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Abstract A method for compressing large dictionaries is proposed, based on transforming words into l exico- 

graphically ordered strings of d is t inct  let ters,  together with permutation indexes. Algorithms to generate 

such strings are described. Results of applying the method to the dictionaries of two databases, in Hebrew 

and English, are presented in detai l .  The main message is a method of part i t ioning the dictionary such 

that the "information bearing fraction" is stored in fast memory, and the bulk in auxi l iary memory. 

i .  INTRODUCTION 

A method for compressing very large dictionaries - the larger the better! - based on combinatorial 

transformations of words is proposed. The main idea is to replace each word w by a pair (L, I ) ,  where L 

is an ordered string of the d is t inct  letters of w, and I is an index which permits transforming L back 

into w. The information contained in the L's is almost the same as that of the w's: the entropy inc- 

rease in transforming the lat ter  to the former is very small. The main variation investigated is when the 

L's reside in fast memory and the I 's  are relegated to disk. This results in very high savings of fast 

memory. 

This work was done within the Responsa Retrieval Project, developed i n i t i a l l y  at the Weizmann Inst i tute 
of Science and Bar-llan University, now located at the Inst i tute for Information Retrieval and Computatio- 
nal Linguistics (IRCOL), Bar-llan University, Ramat Gan, Israel. The work reported herein was done at 
the Weizmann Inst i tute.  
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Specifically, le t  w : w~w2...w k be a word over a f in i te  alphabet S, l inear ly ordered (under <). 

A lexicographic form (lexform for short) of w is a lexicographically ordered sequence Wq(~)...Wq(~) 

(for suitable ~ ~ k) of the dist inct letters (also called characters) of w. Thus Wq(i) precedes Wq(j) 

i f  and only i f  Wq(i) < Wq(j). Every word over Z maps into a unique lexform, but any given lexform may 

be induced by several dist inct words. 

We define a few basic notions. I f  a word w = wlw2-.-w k maps into a lexform v = vlv2.. .v ~ 

(~ ~ k), then the index of w is a sequence of length k consisting of the numbers 1,2,. . . ,&, such that 

i f  w i = vj,  then the i - th sequence number is j (1 ~ j ~ ~, 1 ~ i ~ k). Denoting by L the lexform of 

w and by I i ts  index, we observe that the transformation w ~ (L,I) is a bijection. Thus the transfor- 

mation w ÷ (L,I) has a unique inverse. A text is a sequence of words, counting repetitions. The set of 

dist inct words of a text is a dictionary of the text. (Of course a dictionary is a special case of a text, 

namely the case in which every word appears exactly once.) The length of a word is the number of i ts  le t -  

ters, counting mul t ip l ic i t ies.  For example, "of the people, by the people, for the people" is a text of 

size 9, whose dictionary has size 5. The word "people" has length 6, i ts  lexform is "elop", and i ts  index 

is (4,1,3,4,2,1). 

The proposed compression and partitioning method is based on replacing words by lexforms, storing 

only dist inct lexforms and their corresponding indexes. The number of dist inct lexforms of length ~ over 

an alphabet Z of size I~I = n is evidently (~). Since every combination can be represented by i ts  
% #  

serial number in some linear ordering of al l  combinations (see e.g. [LEH], [EVE]), a serial combination 

number (conumber for short) can be used to represent every lexform, thus achieving additional compression. 

In Proposition 1 i t  is proved that the saving factor achieved by replacing dictionary words of length k 

by conumbers is at least (2~k)-½(ek-1) k i f  IZl is large. In Proposition 3 i t  is shown that the number 

of dist inct indexes of words of length k is i~ ik2 - i - I , -  which is the number of Cay] ey-permutations (c- 
permutations for short) of length k (see [MOF2]). Thus i f  we replace every index by i ts  serial number 

(called rank) in some linear ordering of al l  indexes, a further compression is achieved. 

The combinatorial compression method can thus be viewed as consisting of two phases: 

A. Compression by transforming dictionary words into lexforms and indexes. 

B. Further compression by transforming lexforms into conumbers and indexes into ranks. 

A natural partit ion of the dictionary is obtained by storing the f i l e  ~ of lexforms (or their 

corresponding conumbers) in fast memory, and the f i l e  ~ of indexes (or their ranks) on disk. Such a par- 

t i t ion may enable storage of a large dictionary in form of i ts  lexforms in fast memory, which otherwise 

could not be kept in i t  because of lack of space. This is important in many applications such as data ret- 

rieval over legal material or other nonnumeric material. Typical cases are: (1) Most accesses to the dic- 

tionary are unsuccessful, that is, the word sought is not in the dictionary. (2) Many accesses are succes- 

sful, but additional Boolean or metrical constraints (which can be verif ied without consulting ~) reject 

the word. In both of these cases there are many accesses to ~ in fast memory, and few accesses to ~ on 

disk, whose access time is typical ly 104 times slower than that of fast memory. 

