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(a) I t  should read words and symbols in addition to its 
prime purpose of reading numbers. 

(b) I t  should consider the printed appearance of the 
input and should at tach the normal meaning which this 
appearance implies. For example, 

A L P H A =  61.2Y = 56 99 

A general-purpose input routine is discussed and advocated 
for FORTRAN. The philosophy of such programs is examined 
and exemplified. 

1. I n t r o d u c t i o n  

There are many  ways of writing a program to do a par- 
ticular job. When the job is not particular but  has some 
general purpose such as "read da ta"  or "translate algebraic 
formulas" or "read control word" or "read next input ,"  
then there are many ways of even starting to think about  
writing the program. In such a situation, the first approach 
is to give a more exact description of what is to be done. 
This paper is concernedwiththe problem of getting dataand 
control information into computers. I t  is assumed that  the 
datum is in manuscript form and was not a product  of some 
previous computer operations. Currently available routines 
either make the data suffer or they make the user suffer. 
For  example, the format-free read statement in the Oak 
Ridge ALGOL Compiler [3] restricts the data to numeric, 
whereas the formatted input in the same compiler [31 
or in FORTRAN [8] places an unnecessary burden both on 
the originator of the data and on the programmer. 

Section 2 describes the design criteria of an input routine 
that  is easy to use, tha t  reads all types of data and control 
information, and that  reads correctly anything that  can 
be read by the human eye. Section 3 gives a user's descrip- 
tion- of a FORTRAN implementation of such a routine. 
Foliowing sections describe some uses of the routine and 
finally, there  is a description of the routine itself. The 
input routine is written in the CDC FORTRAN-63 language 
[4], but  since the syntax is expressed in the form of a 
decision matrix, the routine is easy to understand, and 
could be copied :into any other compiler language. The 
only difficulty of copying t h e  routine into ALGOL [3] or 
IBM FORTRAN [8] is tha t  these languages lack some of the 
features of FORTRAN-63. 

2. D e s i g n  Cri ter ia  

A general-purpose input routine should satisfy the fol- 
lowing criteria. 

can be read by eye as word ALPHA, symbol = ,  number 
61.2, word Y, symbol = ,  number 56, number 99. The 
input routine should not insist on a space between the 
A and the = or  the = and. the 6 or the 2 and the Y, 
but  if these spaces exist, then they should have no effect. 
For example, 

ALPHA = 61.2 Y = 56 99 

has the same meaning as the previohs example. 
(c) The routine should 'be basic. For example, the 

routine LIST (see Sec. 4 and [1]) has many uses, but  if a 
good basic routine is available then the average pro- 
grammer can easily write his own LIST routine. 

(d) The routine should be easy to use by the inexpert 
programmer and powerful enough for most of the needs of 
the expert. 

The routine which  is described later has the following 
incidental virtues. -~, , 

(e) I t  can be used on character-by-character (paper 
tape) or unit-record (card, magnetic tape) input devices. 

(f) I t  is easy to modify. For example, one could easily 
change from the FORTRAN notation 12.3E4 to a notation 
like 12.3,4 or even 12.3+4. 

The importance of rule (b~ cannot be overemphasized. 
Sight verification of data is used to check not only key- 
punching [7] but  also the data. If the data input to a 
program is well designed then a number of sources of 
error are eliminated. I t  is a curious fact tha t  the FORTRAN 
compiler ignores blanks in statements, so that  

DO 100I  = 1,6 

can be punched as 

DO100I = 1,6 

without causing any trouble, but  the same sort of reason- 
able change to FORTRAN" data :'ivould usually cause chaos. 
Input  routines for paper tape input [2, 10] Usually follow 
rule (b) but  ignore the problem of nonnumeric data or 
control information. Purely numeric d a t u m  is quite ade- 
quate for small programs, b u t  in programs with e0rnplex 
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data requirements, the data presentation must be well 
designed and this requires the use of mnemonic words. 

