with dictionary size.

The result of applying front compression to lexforms is shown in Table 12. I t is assumed that

215

a 4-bit string is adjoined to every lexform of length 3-5 to denote the length of the identical prefix; a

5-bit string for words of length 6-8. I t is seen that front compression yields a relat ively large saving.

As stated earl ier, however, i t disables use of hashing, thus slowing down decoding. Table 13 is the analog

of Table 11 for performs. Note that the savings are considerably smaller than for lexforms.

Table 12 Compression of lexforms by front compression

lzl = 32
No. o f b i ts Saving

Responsa

IS] = 256

NTIS

Iz l : 32 Iz l : 256

Saving No. of bits Saving No. of bits Saving No. of bits

Size of 2417255 3867608 590050 944080
lexforms

Lexforms
after front 870925 64.0% 1393480 64.0% 242085 59.0% 387336 59.0%
compression

Table 13 Distribution of performs by length

Length Responsa NTIS
No. of performs % No. of performs %

2151 1.16

10596 5.68

32338 17.34

55790 29.92

54822 29.40

30765 16.50

No. of words

1435 4.83

3010 10.12

4520 15.21

6393 21.51

7271 24.46

7095 23.87

Total no. of 186462 29724
performs

Total no. of 1175141 184960
characters

No.. of pgrforms 44.7% 84.5%

47.5%

No. of perform
characters

NO'. of word
characters

87.7%

Phase B. In phase B, lexforms are transformed into conumbers, and indexes into ranks. The amount

of additional savings gained by this transformation depends on the size of the alphabet ~: recall that

each let ter is represented by [zgLzll bits only. Table 14 gives the additional savings achieved when

lexforms/.\are transformed into conumbers. In this table, N 2 = kN1Zg n, and N3 = NIrcg[~)]z=` (where (;)

and [~g(~] are l isted in Table 2).
The result of replacing indexes by ranks is shown in Table 15: The entries in column N I are

taken from Table 7. I f word length is bounded by 8, each index d ig i t can be represented by 3 bi ts, hence

N 2 = 3kN I . Also N3 = NIFzg Kk], where rzg K k] is given in Table 5.
Overall. The overall savings gained by transforming dictionary words into conumbers and ranks

are exhibited in Table 16. I t shows, in particular, that transforming words into conumbers produces a f i l e

which occupies only about 15% of the space required for the Responsa dictionary; 40-45% of the NTIS dic-

216

Table 14 Additional savings gained by replacing lexforms by conumbers

n : I S I : 3 2

k

Length of

lexform

Responsa

N 1 N 2 N 3

No. of No. of bits No. of bits
lexforms for lexforms for conumbers

3 15 15

228 2280 2052

1849 27735 24037

7940 158800 127040

20367 509175 366606

27884 836520 557680

19446 680610 427812

5053 202120 121272

NTIS

N 1 N2 N3

No. of No. of bits No. of bits
lexforms for lexforms for conumbers

9 45 45

160 1600 1440

1295 19425 16835

2802 56040 44832

4671 116775 84078

5920 177600 118400

4567 159845 100474

1468 58720 35232

Total 82770 2417255 1626514 20892 590050 401336

Additional 32.7% 32.0%
savings

n = I~J = 256

k ResponSa NTIS

Length of NI N2 N3 NI N2 N3
No. of No. of bits No. of bits No. of No. of bits No. of bits

lexform lexforms for lexforms for conumbers lexforms for lexforms for conumbers

1

2

3

4

5

6

7

8

3 24 24

228 3648 3420

1849 44376 40678

7940 254080 222320

20367 814680 692478

27884 1338432 1087476

19446 1088976 855624

5053 323392 247597

Total 82770 3867608 3149617

Additional 18.6%
savings

9 72 72

160 2560 2400

1295 31080 28490

2802 89664 78456

4671 186840 158814

5920 284160 230880

4567 255752 200948

1468 93952 71932

20892 944080 771992

18.2%

tionary. I f the ranks are kept in fast memory, only about 50% of the original Responsa dictionary space is

needed; about 80% of the NTIS dictionary. More generally, the la t ter compression figures hold i f

both the lexforms and the ranks are stored on the same medium; either both in fast memory or both on disk.

I f the lexforms are in fast memory and the ranks on disk, we have to augment the ranks with another copy of

the lexforms. A similar remark applies to the next and last compression results.

The results of applying phase A, replacing indexes by ranks and using front compression on the

lexforms and on al l words of length exceeding 8, are shown in Table 17. Note in part icular, that the ~-

f i l e in fast memory occupies only 11% of the Responsa dictionary; 39% of the NTIS dictionary. I f the ranks

are also stored in fast memory, there is a saving of 48-63% for the Responsa dictionary; 40-48% for the

NTIS dictionary.