The method was tested on the dictionaries of two large databases, one of which was in fact a da- 

tabase of legal material, namely a subset of the database of the Responsa Retrieval Project [FRA]. The 

subset contained some 114 mill ion letters - excluding punctuation characters and blanks - comprising 28 

mill ion words (436,000 dist inct (dictionary) words) mainly in Hebrew; and a subset of the database of seven 

biweekly updates of NTIS (U.S. National Technical Information Services), containing some 14 mil l ion letters 

of two mil l ion English words of length at least three (57,000 dist inct  words). Any word of length excee- 

ding 13 was truncated to length 13. 

The highlights of the results are that i f  phases A and B are used, then the above mentioned par- 

t i t ioning results in a fast memory space requirement of only 15% of the Responsa dictionary space; 55-60% 

of the NTIS dictionary. This rather large difference in compression is due not so much to language idio- 
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syncracies as to d ic t ionary  size: the e f f i c i ency  of  the method increases wi th d ic t ionary  size! (We remark 

that the above saving is on top of an addi t ional  saving factor  (not counted) obtained by replacing standard 

character representation by a minimal representation using only r~g lE l l  b i ts  per character (~g stands for  

hog to the base 2, here and below). This is natural to do when working with conumbers and ranks, and is 

qui te consistent wi th other compression methods. (For example, i f  IZl = 32, a 5 -b i t  code instead of the 

customary 8 -b i t  code can be used, resu l t ing  in an addi t ional  37.5% saving fac tor ,  not counted in the 

sequel.) 

The de ta i l s  o f  the method - in form of  phases A and B - are presented in Section 2. In Section 3 

we b r i e f l y  explore an extension and a var ia t ion  of  the main method. The extension is f ron t  compression 

applied to the f i l e  of lexforms; the var ia t ion  is the use of  performs instead of lexforms. A per fo r  m is a 

lex icograph ica l l y  ordered s t r ing of  the l e t t e rs  of  a word without delet ing mul t ip le  l e t t e r s .  The f ina l  

Section 4 contains the resu l ts  of  tests run on the two databases mentioned above. I t  ends with a short 

summary on decoding times, where decoding is the process of restor ing the o r ig ina l  word from i t s  compressed 

version. 

2. THE 1140 PHASES OF COMBINATORIAL COMPRESSION 

Phase A. This phase consists of  two steps: 

( i )  Generation of  lexforms and ca lcu la t ion of  indexes. 

( i i )  Compression by sorted lexforms. 

ste P ( i  I .  This step transforms every word w in the d ic t ionary  D into a pair  ( L , I ) ,  where L 

is the lexform and I the index of  w. The lexform is obtained by sort ing the le t te rs  of  w, delet ing 

ident ical  l e t t e r s .  Since the number of elements is small, any simple sor t ing algorithm such as inser t ion 

sort EKNU] w i l l  be more e f f i c i e n t  than elaborate algori thms. I f  the lexform has length ~, i t s  charac- 

ters are numbered consecutively from 1 to ~. To get the index I of w, every l e t t e r  of  w is repla- 

ced by i t s  corresponding number. 

Step ( i i ) .  We s tar t  by sort ing the pairs (L , I )  lex icograph ica l l y ,  where L is more s i g n i f i -  
d cant than I .  The input is a set of pairs P = { (Lk , lk ) }k= I ,  where d : IDI is the number of  d ic t ionary  

words, L k is the lexform of  the k-th word and I k i t s  index (1 ~ k g d).  The sort  produces a sequence 

S = { (Lk , lk )  : (LI,11) < . . .  < (Ld, ld) }  . 

In par t i cu la r ,  L 1 ~ . - .  ~ L d. Thereafter, a l l  maximal blocks ( L k 1 , 1 k l ) , - . . , ( L k t , l k t )  for  which 

Lkz_~ < Lk~ . . . . .  Lkt < Lkt+~ are collapsed into a single element consist ing of  a s ingle lexform 

L k ~ Lkl ,  and a sequence of indexes ( I k 1 , . - . , I k t ) .  The resu l t  is a sequence 

• . ,  < . . .  < L r}  , A = { ( L k ; I k 1 , . . . , I k t )  : Ik l  < < Ik t  , I ¢ k ~ r , L I 

where r = [A I (1 ~ r ~ d). Since d is normally large, i t  is advisable to use an e f f i c i e n t  sort ing 

method. For example, i f  D f i t s  into fast  memory at least  temporari ly,  then quicksort ,  heapsort or radix 

exchange sort  [KNU] may be used. 

We now pa r t i t i on  the sequence A into two sequences ~ = {L , . - - , L  r}  o f  lexforms and 

I = { I  1 , - . . , l l t ( 1 ) , . - . , I r 1 , - . . , I r t ( r  )} of  indexes. The sequence L can be stored in fast  memory, I on 

disk.  No pointers from ~ to ~ are required i f  the lexforms are repeated in ~, serving there as key- 

f i  el ds. 
Phase B. In phase B, lexforms and indexes produced in phase A are transformed into conumbers and 

ranks respect ive ly .  
Transformation of  lexforms into conumbers. The number of d i s t i n c t  lexforms of length 

over ~ is  L~ ) ,  where n = I~I .  Instead or representing a lexform v of length ~ by means of  a 
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string of £ letters with a range of n ~, the same as a word of length £, we may represent i t  by i ts  co- / ~ 

number, with a range of only (~). This saving is on top of the saving achieved by using in the lexform 
%--# 

only ~ out of k letters of the original word. 

