
C. L. McCARTY, JR., Editor

Design and Implementation of a
General-Purpose Input Routine

A. HASSITT
University of Cal.((ornia, San Diego, La Jolla, California

(a) I t should read words and symbols in addition to its
prime purpose of reading numbers.

(b) I t should consider the printed appearance of the
input and should at tach the normal meaning which this
appearance implies. For example,

A L P H A = 61.2Y = 56 99

A general-purpose input routine is discussed and advocated
for FORTRAN. The philosophy of such programs is examined
and exemplified.

1. I n t r o d u c t i o n

There are many ways of writing a program to do a par-
ticular job. When the job is not particular but has some
general purpose such as "read da ta" or "translate algebraic
formulas" or "read control word" or "read next input ,"
then there are many ways of even starting to think about
writing the program. In such a situation, the first approach
is to give a more exact description of what is to be done.
This paper is concernedwiththe problem of getting dataand
control information into computers. I t is assumed that the
datum is in manuscript form and was not a product of some
previous computer operations. Currently available routines
either make the data suffer or they make the user suffer.
For example, the format-free read statement in the Oak
Ridge ALGOL Compiler [3] restricts the data to numeric,
whereas the formatted input in the same compiler [31
or in FORTRAN [8] places an unnecessary burden both on
the originator of the data and on the programmer.

Section 2 describes the design criteria of an input routine
that is easy to use, tha t reads all types of data and control
information, and that reads correctly anything that can
be read by the human eye. Section 3 gives a user's descrip-
tion- of a FORTRAN implementation of such a routine.
Foliowing sections describe some uses of the routine and
finally, there is a description of the routine itself. The
input routine is written in the CDC FORTRAN-63 language
[4], but since the syntax is expressed in the form of a
decision matrix, the routine is easy to understand, and
could be copied :into any other compiler language. The
only difficulty of copying t h e routine into ALGOL [3] or
IBM FORTRAN [8] is tha t these languages lack some of the
features of FORTRAN-63.

2. D e s i g n Cri ter ia

A general-purpose input routine should satisfy the fol-
lowing criteria.

can be read by eye as word ALPHA, symbol = , number
61.2, word Y, symbol = , number 56, number 99. The
input routine should not insist on a space between the
A and the = or the = and. the 6 or the 2 and the Y,
but if these spaces exist, then they should have no effect.
For example,

ALPHA = 61.2 Y = 56 99

has the same meaning as the previohs example.
(c) The routine should 'be basic. For example, the

routine LIST (see Sec. 4 and [1]) has many uses, but if a
good basic routine is available then the average pro-
grammer can easily write his own LIST routine.

(d) The routine should be easy to use by the inexpert
programmer and powerful enough for most of the needs of
the expert.

The routine which is described later has the following
incidental virtues. -~, ,

(e) I t can be used on character-by-character (paper
tape) or unit-record (card, magnetic tape) input devices.

(f) I t is easy to modify. For example, one could easily
change from the FORTRAN notation 12.3E4 to a notation
like 12.3,4 or even 12.3+4.

The importance of rule (b~ cannot be overemphasized.
Sight verification of data is used to check not only key-
punching [7] but also the data. If the data input to a
program is well designed then a number of sources of
error are eliminated. I t is a curious fact tha t the FORTRAN
compiler ignores blanks in statements, so that

DO 100I = 1,6

can be punched as

DO100I = 1,6

without causing any trouble, but the same sort of reason-
able change to FORTRAN" data :'ivould usually cause chaos.
Input routines for paper tape input [2, 10] Usually follow
rule (b) but ignore the problem of nonnumeric data or
control information. Purely numeric d a t u m is quite ade-
quate for small programs, b u t in programs with e0rnplex

350 Communications of the ACM Volume 7 / Number 6;/ June, 1964

http://crossmark.crossref.org/dialog/?doi=10.1145%2F512274.512286&domain=pdf&date_stamp=1964-06-01

data requirements, the data presentation must be well
designed and this requires the use of mnemonic words.

3. F O R T R A N R o u t i n e

The following routine is the FORTRAN-63 language on
the CDC 1604 computer. A similar routine could be used
in any FORTRAN or ALGOL system. In the description,
a reference is made to card input. The routine normally
operates on card images from a magnetic tape; as will be
seen, the routine is virtually independent of the input
medium and indeed it could operate on a string of charac-
ters held in core store.