217

Table 15 Additional savings achieved by replacing indexes by their ranks

k

Length of

word

Responsa

NI N 2 N 3

No. of No. of bits No. of bits
indexes for indexes for ranks

5844 52596 23376

37736 452832 264152

105870 1588050 1058700

135588 2440584 1762644

92793 1948653 1484688

38830 931920 776600

NTIS

N I N2 N 3

No. o f No. o f b i t s No. o f b i t s
indexes for indexes fo r ranks

2767 24903 11068

4313 51756 30191

5698 85470 56980

7295 131310 94835

7762 163002 124192

7341 176184 146820

Total 416661 7414635 5370160 35176 632625 464086

Additional 27.6% 26.6%
savings

Table 16 Savings achieved by phases A and B (word lengths 3-8)

Original
dictionary

Conumbers

Responsa

IZI = 32 I~I = 256

No. of bits Saving No. of bits Saving

12357725 19772360

1626514 86 .8% 3149617 84.1%

5370160 56 .5% 5370160 72.8%

NTIS

I=1 = 32 ISI : 256

NO. o f b i ts Saving No. o f b i t s Saving

1054375 1687000

401336 61.9% 771992 54.2%

464086 56.0% 464086 72.5% Ranks

Total 6996674 43 .4% 8519777 56.9% 865422 17 .9% 1236078 26.7%

Table 17 Overall compression by transforming dictionary words into lexforms with front compression, and

indexes into ranks

Lexforms
and front

compression
on lexforms

Ranks

Responsa

ISI = 32 IS 1 : 256

No. of No. of Saving
characters Saving characters

291648 89.0%

1074032 59.6%

291648 89.0%

NTIS

ISI = 32 Izl = 256

No. o f Saving No. o f Saving
characters characters

171961 61.2%

58011 86.9%

171961 61.2%

671270 74.7% 92818 79.1%

Total 1365680 48.6% 962918 63.7% 264779 40.3% 229972 48.2%

We close with some timing data relevant to decoding. The algorithms were written in PL/land run

on an IBM 370/165 computer. Some programs to compute the basic functions used in decoding such as

(~ M) i / r] , (m) were run for timing purposes. Each program was run 106 times. The times given in

Table 18 are the result of dividing the total time by 106 . The table indicates that decoding is a fast

process.

218

Table 18 Timing results

M/'irl
for M = i000, M = 109 ; and r = 8, r = 13

(all four combinations require about same time)

1.2 x 10-" seconds

r = 3; m : 103 or m = 109 4.3 x 10 -s seconds

r = 8; m = 103 or m = 109 1.2 x 10-" seconds

Computing m+1~ from (m~ I F / , \ ,/
b /m+l"~ m+l [m\
Y t, rJ= tr) 3.8 x 10 -6 seconds

ACKNOWLEDGEMENT

We wish to express our gratitude to Professor Y. Choueka, Head of the Institute for Information

Retrieval and Computational Linguistics (IRCOL) at Bar llan University, for kindly placing at our disposal

the Responsa database; to Mr. K. Keren, Head of the Israel National Center for Scientif ic and Technological

Information (COSTI) who cooperated with us on the NTIS database experiments; to Messers A. Fullop, Y,

Pechenik and E. Niovits at IRCOL; Mrs. I. Sered at COSTI and all other members of IRCOL and COSTI who

helped us in various ways.

[ABR]

[EVE]

[FRA]

[GOT]

[KNU]

[LEH]

[MOFI]

[MOF2]

[ORD]

[PLE]

[ROY]

[SCS]

[WELl

REFERENCES

M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards,
June, 1964 (Ninth printing, 1970).
S. Even, Algorithmic Combinatorics, MacMillan, New York, N.Y., 1973.
A.S. Fraenkel, All about the Responsa Retrieval Project you always wanted to know but were afraid to
ask, Expanded Summary, Proc. Third Symp. on Legal Data Processing in Europe, Oslo, 1975, 131-141.
(Reprinted in Jurimetrics J. 16 (1976), 149-156 and in Informatica e Dir i t to I I , No. 3 (1976), 362-
370.)
D. Gotlieb, S.A. Hagerth, P.G.H. Lehot and HoS. Rabinowitz, A classification of compression methods
and their usefulness for a large data processing center, National Comp. Conference 44 (1975), 453-
458.
D.E. Knuth, The Art of Computer Programming, Vol. 3 - Sorting and Searching, Addison-Wesley, Reading,
MA, 1973.
DoE. Lehmer, The machine tools of combinatorics, in: Applied Combinatorial Mathematics (E.F. Becken-
bach, Ed.), J. Wiley, New York, N,Y., 1964, 5-31.

M. Mor and A.S. Fraenkel, Permutation generation on vector processors, The Computer Journal 25, 4
<(November, 1982), 423-428.
M. Mor and A.S. Fraenkel, Cayley-Permutations, D}screte Math., in press.

R.J. Ord-Smith, Generation of permutation sequences: Part 2, The. Computer Journal 14 (1971), 136-139.

S. Pleszcynski, On the generation of permutations, .Information Process.in~ Letters 3, 6 (July, 1975),
180-183.
M.K. Roy, Evaluation of permutation algorithms, The Computer Journa~ 21, 4 (November, 1978), 296-301.

J. Schmidt and E. Shamir, An improved program for constructing open hash tables, in: 7th Colloquium
on Automata, Languages and Programming (j.W. de Bakker and J. van Leeuwen, Eds.), July 14-18, 1980,
Springer Verlag, Berlin, 569-581.

M.B. Wells, Elements of Combinatorial Computing, Pergamon Press, Oxford, 1971.

219