"Saving" here means the compression achieved in ~ not in ! .  For the overall compression 

achieved, also ~ must be considered. But since ! normally resides on disk, i ts  storage is normally 

much cheaper than that of ~, 

(~) grows rapidly with ~ (< n/2), i t  is useful to consider only words of length k ~ 8, Since 

which holds for the majority of cases (see Table 7, Section 4). Longer words may be partitioned into seg- 

ments of length ~ 8. 

Note that for fu l l y  u t i l iz ing the compression of phase B, the internal representation of charac- 

ters should be reduced to the minimum number of bits required, whence the saving is counted in bits rather 

than bytes. This is consistent with common data compression techniques, in which characters over S are 

normally represented by a minimal number of [~g nl bits which may be shorter than the standard internal 

computer representation of characters. 

We now get an asymptotic lower bound on the saving gained up to this point. 

PROPOSITION 1. The saving factor gained by replacing dictionary words of length k by conumbers 

is at least t = (2~k)-½(ek-l) k i f  ISl is large. 

PROOF. We use the following form of St i r l ing 's  formula [ABR 6.1.38]: 

v ~ )  r v ~ ) r e  I < r i  < /12r 

for al l  r > O. Letting n = IZl, we thus get, 

(~ )  n! i nke - ( ( 12k ) - I  + (~2(n-k) ) -1)  1 (~__O~) k 
= i ~ .  > . . . .  ÷ = tn k as n ÷ ~ , 

kk+½(l-k/n) n-k+½ 

since ( l - ( k / n ) )  n ÷ e -k as n ÷ ~. 

Thus even i f  every lexform induced by words of  length k has length k, the number of  d i s t i n c t  

l exforms is asympto t ica l l y  bounded below by tn k. Since the number of  d i s t i n c t  words of  length k over 

is n k, the saving factor is at least t .  • 

Note that the saving factor is independent of IZI as long as I~I is large. Table 1 exhibits 

the savings projected by Proposition 1. The co|umn headed by -~g t gives the savings in terms of the 

difference of the number of bits between a representation by words and by conumbers. 

Table 1 Asymptotic lower bounds on savings (in bits) obtained by replacing dictionary words by conumbers 

k -£g t 

2 0.9 

3 2.5 

4 4.5 

5 6.8 

6 9.5 

7 12.3 

8 15.2 

Table 2 displays several values of savings achievable for four values of n which are powers of 

2. The table entries are also lower bounds of the savings, since the table assumes that lexforms have the 

same length as words. Comparing Table 1 with the penultimate column of Table 2, i t  is seen that the esti-  

mate of Proposition 1 is rather close to the actual lower bound for word-lengths 2-8. I f  the alphabet size 
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Table 2 Actual lower bounds on savings obtainable by replacing d ic t ionary  words by conumbers 

n k 
No. of b i ts  

fo r  n k 

32 2 10 
32 3 15 
32 4 20 
32 5 25 
32 6 30 
32 7 35 
32 8 40 

I~ ) No. of  b i t s  Possible % of  
(~)  savings 

for  (b i ts )  savings 

496 9 I i .0 
4960 13 2 13.3 

35960 16 4 20.0 
201376 18 7 28.0 
906192 20 i0 33.3 

3365856 22 13 37.1 
10518300 24 16 40.0 

64 2 12 2016 11 1 8.3 
64 3 18 41664 16 2 11.1 
64 4 24 635376 20 4 16.7 
64 5 30 7624512 23 7 23.3 
64 6 36 74794368 27 9 25.0 
64 7 42 6.2122xi08 30 12 28.6 
64 8 48 4.4262xi09 33 15 31.2 

128 2 14 8128 13 1 7.1 
128 3 21 341376 19 2 9.5 
128 4 28 10668000 24 4 14.3 
128 5 35 2.6457xi0 e 28 7 20.0 
128 6 42 5.4236xi09 33 9 21.4 
128 7 49 9.4526xi0 I° 37 12 24.5 
128 8 56 1.4297x1012 41 15 26.8 

256 2 16 32640 15 1 6.2 
256 3 24 2763520 22 2 8.3 
256 4 32 1.7478x108 28 4 12.5 
256 5 40 8.8095xi09 34 6 15.0 
256 6 48 3.6853xi0 I I  39 9 18.7 
256 7 56 1.3162xi013 44 12 21.4 
256 8 64 4.0966xi0 I" 49 15 23.4 

is not a power of 2, the savings by using conumbers are larger, because several possible characters are 

unutilized. This situation is shown in Table 3 for n = 26 and n = 36 (Latin alphabet supplemented by 

the digits 0-9, say). 