3. F O R T R A N  R o u t i n e  

The following routine is the FORTRAN-63 language on 
the CDC 1604 computer. A similar routine could be used 
in any FORTRAN or ALGOL system. In  the description, 
a reference is made to card input. The routine normally 
operates on card images from a magnetic tape; as will be 
seen, the routine is virtually independent of the input 
medium and indeed it could operate on a string of charac- 
ters held in core store. 

The routine has two main entry points. Assume for the 
moment that  the cards contain only numeric data. CALL 
R D N U M  (X) reads the next number from the input stream, 
converts it to floating-point binary form and puts it in X. 
CALL R D I N T ( I )  reads the next number, converts it to a 
binary integer and puts it in I. The numbers may be 
punched anywhere on the card. A number is of the form 

bb. • • b ~ d d .  • • d.dd. • • dEbb.  • - b ± d d .  • .dx 

where 

b b - . . b  = none, one or more blanks 
d d . . . d  = none, one or more digits 

± = + or - or may be omitted 
= decimal point or may be omitted. 

The sequence d d . . . d . d d . - - d  must contain at least one 
digit. 

E denotes exponent with base 10. If  E occurs it must  
follow the fractional part  immediately with no interven- 
ing spaces. This rule is unfortunate but necessary as 
the whole exponent sequence E b b . . . b i d d . . . d  may be 
omitted. 

x denotes the terminating character which is usually a 
blank but could be: (1) a letter, (2) a special character 
($, = ,  etc.), (3) a second appearance of the character 
" ."  or character E, or (4) a + or -- sign following a 
digit. If  a number has been started then the end of a card 
acts as a terminating character. The end of a card is ignored 
(a new card is read in) if only blanks have appeared so 
far. A typical porton of a program might be 

CALL R D I N T ( I )  
DO 1 J = 1,I 

1 CALL R D N U M ( X ( J ) )  

which might operate on data such as 

9 1.234 --0.16E 2 0.1 54 123456789123456789 
0 --9 56E3 21.26 

Notice that  0 or 0. or .0 or 0.0 (but not .) can be written 
and that  54 or 54. or 54.0 or .54E2 or .54E 2 (but not 
.54 E2) can be written. 

This routine will also read words and special characters. 
A word is of the form 

bb- • -b an. • .ax 
where 

bb. • .b = none, one or more blanks 

a n - . . a  = one or more of the alphabetic characters 
A,B,C, ..., Z. If  there are more than eight characters 
the ninth and subsequent characters are ignored. 

x = any nonalphabetic characters. 
A special character is none, one or more blank characters 
followed by $ o r ,  or / or * or = o r .  or ( or ). Suppose the 
input card contains 

then 

ALPHA=61 .2E3  C2 E5 

DO 1 J =  1,7 
1 CALL R D N U M  (X(J)) 

would set X(1) = 5HALPHA,  X(2) = 1 H = ,  X(3) = 
61.2E3, X(4) = 1HC, X(5) = 2.0, X(6) = 1HE and 
x ( 7 )  = 5.0. 

In  many contexts it is important  to know whether the 
quanti ty just read is a number, a word or a special charac- 
ter. The routine has an alternative entry point .  

CALL R D T Y P E ( K )  

sets K = +1 ,  0, --1 depending on whether the last 
quanti ty read was a number, a special character or a 
word. Thus, 

DO 1 J = 1 , 7  
CALL R D N U M  (X(J)) 

1 CALL R D T Y P E  (L(J)) 

operating on the data given above would set X(1) = 
5HALPHA,  etc., and L(1) = - 1 ,  L(2) = 0, L(3) = 
+ 1 and so on. Notice that  in the above example the space 
separating 2 and E is taken to mean that  E is a word and 
not an exponent indicator. 

4. Order I n d e p e n d e n t  I n p u t  

Bailey, Barnett  and Futerelle [11 have described some of 
the advantages of arranging the input data so that  they 
are independent of the order on the cards. They give a 
routine called LIST which is useful for this purpose. There 
are a number of possible routines of this sort and [1] 
describes some of these possibilities. I t  would be impossible 
to provide a LIST routine ' to suit every possible use but 
we can show that  it is a simple matter  to write such 
routines, provi~ting a good basic input routine is available. 
The following routine is similar to, but  not identical v#ith, 
the LIST routine by Bailey. We have had to avoid' the 
difficulty (in a rout inepure ly  in FORTRAN) of having an 
unspecified number of arguments. 