The routine has two main entry points. Assume for the
moment that the cards contain only numeric data. CALL
R D N U M (X) reads the next number from the input stream,
converts it to floating-point binary form and puts it in X.
CALL R D I N T (I) reads the next number, converts it to a
binary integer and puts it in I. The numbers may be
punched anywhere on the card. A number is of the form

bb. • • b ~ d d . • • d.dd. • • dEbb. • - b ± d d . • .dx

where

b b - . . b = none, one or more blanks
d d . . . d = none, one or more digits

± = + or - or may be omitted
= decimal point or may be omitted.

The sequence d d . . . d . d d . - - d must contain at least one
digit.

E denotes exponent with base 10. If E occurs it must
follow the fractional part immediately with no interven-
ing spaces. This rule is unfortunate but necessary as
the whole exponent sequence E b b . . . b i d d . . . d may be
omitted.

x denotes the terminating character which is usually a
blank but could be: (1) a letter, (2) a special character
($, = , etc.), (3) a second appearance of the character
" ." or character E, or (4) a + or -- sign following a
digit. If a number has been started then the end of a card
acts as a terminating character. The end of a card is ignored
(a new card is read in) if only blanks have appeared so
far. A typical porton of a program might be

CALL R D I N T (I)
DO 1 J = 1,I

1 CALL R D N U M (X (J))

which might operate on data such as

9 1.234 --0.16E 2 0.1 54 123456789123456789
0 --9 56E3 21.26

Notice that 0 or 0. or .0 or 0.0 (but not .) can be written
and that 54 or 54. or 54.0 or .54E2 or .54E 2 (but not
.54 E2) can be written.

This routine will also read words and special characters.
A word is of the form

bb- • -b an. • .ax
where

bb. • .b = none, one or more blanks

a n - . . a = one or more of the alphabetic characters
A,B,C, ..., Z. If there are more than eight characters
the ninth and subsequent characters are ignored.

x = any nonalphabetic characters.
A special character is none, one or more blank characters
followed by $ o r , or / or * or = o r . or (or). Suppose the
input card contains

then

ALPHA=61 .2E3 C2 E5

DO 1 J = 1,7
1 CALL R D N U M (X(J))

would set X(1) = 5HALPHA, X(2) = 1 H = , X(3) =
61.2E3, X(4) = 1HC, X(5) = 2.0, X(6) = 1HE and
x (7) = 5.0.

In many contexts it is important to know whether the
quanti ty just read is a number, a word or a special charac-
ter. The routine has an alternative entry point .

CALL R D T Y P E (K)

sets K = +1 , 0, --1 depending on whether the last
quanti ty read was a number, a special character or a
word. Thus,

DO 1 J = 1 , 7
CALL R D N U M (X(J))

1 CALL R D T Y P E (L(J))

operating on the data given above would set X(1) =
5HALPHA, etc., and L(1) = - 1 , L(2) = 0, L(3) =
+ 1 and so on. Notice that in the above example the space
separating 2 and E is taken to mean that E is a word and
not an exponent indicator.

4. Order I n d e p e n d e n t I n p u t

Bailey, Barnett and Futerelle [11 have described some of
the advantages of arranging the input data so that they
are independent of the order on the cards. They give a
routine called LIST which is useful for this purpose. There
are a number of possible routines of this sort and [1]
describes some of these possibilities. I t would be impossible
to provide a LIST routine ' to suit every possible use but
we can show that it is a simple matter to write such
routines, provi~ting a good basic input routine is available.
The following routine is similar to, but not identical v#ith,
the LIST routine by Bailey. We have had to avoid' the
difficulty (in a rout inepure ly in FORTRAN) of having an
unspecified number of arguments.