Table 3 Same as Table 2, for  two actual alphabet sizes 

n k 
No. of  b i ts  

for n k 

26 2 10 
26 3 15 
26 4 20 
26 5 25 
26 6 30 
26 7 35 
26 8 40 

I~ ) NO. of bits Possible % of 
(~)  savings 

for (bits) savings 

325 9 1 10.0 
2600 12 3 20.0 

14950 14 6 30.0 
65780 17 8 32.0 

230230 18 12 40.0 
657800 20 15 42.9 

1562275 21 19 47.5 

36 2 12 
36 3 18 
36 4 24 
36 5 30 
36 6 36 
36 7 42 
36 8 48 

630 10 2 16.7 
7140 13 5 27.8 

58905 16 8 33.3 
376992 19 11 36.7 

1947792 21 15 41.7 
8347680 23 19 45.2 

30260340 25 23 47.9 
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For formulating transformations between a lexform and i ts conumber, define the combinatorial .rep- 

resentation of any nonnegative integer N with respect to a fixed positive integer k, to be (a~,.-.,ak), 

where 

(~) ('ak-"~ (~') 
N = k + • k - l )  + " ' "  + ' 

subject to O ( a I < a 2 < . . .  < a k for uniqueness. See [LEH, p. 8]. 

A combination c out of a set of (~)combinations is fixed by selecting C positions 

bz,.-.,b £ with 1~ bl < . . .  < bc ~ n out of n positions. The conumber r (O ~ r < ~ ) )  of c is 
n-b 

defined to be j=l £-j+1 - 1 ([LEH, p. 28], [EVE, p. 331). Conversely, the conumber of a combina- 

tion c determineS(n~the represent positions b1""'b~:(n~ Given the conumber r of arepresentation,COmbination out of ! ! )  combi- 
nations (O.< r < ,h l ) ,  R = i ~ / -  r - 1 in the combinatorial that i 

R = ~ ( cj ~ Then~ z bj = n - cj (1 \ i .<  J .< £) are the desired positions. 
j=1\£-j+l)" 

We now partit ion the set of lexforms into subsets, each containing lexforms of fixed length 

(2 ~ ~ .< 8). (Note that a subset containing lexforms of length ~ is normally derived from words of va- 

rious lengths k >. ~.) The lexforms in each subset are transformed into conumbers. The savings thus obtai- 

ned are those estimated in Proposition 1 and Tables 1, 2 and 3. 

Decoding involves computing the combinatorial representation. For computing the combinatorial 

representation of a nonnegative integer N with respect to k, we have to calculate the largest integer 

! ak) (ak-1~ (ak) 
a k satisfying k ~ N; the largest integer ak. ~ satisfying \ k- l )  ( N - k ; the largest inteter ak_ 2 

C satisfying k-2 ~ N - - ~, k - l ) ; " "  I t  is thus of importance to give an ef f ic ient  method for com- 

puting the combinatorial representation. Here is one. 

Let M be a positive integer. For computing efficiently/..x the largest integer x = x 0 satisfying 

/"'{x).< M, recall that the proof of Proposition 1shows that ( x ) ~  (2~r)-½(exr-~)r (where ~ denotes "asy- 
% - - i  

mptotic to").  Hence i t  makes sense to start with 

Indeed, the following holds: 

PROPOSITION 2. For r = 2, x o = L( I+v~T~P[) /2J.  For r > 2, xz .< x o < x 2, where 

xz=[r(2v~TMeZ/~r)z/rl+r-1. 
PROOF. For r = 2, the requirement of determining the largest solution of the quadratic inequa- 

l i t y  I~).< M is direct ly seen to be Xo = L ( 1 + ~ ) / 2 ] .  

For any real x, x(x-2) < x 2 - 2x + 1 = (x- l )  2. Hence for any x > 1, x(x-1)(x-2) < (x- l )  3. 

Therefore for r > 2, 

= r !  < r ~ .  < r ~ .  M . 

Thus St i r l ing 's  formula (see proof of Proposition 1), implies (~1)< M; hence xl ~ x o. 

On the other hand, 

(~2) x2(xa-1)'"(x2-r+l) (x2-r+l) r ~ (r)rM e~/~2r 
: r !  ~ r !  >" r'-r-F-. > M . • 

Note that for fixed M, even very large M, we have 
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as r increases, and the convergence is very fast .  Hence x~ - xz ~ r even for  r not very large. Thus 

the computation of  x involves re la t i ve ly  few steps. This is i l l us t ra ted  in Table 4, which exhibi ts the 
0 

values x ° - x and x 2 - x o for  1 ~ M ~ 3x106, 3 ( r ~ 8. I t  is seen that s tar t ing with x I ,  at most 

r steps are required to get to x o. 

Table 4 The values x o - xl and x 2 - x o as a function of  r for  1 ~ M ~ 3x106 

0 

i 

2 

3 

4 

5 and 
above 

X2-X 0 

0 

1 

2 

3 

4 

5 

6 and 
above 

3 4 5 6 7 8 

52744 326426 0 0 0 0 

750965 2 6 7 3 5 7 4  2 4 9 1 9 6 3  1105362 0 0 

1920838 0 508037 1 8 9 4 6 3 7  2 6 2 5 0 1 3  1094734 

275453 0 0 I 374987 1905204 

0 0 0 0 0 2 

0 0 0 0 0 0 

0 0 0 0 0 0 

482 0 0 0 0 0 

2985775 1533445 72773 1 0 0 

13743 1 4 6 6 5 5 5  2 9 2 7 2 2 7  1697737 246082 2 

0 0 0 1302262 2 7 5 3 9 1 8  1813950 

0 0 0 0 0 1186048 

0 0 0 0 0 0 

Step ( i i ) .  Transformation of indexes into ranks. Recall that  a rank of an index is the ser ia l  
number of  the index in some l inear  ordering of  a l l  the indexes. 