LIST can best be described by considering the follow- 
ing example: 

D I M E N S I O N  L(4),X(4) 
DATA (L=  1HB,3HXYZ,1HP,5HALPHA) 
E Q U I V A L E N C E  (X(1),B), (X(2),XYZ), (X(3),P), 

(X(4),ALPHA) 
CALL LIST (L,X,4) 

LIST will read cards that contain data such as 

ALPHA=6.2 P=9 B=6 STOP 
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I t  will recognize words which were named in the L-vector 
and store the mlmbers which follow in the appropriate 
place in the X-vector. LIST will terminate when it en- 
counters an unrecognized word 

S U B R O U T I N E  LIST (L,X,N) 
D I M E N S I O N  L(100), X(100) 

3 CALL R D N U M ( I )  $ DO 1 J =  1,N 
IF (L(J)-I) 1,2 

1 CONTINUE $ RETURN 
2 CALL RDNUM(I) $ CALL RDNUM (X(J)) 

GO TO 3 $ END 

For this example, we have used that fact that CDC FOR- 
TRAN-63 allows several FORTRAN statements on one line 
providing they are separated by  the $ symbol. 

We could go on to refine this subroutine. For  example, 
the equality sign can be made optional by replacing state- 
ment  2 by 

2 CALL R D N U M ( X ( J ) )  $ CALL R D T Y P E ( I )  
IF  (I) 2,2,3 

or parenthetic comments can be allowed if such comments 
were surrounded by opening and closing brackets. To do 
this replace statement 3 by : 

3 CALL RDNUM(1) $ IF(I--IH0 10,11 
11 CALL RDNUM(I) $ IF (I--iH)) 11,10 
I0 DO 1 J= i,N 

It is also possible to allow the use of brackets within 
brackets. 

In reading a string of characters there is one case in 
which there are two possible interpretations. Consider 
the string ALPHA99 = 56.2 the first 6 characters can 
be read as: (i) word ALPHA, number 99, or (2) word 
ALPHA99. The routine RDNUM usually gives the first 
interpretation. It can be made to give the second inter- 
pretation by CALL RDMODE(2). This mode of inter- 
pretation stays set permanently but the mode of interpreta- 
tion can be reset by CALL RDMODE(1). 

5. I n p u t  o f  S i m u l t a n e o u s  E q u a t i o n s  

Suppose we have a routine which will solve a set of 
linear simultaneous equations; for example, we might 
wish to solve 

X1 + 3.2X2 - X3 = 4.5 
19Xl + 21.2X3 = 0 

6X2 + 3X3 = 7 

I t  would be convenient and conducive to accuracy if the 
input could take precisely this form. Notice that  (a) it 
should not be necessary to specify elements with zero 
coefficients; (b) X1, + X 1  and - X 1  should have their 
usual interpretation; it should not be necessary to write 
1.0X1, + 1.0X1, or - 1.0X1 ; (c) it should not be necessary 
to specify the number of equations explicitly. The follow- 
ing routine will read such input, it will put  the coefficients 
in array A and the right-hand sides in vector R. 

D I M E N S I O N  L(3), A(10,10), R(10) 
DATA (L=  1 H + ,  1 H - ,  1 H = )  
DO 1 I  = 1 , 1 0 5 D 0 1 J  = 1,10 

1 A(I,J) = 0.0 $ J = 1 $ NEQ = 1 
7 CALL R D N U M ( W ) $  CALL R D T Y P E ( I )  

IF( I )  2,3,4 
4 CALL R D N U M ( B )  $ CALL R D T Y P E ( I )  $ IF  

(I) 5,6,6 
2 W =  1.0 
5 CALL R D I N T ( I )  
8 A(J,I) = W  $ N E Q = X M A X O ( N E Q , I )  

GO TO 7 
3 I = I N D E X ( W , L , 3 )  $ GO TO (11,12,13,6), I 

11 W = 1 . 0  $ GO TO 4 
12 W = - 1.0 $ GO TO 4 
13 CALL R D N U M ( R ( J ) )  $ IF(NEQ.GT.10)  21,22 
22 J = J + l  $ IF(J .GT.NEQ)  23,7 

The normal finishing point is 23. Finishing at  s tatement  6 
indicates a data error. Finishing at s tatement  21 indicates 
tha t  an a t tempt  is being made to read too many equations. 
The subroutine I N D E X  sets I = 1, 2, 3 or 4 depending 
on whether W = L(1) or L(2) or L(3) or none of them. 