LIST can best be described by considering the follow-
ing example:

D I M E N S I O N L(4),X(4)
DATA (L= 1HB,3HXYZ,1HP,5HALPHA)
E Q U I V A L E N C E (X(1),B), (X(2),XYZ), (X(3),P),

(X(4),ALPHA)
CALL LIST (L,X,4)

LIST will read cards that contain data such as

ALPHA=6.2 P=9 B=6 STOP

Volume 7 / Number 6 / June, 1964 Communications of the ACM 351

I t will recognize words which were named in the L-vector
and store the mlmbers which follow in the appropriate
place in the X-vector. LIST will terminate when it en-
counters an unrecognized word

S U B R O U T I N E LIST (L,X,N)
D I M E N S I O N L(100), X(100)

3 CALL R D N U M (I) $ DO 1 J = 1,N
IF (L(J)-I) 1,2

1 CONTINUE $ RETURN
2 CALL RDNUM(I) $ CALL RDNUM (X(J))

GO TO 3 $ END

For this example, we have used that fact that CDC FOR-
TRAN-63 allows several FORTRAN statements on one line
providing they are separated by the $ symbol.

We could go on to refine this subroutine. For example,
the equality sign can be made optional by replacing state-
ment 2 by

2 CALL R D N U M (X (J)) $ CALL R D T Y P E (I)
IF (I) 2,2,3

or parenthetic comments can be allowed if such comments
were surrounded by opening and closing brackets. To do
this replace statement 3 by :

3 CALL RDNUM(1) $ IF(I--IH0 10,11
11 CALL RDNUM(I) $ IF (I--iH)) 11,10
I0 DO 1 J= i,N

It is also possible to allow the use of brackets within
brackets.

In reading a string of characters there is one case in
which there are two possible interpretations. Consider
the string ALPHA99 = 56.2 the first 6 characters can
be read as: (i) word ALPHA, number 99, or (2) word
ALPHA99. The routine RDNUM usually gives the first
interpretation. It can be made to give the second inter-
pretation by CALL RDMODE(2). This mode of inter-
pretation stays set permanently but the mode of interpreta-
tion can be reset by CALL RDMODE(1).

5. I n p u t o f S i m u l t a n e o u s E q u a t i o n s

Suppose we have a routine which will solve a set of
linear simultaneous equations; for example, we might
wish to solve

X1 + 3.2X2 - X3 = 4.5
19Xl + 21.2X3 = 0

6X2 + 3X3 = 7

I t would be convenient and conducive to accuracy if the
input could take precisely this form. Notice that (a) it
should not be necessary to specify elements with zero
coefficients; (b) X1, + X 1 and - X 1 should have their
usual interpretation; it should not be necessary to write
1.0X1, + 1.0X1, or - 1.0X1 ; (c) it should not be necessary
to specify the number of equations explicitly. The follow-
ing routine will read such input, it will put the coefficients
in array A and the right-hand sides in vector R.

D I M E N S I O N L(3), A(10,10), R(10)
DATA (L= 1 H + , 1 H - , 1 H =)
DO 1 I = 1 , 1 0 5 D 0 1 J = 1,10

1 A(I,J) = 0.0 $ J = 1 $ NEQ = 1
7 CALL R D N U M (W) $ CALL R D T Y P E (I)

IF(I) 2,3,4
4 CALL R D N U M (B) $ CALL R D T Y P E (I) $ IF

(I) 5,6,6
2 W = 1.0
5 CALL R D I N T (I)
8 A(J,I) = W $ N E Q = X M A X O (N E Q , I)

GO TO 7
3 I = I N D E X (W , L , 3) $ GO TO (11,12,13,6), I

11 W = 1 . 0 $ GO TO 4
12 W = - 1.0 $ GO TO 4
13 CALL R D N U M (R (J)) $ IF(NEQ.GT.10) 21,22
22 J = J + l $ IF(J .GT.NEQ) 23,7

The normal finishing point is 23. Finishing at s tatement 6
indicates a data error. Finishing at s tatement 21 indicates
tha t an a t tempt is being made to read too many equations.
The subroutine I N D E X sets I = 1, 2, 3 or 4 depending
on whether W = L(1) or L(2) or L(3) or none of them.

F U N C T I O N IN D EX (I ,L ,N)
D I M E N S I O N L(10) $ DO 1 J = 1,N $ I F (I - - L (J))

1,2
1 C O N T I N U E $ J = N + i
2 I N D E X = J $ E N D

This routine is similar to a sequence in the LIST routine.
I t is obvious tha t writing this sort of sequence of

FORTRAN statement takes longer than the simple

READ I, ((A(K,J),J = 1,I) ,R(K),K = 1,I)

but the gain in terms of accuracy and efficiency of data
input more than compensate for any extra programming.