PROPOSITION 3. The number of indexes of words of  length k is K k : .~ ik2 - i - I  
i = I  

PROOF. A C-permutation p of  length k over S : {1 , .o . , k }  is a permutation of  n elements 

from S with possible repe t i t ions ,  such that i f  j appears in p, then also every i < j appears in i t .  

Note that an index of  a word of  length k is precisely a C-permutation of  length k on the set 

S : { l , . . . , k } .  The resu l t  now fol lows since the number of C-permutations of length k over S is K k 
[MOF2]. • 

The transformation between C-permutations and the i r  ranks is effected by means of two algorithms 
given in [MOF2]. 

Assuming words of  length k with d i s t i nc t  l e t t e r s ,  the saving gained by transforming indexes 

into ranks is k-kK k, since k k is the number of  k -d ig i t  numbers of  length k. Table 5 shows several sa- 

vings achievable by replacing indexes by ranks. Note that th is is a saving achieved in ~ rather than in 

3. EXTENSIONS AND VARIATIONS 

Among the various poss i b i l i t i e s  for  extensions and var ia t ions of the method, we point  out b r i e f l y  
one extension and one var ia t ion .  

( i )  Front compression. Instead of  transforming lexforms into conumbers, the stored f i l e  of ]ex- 

forms can be compressed by f ron t  compression. That i s ,  ident ica l  leading characters of consecutive lexforms 

are replaced by the i r  count of  ident ica l  characters (except for  the f i r s t  lexform in the sequence) [GOT]. 
I t  is then natural to apply f ron t  compression also to a l l  words of  length exceeding 8. 
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Table 5 Savings achieved by using ranks instead of  indexes 

F~g kkl [~g Kk] No. of % of 
k k k No. of No. of 

bits of k k Kk bits saved savings bits of K k 

2 4 2 3 2 0 0 

3 27 5 13 4 1 20.0 

4 256 8 75 7 1 12.50 

5 3125 12 541 10 2 16.67 

6 46656 16 4683 13 3 18.75 

7 823543 20 47293 16 4 20.0 

8 16777216 24 545835 20 4 16.67 

Front compression can be applied to the f i l e  of  conumbers instead of  to the f i l e  of  lexforms. In 

fac t ,  the transformation of lexforms into conumbers preserves order, and so i t  can be applied wi thout  addi- 

t ional  sor t ing.  Experimental resul ts ind icate,  however, that  f ront  compression of lexforms gives better 

resu l ts  overa l l .  I f  decoding and re t r ieva l  times are c r i t i c a l  (as in real time app l ica t ions) ,  then a hash- 

table method is advantageous. In th is  case f ron t  compression cannot be used and then the replacement of 

lexforms by conumbers (but wi thout f ront  compression) is preferable. The d ic t ionary  can be stored in an 

almost f u l l  hash table wi th a good average and worst case behavior by using a method such as that of 

Schmidt and Shamir [SCS]. 

( i i )  Performs. A permuted form (perform for  short) of  a word w = w1-..w k is a permutation 

Wp(1)-..Wp(k) of  a l l  the - not necessari ly d i s t i n c t  - l e t t e rs  of  w such that  Wp(i) precedes Wp(j) i f  

Wp(i) ~ Wp(j). In formal ly ,  whereas a lexform is an ordered s t r ing  of  the d i s t i n c t  l e t te rs  of  w, a perform 

is an ordered s t r ing of  a l l  i t s  l e t t e r s .  I f  a word w = wz...w k maps into a perform v = v~ . . -v  k, then 

the index of  w is a sequence of length k consist ing of  the numbers 1 , . . . , k  such that  i f  w i = v j ,  

then the i - t h  sequence number is j (1 ~ i , j  ~ k). 

The perform of any word w is at least  as long as the lexform of  w, and the numbers cons t i tu -  

t ing the index of the perform of a word w are at least  as large as the numbers cons t i tu t ing  the index of  

the lexform of w. Moreover, normally less words map in to  the same perform than into the same lexform. 

Thus transforming d ic t ionary  words into performs and indexes w i l l  normally y i e l d  less compression than 

transforming words into lexforms. However, less indexes have to be checked per perform than per lexform, 

so decoding time for  performs is somewhat shorter than for  lexforms. 

Analogously to phase B above, we may transform performs into conumbers (ser ia l  numbers of l i nea r -  

l y  ordered performs) and indexes into ranks. For a word of  length k over an alphabet x with ix] = n, 

the number of d i s t i n c t  performs is ev ident ly  (n+~-1), which is the number of k-combinations with repe t i -  

t ions.  Thus the number of conumbers of  performs is larger than the number o f  conumbers of  lexforms. The 

number of indexes of  words of  length k with respect to performs, however, is at most k! .  This is less 

than the number of indexes of lexforms, which was shown to be the number K k of  C-permutations. In fac t ,  

i t  is easy to ve r i f y  that (e/2) k > 2{T~-ke z/z2k for  a l l  k ~ 9. Hence by S t i r l i n g ' s  formula, 

(~)kel/~2k ½(~)k  ~ ik2_i_~ 
k! < ~ < < i~ I : K k . 