F U N C T I O N  IN D EX (I ,L ,N )  
D I M E N S I O N  L(10) $ DO 1 J =  1,N $ I F ( I - - L ( J ) )  

1,2 
1 C O N T I N U E  $ J = N + i  
2 I N D E X  = J $ E N D  

This routine is similar to a sequence in the LIST routine. 
I t  is obvious tha t  writing this sort of sequence of 

FORTRAN statement takes longer than the simple 

READ I, ((A(K,J),J = 1,I) ,R(K),K = 1,I) 

but  the gain in terms of accuracy and efficiency of data  
input more than compensate for any extra programming. 

6. Fur ther  C o n s i d e r a t i o n s  

Yarborough [13] has discussed two of the advantages of 
using alphabetic words with numeric data. First, the 
data can be split into convenient blocks, each block headed 
by its own code word; second, in a series of problems in 
which some blocks are fixed and some vary, the fixed- 
data are read in for one problem, then each subsequent 
problem is preceded by  those parts of the data  which 
have changed. 

One of the most powerful uses of a flexible input routine 
is to make it control the operations of the main program. 
A routine similar to R D N U M  was used in a large reactor 
code [5]. The first part  of the data to the program specifies 
the size and composition of the reactor. Following this 
there is a series of control words which determine what the 
program will do with these data. Some of the control 
words and their meanings are: 

F L U X  A est imate of the neutron flux is avail- 
able from a previous problem; read 
this estimate. 
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D U M P  Save the results of this problem for 
later processing. 

T A P E  n The next F L U X  or D U M P  word will 
use tape n. 

U N L O A D  n Unload tape n. 
P R I N T  n Pr int  results of type n. 
A L T E R  n Read a further series of items to alter 

certain parts  of the data 
E N T E R  Do a multigroup diffusion calculation. 
N E X T  Go on to do the next problem. 

A typical control sequence would be: 

T A P E  9 F L U X  U N L O A D  9 E N T E R  
T A P E  10 D U M P  A L T E R  ...... E N T E R  
P R I N T  2 U N L O A D  10 N E X T  

Once having begun the process of dynamic control of the 
program, one might  wish to take certain options depending 
on the course of the calculation. This was achieved in the 
reactor code by  the word C O M P I L E ,  which was an in- 
struction to the code to read in algebraic formulas. These 
formulas could process the results obtained so far and 
decide on the future course of action. 

The routine R D N U M  essentially reads one number. I t  
is simple, but  sometimes tedious, to build a nest of DO's  
around the R D N U M  statement.  There are various ways 
of alleviating this situation. Suppose we wish to do the 
following: 

R E A D  ((A(I,J),  I=1 ,10) ,  J = l , 1 0 ) ,  X,Y,Z 

Then it can be done in various ways: (a) write the neces- 
sary coding using R D N U M ;  (b) read all the numbers into 
a vector array with a simple DO loop, then distribute the 
numbers by use of a D E C O D E  statement;  however, there 
are several practical difficulties in trying to do this; (c) the 
FORTRAN compiler has a mechanism for sorting out such 
read s tatements  and it is possible to make use of this 
feature. I t  is a simple mat te r  to alter the FORTRAN read 
s ta tement  so tha t  R E A D  FORMAT,  LIST calls upon 
R D N U M  for its numbers;  we have done this for FORTRAN 
I I  [6]. The real solution to this problem is tha t  the FORTRAN 
compilers should be changed so tha t  the input-output  list 
facility is available for general use. Such generated lists 
should also carry with them the mode of the argument.  