6. Fur ther C o n s i d e r a t i o n s

Yarborough [13] has discussed two of the advantages of
using alphabetic words with numeric data. First, the
data can be split into convenient blocks, each block headed
by its own code word; second, in a series of problems in
which some blocks are fixed and some vary, the fixed-
data are read in for one problem, then each subsequent
problem is preceded by those parts of the data which
have changed.

One of the most powerful uses of a flexible input routine
is to make it control the operations of the main program.
A routine similar to R D N U M was used in a large reactor
code [5]. The first part of the data to the program specifies
the size and composition of the reactor. Following this
there is a series of control words which determine what the
program will do with these data. Some of the control
words and their meanings are:

F L U X A est imate of the neutron flux is avail-
able from a previous problem; read
this estimate.

352 Communieations, gf the ACM Volume 7 / Number 6 / June, 1964

D U M P Save the results of this problem for
later processing.

T A P E n The next F L U X or D U M P word will
use tape n.

U N L O A D n Unload tape n.
P R I N T n Pr int results of type n.
A L T E R n Read a further series of items to alter

certain parts of the data
E N T E R Do a multigroup diffusion calculation.
N E X T Go on to do the next problem.

A typical control sequence would be:

T A P E 9 F L U X U N L O A D 9 E N T E R
T A P E 10 D U M P A L T E R E N T E R
P R I N T 2 U N L O A D 10 N E X T

Once having begun the process of dynamic control of the
program, one might wish to take certain options depending
on the course of the calculation. This was achieved in the
reactor code by the word C O M P I L E , which was an in-
struction to the code to read in algebraic formulas. These
formulas could process the results obtained so far and
decide on the future course of action.

The routine R D N U M essentially reads one number. I t
is simple, but sometimes tedious, to build a nest of DO's
around the R D N U M statement. There are various ways
of alleviating this situation. Suppose we wish to do the
following:

R E A D ((A(I,J), I=1 ,10) , J = l , 1 0) , X,Y,Z

Then it can be done in various ways: (a) write the neces-
sary coding using R D N U M ; (b) read all the numbers into
a vector array with a simple DO loop, then distribute the
numbers by use of a D E C O D E statement; however, there
are several practical difficulties in trying to do this; (c) the
FORTRAN compiler has a mechanism for sorting out such
read s tatements and it is possible to make use of this
feature. I t is a simple mat te r to alter the FORTRAN read
s ta tement so tha t R E A D FORMAT, LIST calls upon
R D N U M for its numbers; we have done this for FORTRAN
I I [6]. The real solution to this problem is tha t the FORTRAN
compilers should be changed so tha t the input-output list
facility is available for general use. Such generated lists
should also carry with them the mode of the argument.

7 . I n p u t R o u t i n e

The routine can be split into three stages: the scan, the
syntax and the semantics. The scan is a character-by-
character process. Let I be a counter whose value is
initially set to 73. (It has this value before R D N U M is
entered for the first time.) Then on entering the routine
R D N U M , test I and if

I > 72 (a) read a card image into array X, set I = 1,
go to (c).

I = 72 (b) set the current character equal to the
blank character, set I = I + 1, go to
(d).

I < 72 (c) set the current character equal to the i th
character from the array X, set I =
I + 1, go to (d).

(d) the scan for one character is now com-
plete,

In the first phase of the syntactical analysis we divide
characters into one of the following eight categories:

1.] 0 l l [....]9] 5. I A I B ICID I F IGI . . .]ZI
2. J.I 6. IAI
3. I+l-I 7. l S l = l (l) l , l * l / I
4. I EI 8. Illegal characters

where f denotes the space symbol.
The second phase uses the decision-matrix method,

which was suggested in this context by Vasilakos [12].
The decision matrix appears as Table 1.

The routine starts in stage 1; encountering a digit in
stage 1 would set the stage counter to 5, a " . " would set
the stage to 3 and so on. A
next stage to 9. The letters
nating stages.