The fact  that  k! < K k also for  2 ~ k ~ 8 is seen from Table 6. 

The rank of  an index with respect to a perform can be computed in one of the fo l lowing ways: 

( I )  There is a one-to-one correspondence between permutations and the i r  ranks based on the facto-  

r i a l  representation of integers, see e.g. [LEH, p. 20]. Algorithms rea l i z ing  the transformations between 
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Table 6 No. of bits needed for indexes of lexforms and performs 

Perform Lexform 

Length No. of possible No. of No. of possible No. of Difference 
of word indexes bits indexes bits in no. of 

(k) (k!) needed (C-permutations) needed bits needed 

1 I I 

2 2 1 

3 6 3 

4 24 5 

5 120 7 

6 720 10 

7 5040 13 

8 40320 16 

1 1 0 

3 2 1 

13 4 1 

75 7 2 

541 10 3 

4683 13 3 

47293 16 3 

545835 20 4 

permutations and their ranks are described by Pleszcynski [PLE]. 

(2) An ordered table of permutations can be consulted (up to size k = 8, say). The order of the 

table should be such that the j !  permutations of the f i r s t  j symbols are generated before the (j+1)-th 

symbol is moved, so that indexes of different lengths can use the same permutation table. Three algorithms 

with this property are compared by Roy [ROY]. (Two of them are the well-known algorithms of Ord-Smith 

[ORD] for generation of permutations in lexicographic and pseudo-lexicographic order. The third is due to 

Wells [WELl.) An algorithm for permutation generation on vector processors with this property is given in 

[MOF1]. 

To summarize, the use of performs yields less compression but gives s l ight ly  better decoding 

times than the use of lexforms. 

4. EXPERIMENTS 

In this section we give some results obtained by applying the method to the Responsa and NTIS 

dictionaries. We end with brief remarks on the decoding speed. 

phas e A. Recall that in phase A every dictionary word is transformed into a lexform and a cor- 

responding index. During this process, identical characters are deleted. Table 7 shows the distribution 

of the dictionary words by their lengths, Table 8 presents the same thing for lexforms and Table 9 summari- 

zes the data. Note that about half the words contain equal characters, and the number of equal characters 

is about 11% of the total number of characters. 

Let Pi be the probability of appearance of le t ter  i in the dictionary (1 ~ i ~ n = IZl). 
n 

The "amount of information" in the dictionary using the entropy measure is H = -i~ip i ~g Pi" Since only 

about 11% of the characters are repeated, i t  seemed l ike ly  that the transformation from dictionary words to 

lexforms would not increase the entropy by much. This assumption was tested for the Responsa and NTIS dic- 

tionaries by computing the frequency of the different letters. The results are summarized in Table 10, 

which shows that the entropy increase does not exceed 1.3%. 

Table 11 exhibits the distribution of the dist inct lexforms by length and then gives some overall 

figures. The la t ter  show that the f i l e  of lexforms occupies only about 20% of the dictionary f i l e  of the 

Responsa; 56% for the NTIS dictionary. Further, the number of dist inct lexforms is only about 20% of the 

number of dist inct Responsa dictionary words; 60% for the NTIS dictionary. In order to find out whether 

these large differences are due to language idiosyncracies or to dictionary sizes, phase A was also run on 

a Hebrew dictionary of one of the Responsa books containing d = 60,636 dist inct words - only just larger 

than the NTIS dictionary. I t  turned out that the number of dist inct lexforms was about 49% of d. This 
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Table 7 Distribution of wordlengths in dictionaries 

Wordlength Responsa Dictionary NTIS Dictionary 
No. of words % No, of words % 

1 27 .006 - - 

2 496 .114 - 

3 5844 1.34 2767 4.86 

4 37736 8.64 4313 7.57 

5 105870 24.26 5698 10.00 

6 135588 31.06 7295 12.80 

7 92793 21.26 7762 13.62 

8 38830 8.90 7341 12.88 

9 12927 2.96 6442 11.30 

10 4068 .93 5114 8.97 

11 1455 .33 3533 6.20 

12 503 .12 2596 4.56 

13 353 .08 4128 7.24 

Total 436490 100 56989 100 

Table 8 Distribution of lengths of lexforms (with repetitions) 