7 .  I n p u t  R o u t i n e  

The routine can be split into three stages: the scan, the 
syntax and the semantics. The scan is a character-by- 
character process. Let  I be a counter whose value is 
initially set to 73. (It  has this value before R D N U M  is 
entered for the first time.) Then on entering the routine 
R D N U M ,  test  I and if 

I > 72 (a) read a card image into array X, set I = 1, 
go to (c). 

I = 72 (b) set the current character equal to the 
blank character, set I = I + 1, go to 
(d). 

I < 72 (c) set the current character equal to the i th 
character from the array X, set I = 
I + 1, go to (d). 

(d) the scan for one character is now com- 
plete, 

In  the first phase of the syntactical analysis we divide 
characters into one of the following eight categories: 

1. ] 0 l l [  .... ]9] 5. I A I B  ICID I F  IGI . . . ]ZI  
2. J.I 6. IAI 
3. I+l-I 7. l S l = l ( l ) l , l * l / I  
4. I EI 8. Illegal characters 

where f denotes the space symbol. 
The second phase uses the decision-matrix method, 

which was suggested in this context by  Vasilakos [12]. 
The decision matrix appears as Table 1. 

The routine starts in stage 1; encountering a digit in 
stage 1 would set the stage counter to 5, a " . "  would set 
the stage to 3 and so on. A 
next stage to 9. The letters 
nating stages. 

A = string is 
B, C = string is 
D, E = string is 

digit in stage 7 would set the 
A through G represent termi- 

illegal 
a special character 
a number  

F, G = string is a word. 
For example, A A 1 E A 6 A  goes through stages 1, 1, 5, 7, 
7, 9, E to indicate tha t  a number  has been read; l E E  goes 
through 5, 7, A and is illegal; A E 6  goes through 1, 10, G 
to indicate a word (the word " E " )  has been read. ~Vith 
each exit, there are two possibilities: C, E and G indicate 
backspace one character (I = I -- 1) prior to the next 
entry to R D N U M ;  B, D and F do not backspace. For 
example, if the string to be read is A E 6 . 2 A  the routine 
comes out on a G- type  exit and indicates tha t  the word 
E has been read; the next t ime the routine is entered it 
will s tar t  scanning at  the character 6 and go on to read the 
number  6.2. 

The semantics are quite straightforward. For example, 
in stage 10 we find (see Figure 1): 

J = WORD.AND.7700 0000 0000 0000 B 
IF(J )  29,28 

28 W O R D  = WORD*64 
W O R D  = WORD.OR.  CHARAC 

29 Go to read next character 

T A B L E  1. ]DECISION MATRIX FOR THE ROUTINE R D N U M  

Type . . . .  Digit + - -  E A . . . Z  A Special Illegal 
~tage 1 2 3 4 5 6 7 8 

1 5 3 2 10 10 1 B A 
2 5 4 C C C C C A 
3 6 C C C C C C A 
4 6 A A A A A A A 
5 5 6 E 7 E E E A 
6 6 E E 7 E E E A 
7 9 A 8 A A 7 A A 
8 9 A A A A 8 A A 
9 9 E E E E E E A 

10 G G G 10 10 G G A 
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This is s imply building up a word, allowing for the possi- 
bility that eight characters have already been read: in- 
itially W O R D  = 0, finally W O R D  = character string 
read, assuming that the string is a word. If a number is 
being read then the final result is built up in a manner 
which is standard in routines of this sort [11]. For example, 
if the input string is 12.345E6 then at the end of the scan 
there are three registers J, K, L with the values J = 12345, 
K = number of decimal places = 3, L = exponent  = 6. 