A = string is
B, C = string is
D, E = string is

digit in stage 7 would set the
A through G represent termi-

illegal
a special character
a number

F, G = string is a word.
For example, A A 1 E A 6 A goes through stages 1, 1, 5, 7,
7, 9, E to indicate tha t a number has been read; l E E goes
through 5, 7, A and is illegal; A E 6 goes through 1, 10, G
to indicate a word (the word " E ") has been read. ~Vith
each exit, there are two possibilities: C, E and G indicate
backspace one character (I = I -- 1) prior to the next
entry to R D N U M ; B, D and F do not backspace. For
example, if the string to be read is A E 6 . 2 A the routine
comes out on a G- type exit and indicates tha t the word
E has been read; the next t ime the routine is entered it
will s tar t scanning at the character 6 and go on to read the
number 6.2.

The semantics are quite straightforward. For example,
in stage 10 we find (see Figure 1):

J = WORD.AND.7700 0000 0000 0000 B
IF(J) 29,28

28 W O R D = WORD*64
W O R D = WORD.OR. CHARAC

29 Go to read next character

T A B L E 1.]DECISION MATRIX FOR THE ROUTINE R D N U M

Type Digit + - - E A . . . Z A Special Illegal
~tage 1 2 3 4 5 6 7 8

1 5 3 2 10 10 1 B A
2 5 4 C C C C C A
3 6 C C C C C C A
4 6 A A A A A A A
5 5 6 E 7 E E E A
6 6 E E 7 E E E A
7 9 A 8 A A 7 A A
8 9 A A A A 8 A A
9 9 E E E E E E A

10 G G G 10 10 G G A

Volume 7 / Number 6 / June, 1964 Communications o f t h e A C M 353

This is s imply building up a word, allowing for the possi-
bility that eight characters have already been read: in-
itially W O R D = 0, finally W O R D = character string
read, assuming that the string is a word. If a number is
being read then the final result is built up in a manner
which is standard in routines of this sort [11]. For example,
if the input string is 12.345E6 then at the end of the scan
there are three registers J, K, L with the values J = 12345,
K = number of decimal places = 3, L = exponent = 6.

SUBROUTINE RDNUMIISITI
TYPE INTEGER STAGE,COLCOUNT,COLMAXtCHARACvCHARIYPE

X,OLDCHAR,RDBYIE ,WORD,TESDC,EXPONENT,DIGITS,ESIGN,SIGN
DIMENSION BUFFER(IO),TYPETABI4),DECISION(12)tXPA(4),XPB(IO),XPC(IO

I }
DATA (CDLCOUNT=7~)tICOLMAX=T3),(PRINFING=I.O),IMASK=77BI,

C USES THE 1604 REPRESENTATION OF 8CO CHARACTERS
X {TYPETA8= O l l l l l i I l l 1 7 3 0 O O B , 6 7 5 5 5 5 5 5 5 5 0 7 7 0 O O B , 3 5 5 5 5 5 5 5 5 5 0 7 7 D O O B ,
X355554555502TOOfBItIOECISION=8H532==IBAt8HSkCCCCCAt8HBCCCCCCA,
XBH6AAAAAAA,BH56ETEEEA,SHBEElEEEA,BHgE8AATAA,8HgEAAABAA,BHgEEEEEEA,
X8HGGG==GGA,BHGGG==GGAt8H=GG==GGA)
X ,(XPA=I.O*I*OEIOO,I.OE2OOtl.OE3OOI,{XPB=I.O,i.OEIO,EoOE
X20, I .OE30, i . OEB(),I.0E5OtlLOEbO,I.OE70~L°OE8Ot|.OEgO)tIXPC =
XIoO,IO°O,IOO°O,iOOO.OiIOOOO*O,IoOES,I.0EB,I.0E7,[.OE8*I-OE9)
EQUIVALENCE { X , I)
FLOAIING=I.O $ GO TO [$ ENTRY RDINI $ FLOATING=O.O

l STAGE=I $ N=DIGITS=EXPONENT=WORO=IESDC=SIGN=ESIGN=O
I t OLDCHAR=CHARAC $ IF (COLCOUNT-COLMAX) 3 , 6 , 2
6 , CHARAC=IR $ GO IO T
2 READ 500* (BUFFER(1),I=I, IO)
SOD FORMATIIOA8)

IF {PRINTING) 4,5
4 PR INT 501, (BUFFERI I) , I= t f lO)
501 FORMAI{XgA8,XA8}
5 COLCOUNT=I
3 CHARAC =RDBYTE (8UFFER,COLCOUNT,B,b~,MASK)
l COLCOUNT=COLCOUNT÷I $ EHARTYPE=ROBYTE (IYPEIAB,CHARAC÷I,I6,H,7)