Word 

length 

Responsa Dictionary 
Length of )exform 

1 2 3 4 5 6 7 8 

No. of 
repeated 

characters 

539 5302 

249 6606 30881 

67 3145 30421 

8 829 12217 

137 2617 

12 378 

72237 

54704 67830 

18098 42080 29861 

3628 12179 16241 6392 

545 

7104 

36912 

81657 

86675 

53055 

Total 
Distr ib.  of 
lexforms 

3 863 16031 76514 148667 122089 46102 6392 265948 

Word 

length 1 2 3 

NTIS Dictionary 
Length of lexform 

4 5 6 7 8 

No. of 
repeated 

characters 

336 

61 

1 

1 

2422 

999 3253 

191 1778 3728 

53 709 2982 3550 

4 213 1417 3579 2549 

2 67 525 2079 3124 1544 

354 

1121 

2163 

4563 

7068 

9135 

Total 
Di str ib,  of 
I exforms 

9 399 3671 6020 8652 9208 5673 1544 24404 
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Table 9 Database overview 

Responsa NTIS 

Total no. of words (al l  word lengths) 436490 56989 

Total no. of characters (al l  word lengths) 2656217 443672 

No. of words (word lengths 3-8) 416661 35176 

No. of characters (lengths 3-8) 2471545 210875 

No. of words without equal characters (3-8) 212503 17046 

No. of words with equal characters (3-8) 204158 18130 

No. of repeated characters (3-8) 265948 24404 

Percentage of repeated characters (3-8) 10.76% 11.57% 

Table 10 Entropy of original dictionaries and lexforms 

Entropy Responsa NTIS 

Original 4.274 4.271 
dictionary 

Lexforms 4.330 4.314 

Table 11 Distribution of different lexforms by length 

Length Responsa NTIS 
No. of lexforms % No. of lexforms % 

i 3 .0O4 9 .04 

2 228 .276 160 ,76 

3 1849 2.23 1295 6.20 

4 7940 9.59 2802 13.41 

5 20367 24.61 4671 22.36 

6 27884 33.69 5920 28.34 

7 19446 23.49 4567 21.86 

8 5053 6.11 1468 7.03 

Total no. of 82770 20892 
lexforms 

Total no. of 
lexform 483451 118010 

characters 

No. of lexforms 19.86% 59.39% 
No. o~ words 

No. of lexform 
characters 19.56% 55.96% 

No. of word 
characters 

result indicates that the efficiency is primarily a function of the size of the dictionary, though the 

language does have an effect. In particular, the compression efficiency of the method increases markedly 

with dictionary size. 

The result of applying front compression to lexforms is shown in Table 12. I t  is assumed that 
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a 4-bit  string is adjoined to every lexform of length 3-5 to denote the length of the identical prefix; a 

5-bit string for words of length 6-8. I t  is seen that front compression yields a relat ively large saving. 

As stated earl ier, however, i t  disables use of hashing, thus slowing down decoding. Table 13 is the analog 

of Table 11 for performs. Note that the savings are considerably smaller than for lexforms. 

Table 12 Compression of lexforms by front compression 

lzl = 32 
No. o f  b i ts  Saving 

Responsa 

IS] = 256 

NTIS 

Iz l  : 32 Iz l  : 256 

Saving No. of bits Saving No. of bits Saving No. of bits 

Size of 2417255 3867608 590050 944080 
lexforms 

Lexforms 
after front 870925 64.0% 1393480 64.0% 242085 59.0% 387336 59.0% 
compression 

Table 13 Distribution of performs by length 

Length Responsa NTIS 
No. of performs % No. of performs % 

2151 1.16 

10596 5.68 

32338 17.34 

55790 29.92 

54822 29.40 

30765 16.50 

No. of words 

1435 4.83 

3010 10.12 

4520 15.21 

6393 21.51 

7271 24.46 

7095 23.87 

Total no. of 186462 29724 
performs 

Total no. of 1175141 184960 
characters 

No.. of pgrforms 44.7% 84.5% 

47.5% 

No. of perform 
characters 

NO'. of word 
characters 

87.7% 

Phase B. In phase B, lexforms are transformed into conumbers, and indexes into ranks. The amount 

of additional savings gained by this transformation depends on the size of the alphabet ~: recall that 

each let ter  is represented by [zgLzll bits only. Table 14 gives the additional savings achieved when 

lexforms/.\are transformed into conumbers. In this table, N 2 = kN1Zg n, and N3 = NIrcg[~) ]z=` (where ( ; )  

and [~g(~] are l isted in Table 2). 
The result of replacing indexes by ranks is shown in Table 15: The entries in column N I are 

taken from Table 7. I f  word length is bounded by 8, each index d ig i t  can be represented by 3 bi ts,  hence 

N 2 = 3kN I . Also N3 = NIFzg Kk], where rzg K k] is given in Table 5. 
Overall. The overall savings gained by transforming dictionary words into conumbers and ranks 

are exhibited in Table 16. I t  shows, in particular, that transforming words into conumbers produces a f i l e  

which occupies only about 15% of the space required for the Responsa dictionary; 40-45% of the NTIS dic- 
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Table 14 Additional savings gained by replacing lexforms by conumbers 