IF {CHARTYPEI 130,131
131 CHARTYPE=8
13O STAGE=RDBYTE IOECISION(STAGE)tCHARTYPEtBpb4tMASX)

IF {STAGE-It) IO,9,1OO
9 STAGE=tO
IO GO TO (I I ~ 1 2 t l t l l l , I S , I b t l l t 1 8 , 1 9 , 2 0)~STADE
12 IF (CHARAC-IR+) 2 1 , t l
21 SIGN=I $ GO IO I I
15 IF OVERFLOW FAULT 22,22
22 IF (CHARAC -10) 24,23,25
23 CHARAC =0
24 ~I=N+N $ I:=I+I*N$ I=I÷I~CHARAC$ IF OVERFLOW FAULT 25,26
26 N=I $ GO TO I I
25 OIGITS=DIGITS÷I $ GO TO I I
i6 DIGITS=DIGITS-I $ GO TO 15
18 IF ((CHARAC-IR÷)~(CHARAC-IR)) 27,11
27 ESIGN=I $ GO rO l l
19 IF (CHARAC - I 0 } 30,29
29 CHARAC =0
30 EXPONENT =EXPONENT*IO÷CHARAC $ GO TO I I
20 I=WORD.AND.770OOOOOOOOOOOOOB $ IF I l l 11128
28 WORD=BA*WORD $ WORD=WORD.OR.CHARAC $ GO TO I I

C SCAN COMPLETE. PREPARE FOR EXIT
IO0 STAGE=STAGE÷l-IRA SGO TO{ lOl t lO2t lO3t104,105,106,107) , STAGE
lOL I=COLCOUNT-I $ PRINT 502,1, CHARAC $ GO FO 1
502 FORMAT(IgH INPUT ERROR COLUMN 13,11H CHARACTER DE)
103 COLCOUNT=CDLCOUNT-1 $ CHARAC =OLDCHAR
102 ISIT= CHARAC~ IO00OOOOOO000OOB $ ISIT=7R .OR.IS|T
I16 RETURN
105 CDLCOUNT=COLCOUNT-I
104 DIGIIS=DIGITS+{I-ESIGN-ESIGN)*EXPONENT STESOC=ISN=N*II-SIGN-SIGN)
108 IF (FLOATING) 124,109
109 ISIT=N $ IF (DIGIIS} 126 ,114p111
I11 IF OVERFLOW FAULT 112,112
112 DO 120 I=[tDIGITS $ N=ISIT+ISIT $ N=N÷N+ISIT
120 ISIT=N÷N $ IF OVERFLOW FAULT 113,114
113 PRINF 503
503 FORMATIIBH INTEGER TO0 LARGE)

ISIT=3777 7777 7717 7777B $ GO TO I14
126 DIGITS=-DIGIIS $ DO 125 I=I,DIGITS
125 IS IT=ISIT/ [O $ GO TO 114
124 X=N $ K=XABSF(DIGITS) $ JI=K/IO0 $ K=R-[OO*JI

J2=K/lO $ K=K-J2*IO $ Y=XPA[JI+I)*XPBIJ2+I)*XPC(K÷II
IF (DIGITS) I I 5 ,116 , I 17

I I 5 X=X/Y
116 ISIT=I $ GO TO 114
l i t X=X*Y $ GO TO l i b
107 CDLCOUNT=COLEOUNT-1
I06 [ESDC=-i $ ISIT=WORD $1=WORD°AND.77OOOOOOOOOOOOOOB$ IF (I) 114t132
132 WORD=WORDIb4 $ WORD=WORDoOR.IR $ GO TO I06

ENTRY RDIYPE $ ISIT=rESDC $ GO TO 114
ENTRY RDPRINI $ PRINIING=ISIT $ GO TO 114
ENTRY RDMODE $ GO TO (201 ,202) t lS IT

201 OECISIONIIO)=DECISIONIIlI$ GO TO 11~
202 DECISIONIIO)=DECISION(12)$ GO TO 114

END
FUNCTION RDBYTE (I,J,K,KK,MASK)
DIMENSION I (IO)
N = (J - I) / K $ M=K+K*N-J $ I I = I (N + I) $ IF (MI l t l ~ 2

2 NN=I $ DO 3 N=I,M
3 NN=NN*KK $ I I = I I I N N
I RDBYTE =IT.AND.MASK $ END

CARD TOTAL = 94

FIG. 1

All that remains to be done is to change J to floating point
and multiply it by 1000.

The decision-matrix is stored within the routine
R D N U M by the following FORTRAN-63 data statement:

D I M E N S I O N D E C I S I O N (10)
D A T A (D E C I S I O N = 8 H 5 3 2 = = 1BA, 8 H 5 4 C C C C C A ,

..., 8 H G G G = = GGA)

That is, the matrix is represented by a table of B C D
characters and the symbol 10, which has no BCD equiva-
lent, is represented by = . Suppose we are in stage J and
encounter a character of type K; then the new stage is
specified by the kth character in the table entry DE-
CISION(J). The table as it is given here would read the
string ALPHA99 as word ALPHA, followed by number
99. We can change this interpretation by

DECISION(10) = 8H = GG = = GGA

ALPHA99 will now be read as word ALPHA99. The in-
struction DECISION(10) = 8HGGG = = GGA would re-
store the original interpretation.

8. C o n c l u s i o n

It is a wel l -known fact that data errors caused by human
fallibility are responsible for wasting an appreciable
amount of computer time. The standard FORTRAN input
routine will sometimes take datum that "looks reasonable"
and interpret it in a way that is reasonable but unfortu-
nate. It is possible to design a routine which both is easy
to use and powerful, yet which interprets reasonable-
looking data in the desired way.

Acknowledgment. An IBM 704 routine which had some
of the features described here was written by the author
while working for the United Kingdom Atomic Energy
Authority at Risley. This routine was not published as a
separate item but was distributed as part of a larger
program [5]. Mitchell [9] revised and added to the routine
in preparing the 7090 FORTRAN version at Risley. These
earlier versions were written in machine language (FAP)
and did not use the decision tables method. The final C D C
FORTRAN-63 version reported here and the work leading
to it was supported by Contract No. AT GEN-10(l l -1)
Project Agreement 9.

RECEIVED MARCH, 1964

REFERENCES

1. BAILEY, M . J . , BARNETT, M . P . , AND FUTERELLE, R . P .

Format-free input in FORTRAN. Comm. ACM, 6, 10 (Oct.
1963), 605-608.

2. BnOOKER, R.A. Mercury autocode. Ann. Rev. Autom. Pro-
gramming, 1 (1960), 93.

3. BUMGARNER, L.L. The Oak Ridge ALGOL compiler for the
CDC 1604--preliminary programmers manual. CDC List No.
SPD-02, Control Data Corp., Minneapolis, 1963.

4. CDC FORTRAN-63 Reference Manual. CDC 1604/1604A
Computer, CDC List No. 527, Control Data Corp., Min-
neapolis, 1963.

5. ItASSZTT, A. A computer program to solve the multigroup
diffusion equations. TRG Report No. 229(R), UKAEA,
Risley, 1962.

354 Communications of the ACM Volume 7 / Number 6 / June,r1964

6. - - . Format free input using the FORTRAN list statement.
SHARE Distribution No. 1473, 1963.

7. HEINBERG, G. M., AND GRESSET, G . L . An experiment in the
automatic verification of programs. Comm. ACM. 6, 10 (Oct.
1963), 610.

8. IBM 7090/7694 Programming Systems. In Fortran IV
Language, IBM List No. C28-6274-1, 1963.

9. MITCHELL, M. g. Flexible Decimal and Alphabetic Input
Routine for FORTRAN II. SHARE Distribution No. 1469,
1963.

10. FYM, J., AND FINDLAY, G. :K. The ELLIOT 803 autocode
mark 2. Ann. Rev. Autom. Programming, I I (1961), 77.

11. RAMSHAW, W. B., Input Routine. SHARE Distribution No.
1025, 1961. (An earlier version of this routine dates back to
1955.)