n : I S I  : 3 2  

k 

Length of 

lexform 

Responsa 

N 1 N 2 N 3 

No. of No. of bits No. of bits 
lexforms for lexforms for conumbers 

3 15 15 

228 2280 2052 

1849 27735 24037 

7940 158800 127040 

20367 509175 366606 

27884 836520 557680 

19446 680610 427812 

5053 202120 121272 

NTIS 

N 1 N2 N3 

No. of No. of bits No. of bits 
lexforms for lexforms for conumbers 

9 45 45 

160 1600 1440 

1295 19425 16835 

2802 56040 44832 

4671 116775 84078 

5920 177600 118400 

4567 159845 100474 

1468 58720 35232 

Total 82770 2417255 1626514 20892 590050 401336 

Additional 32.7% 32.0% 
savings 

n = I~J = 256 

k ResponSa NTIS 

Length of NI N2 N3 NI N2 N3 
No. of No. of bits No. of bits No. of No. of bits No. of bits 

lexform lexforms for lexforms for conumbers lexforms for lexforms for conumbers 

1 

2 

3 

4 

5 

6 

7 

8 

3 24 24 

228 3648 3420 

1849 44376 40678 

7940 254080 222320 

20367 814680 692478 

27884 1338432 1087476 

19446 1088976 855624 

5053 323392 247597 

Total 82770 3867608 3149617 

Additional 18.6% 
savings 

9 72 72 

160 2560 2400 

1295 31080 28490 

2802 89664 78456 

4671 186840 158814 

5920 284160 230880 

4567 255752 200948 

1468 93952 71932 

20892 944080 771992 

18.2% 

tionary. I f  the ranks are kept in fast memory, only about 50% of the original Responsa dictionary space is 

needed; about 80% of the NTIS dictionary. More generally, the la t ter  compression figures hold i f  

both the lexforms and the ranks are stored on the same medium; either both in fast memory or both on disk. 

I f  the lexforms are in fast memory and the ranks on disk, we have to augment the ranks with another copy of 

the lexforms. A similar remark applies to the next and last compression results. 

The results of applying phase A, replacing indexes by ranks and using front compression on the 

lexforms and on al l  words of length exceeding 8, are shown in Table 17. Note in part icular, that the ~- 

f i l e  in fast memory occupies only 11% of the Responsa dictionary; 39% of the NTIS dictionary. I f  the ranks 

are also stored in fast memory, there is a saving of 48-63% for the Responsa dictionary; 40-48% for the 

NTIS dictionary. 
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Table 15 Additional savings achieved by replacing indexes by their ranks 

k 

Length of 

word 

Responsa 

NI N 2 N 3 

No. of No. of bits No. of bits 
indexes for indexes for ranks 

5844 52596 23376 

37736 452832 264152 

105870 1588050 1058700 

135588 2440584 1762644 

92793 1948653 1484688 

38830 931920 776600 

NTIS 

N I N2 N 3 

No. o f  No. o f  b i t s  No. o f  b i t s  
indexes for  indexes fo r  ranks 

2767 24903 11068 

4313 51756 30191 

5698 85470 56980 

7295 131310 94835 

7762 163002 124192 

7341 176184 146820 

Total 416661 7414635 5370160 35176 632625 464086 

Additional 27.6% 26.6% 
savings 

Table 16 Savings achieved by phases A and B (word lengths 3-8) 

Original 
dictionary 

Conumbers 

Responsa 

IZI = 32 I~I = 256 

No. of bits Saving No. of bits Saving 

12357725 19772360 

1626514 86 .8% 3149617 84.1% 

5370160 56 .5% 5370160 72.8% 

NTIS 

I=1 = 32 ISI : 256 

NO. o f  b i ts  Saving No. o f  b i t s  Saving 

1054375 1687000 

401336 61.9% 771992 54.2% 

464086 56.0% 464086 72.5% Ranks 

Total 6996674 43 .4% 8519777 56.9% 865422 17 .9% 1236078 26.7% 

Table 17 Overall compression by transforming dictionary words into lexforms with front compression, and 

indexes into ranks 

Lexforms 
and front 

compression 
on lexforms 

Ranks 

Responsa 

ISI = 32 IS 1 : 256 

No. of No. of Saving 
characters Saving characters 

291648 89.0% 

1074032 59.6% 

291648 89.0% 

NTIS 

ISI = 32 Izl  = 256 

No. o f  Saving No. o f  Saving 
characters characters 

171961 61.2% 

58011 86.9% 

171961 61.2% 

671270 74.7% 92818 79.1% 

Total 1365680 48.6% 962918 63.7% 264779 40.3% 229972 48.2% 

We close with some timing data relevant to decoding. The algorithms were written in PL/land run 

on an IBM 370/165 computer. Some programs to compute the basic functions used in decoding such as 

( ~ M ) i / r ] ,  (m) were run for timing purposes. Each program was run 106 times. The times given in 

Table 18 are the result of dividing the total time by 106 . The table indicates that decoding is a fast 

process. 
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Table 18 Timing results 

M/'irl 
for M = i000, M = 109 ; and r = 8, r = 13 

(all four combinations require about same time) 

1.2 x 10-" seconds 

r = 3; m : 103 or m = 109 4.3 x 10 -s seconds 

r = 8; m = 103 or m = 109 1.2 x 10-" seconds 

Computing m+1~ from (m~ I F /  , \  ,/ 
b /m+l"~ m+l [m\ 
Y t, rJ= tr) 3.8 x 10 -6 seconds 
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