12. VASlLA~OS, G.J. A decision matrix as the basis for a simple
data input routine. Comm. ACM, 5, 12 (Dec. 1962), 599.

13. YAnBOROUGH, L.D. Input data organization in FORTRAN.
Comm. ACM, 5, 10 (Oct. 1962), 508.

Reducing Truncation
Programming
J a c k M. WOLFE
Broolclyn College, Brooklyn, New York

Errors by

In accumulating a sum such as in a numerical integration with
a large number of intervals, the sum itself becomes much larger
than the individual addends. This may produce a less accurate
sum as the number of intervals is increased.

Separate variables can be established as accumulators to
hold partial sums within various distinct intervals. Thus, the ex-
tensive successive truncations are eliminated.

When accunmlating a sum such as would be involved
in performing a numerical integration with a large number
of intervals, the sum itself becomes much larger than the
individual addends. Consequently, because of the shifting
to line up the decimal points, there is a loss of significant
digits from the right-hand end of the addends. As the
sum grows increasingly larger, the res.ulting truncation
for the remaining addends becomes more extensive. Thus
an increase in the number of intervals beyond a certain
point produces results that are actually less accurate
rather than more accurate.

By a simple programming technique this error can be
reduced significantly. Separate variables can be established
as accumulators to hold the sums that are i n various in-
tervals. For example, $1 can be used to hold sums from
1 to 9.9999999; $2 can be used to hold sums from 10 to
99.999999; $3 for sums from 100 to 999.99999;etc. The
summing is done in the lowest level accumulator until it is
about to overflow. At that point the sum is added to the
next higher accumulator, and it is then initialized to the
value of the number that was to have been added to it.
The successive accumulators are treated similarly in chain
fashion. By this technique the successive and progressively
more serious truncations that result from the usual pro-
cedure of accumulating the sum are eliminated.

Figure 1 shows a portion of a flowchart that illustrates
the principle of these special accumulators. The illus-
tration refers to the area under the curve Y = f (X) in the
interval from X = A to X = B, calculated by means of
the trapezoid rule using N-intervals. In this illustration it
is assumed that .1 N Y < 10. Thfis we shall use S1, the
lowest level accumulator, to hold sums up to .99999999.
$2 will then be used to hold sums from ,1.0000000 to

9.9999999; S3 for sums from 10.000000 to 99.999999; $4
for sums from 100.00000 to 999.99999; etc. As many of
these accumulators should be established as may be needed
to hold the largest sum possible, which may often be es-
timated easily if one knows the largest number of inter-
vals that he intends to employ in the calculations and an
approximate value of the average Y or even of the maxi-
nmm Y. In the flowchart shown in Figure 1 it is assumed
for illustrative purposes that the total sum will not exceed
999.99999. To allow for a possibly larger total stun, $5
can be established to hold sums from 1000 to 9999.9999.
The flowchart can be extended in similar fashion but its
basic logic would be the same as in the illustration.

I t should be noted that the stepping up of X, indicated
in the flowchart at connector 5, must not be performed by
simply adding H to X. For if H were very small compared
with X, the same kind of truncation errors would appear
in this sum as in the sum of the Y values. Thus if X were
stepped up by use of the statement X = X + H, it would
be necessary to set up a set of special accumulators for this
summing in addition to the set of special accumulators
for the summing of the Y values. These special accumu-
lators can be avoided in the stepping up of X, however,
by taking advantage of the fact that X is always being
incremented by the same amount, H. Thus we may use
the statements

X = A + C * H

C = C . - k l

to step up X. The value of C would have been initialized
as 2 prior to entering the main loop where Y is calculated.

As an illustrative application of these principles the
area under the line Y = .55555550 in the interval from 0
to 1 was calculated using various numbers from 10 to 9000
as the number of intervals. In this calculation S1 was
used to hold sums up to 9.9999999. Since the largest total
sum is 9000 times the Y-value, the highest level accumu-
lator must accommodate a number with four significant
digits to the left of the decimal point. Thus the accumu-
lators were set as follows: $2 for sums from 10.000000 to
99.999999; $3 for sums from 100.00000 to 999.99999; and
$4 for sums from 1000.0000 to 9999.9999. The errors in
the area found using these special accumulators are shown
in Table 1 along with the corresponding errors found using
the usual method of obtaining a sum by establishing a
single variable to hold the total sum.

V o l u m e 7 / Number 6 / J u n e , 1964 C o m m u n i c a t i o n s o f t h e ACM 355