SUBROUTINE RDNUMIISITI 
TYPE INTEGER STAGE,COLCOUNT,COLMAXtCHARACvCHARIYPE 

X,OLDCHAR,RDBYIE ,WORD,TESDC,EXPONENT,DIGITS,ESIGN,SIGN 
DIMENSION BUFFER(IO),TYPETABI4),DECISION(12)tXPA(4),XPB(IO),XPC(IO 

I }  
DATA (CDLCOUNT=7~)tICOLMAX=T3),(PRINFING=I.O),IMASK=77BI, 

C USES THE 1604 REPRESENTATION OF 8CO CHARACTERS 
X {TYPETA8= O l l l l l i I l l 1 7 3 0 O O B , 6 7 5 5 5 5 5 5 5 5 0 7 7 0 O O B , 3 5 5 5 5 5 5 5 5 5 0 7 7 D O O B ,  
X355554555502TOOfBItIOECISION=8H532==IBAt8HSkCCCCCAt8HBCCCCCCA, 
XBH6AAAAAAA,BH56ETEEEA,SHBEElEEEA,BHgE8AATAA,8HgEAAABAA,BHgEEEEEEA, 
X8HGGG==GGA,BHGGG==GGAt8H=GG==GGA) 
X ,(XPA=I.O*I*OEIOO,I.OE2OOtl.OE3OOI,{XPB=I.O,i.OEIO,EoOE 
X20, I .OE30, i .  OEB(),I.0E5OtlLOEbO,I.OE70~L°OE8Ot|.OEgO)tIXPC = 
XIoO,IO°O,IOO°O,iOOO.OiIOOOO*O,IoOES,I.0EB,I.0E7,[.OE8*I-OE9) 
EQUIVALENCE { X , I )  
FLOAIING=I.O $ GO TO [ $ ENTRY RDINI $ FLOATING=O.O 

l STAGE=I $ N=DIGITS=EXPONENT=WORO=IESDC=SIGN=ESIGN=O 
I t  OLDCHAR=CHARAC $ IF (COLCOUNT-COLMAX) 3 , 6 , 2  
6 , CHARAC=IR $ GO IO T 
2 READ 500* (BUFFER(1),I=I, IO) 
SOD FORMATIIOA8) 

IF {PRINTING) 4,5 
4 PR INT  501, (BUFFERI I ) , I= t f lO)  
501 FORMAI{XgA8,XA8} 
5 COLCOUNT=I 
3 CHARAC =RDBYTE (8UFFER,COLCOUNT,B,b~,MASK) 
l COLCOUNT=COLCOUNT÷I $ EHARTYPE=ROBYTE (IYPEIAB,CHARAC÷I,I6,H,7) 

IF {CHARTYPEI 130,131 
131 CHARTYPE=8 
13O STAGE=RDBYTE IOECISION(STAGE)tCHARTYPEtBpb4tMASX) 

IF {STAGE-It) IO,9,1OO 
9 STAGE=tO 
IO GO TO ( I I ~ 1 2 t l t l l l , I S , I b t l l t 1 8 , 1 9 , 2 0  )~STADE 
12 IF (CHARAC-IR+ ) 2 1 , t l  
21 SIGN=I $ GO IO I I  
15 IF OVERFLOW FAULT 22,22 
22 IF (CHARAC -10) 24,23,25 
23 CHARAC =0 
24 ~I=N+N $ I:=I+I*N$ I=I÷I~CHARAC$ IF OVERFLOW FAULT 25,26 
26 N=I $ GO TO I I  
25 OIGITS=DIGITS÷I $ GO TO I I  
i6 DIGITS=DIGITS-I $ GO TO 15 
18 IF ( (CHARAC-IR÷)~(CHARAC-IR )) 27,11 
27 ESIGN=I $ GO rO l l  
19 IF (CHARAC - I 0 }  30,29 
29 CHARAC =0 
30 EXPONENT =EXPONENT*IO÷CHARAC $ GO TO I I  
20 I=WORD.AND.770OOOOOOOOOOOOOB $ IF I l l  11128 
28 WORD=BA*WORD $ WORD=WORD.OR.CHARAC $ GO TO I I  

C SCAN COMPLETE. PREPARE FOR EXIT 
IO0 STAGE=STAGE÷l-IRA SGO TO{ lOl t lO2t lO3t104,105,106,107) ,  STAGE 
lOL I=COLCOUNT-I $ PRINT 502,1, CHARAC $ GO FO 1 
502 FORMAT(IgH INPUT ERROR COLUMN 13,11H CHARACTER DE) 
103 COLCOUNT=CDLCOUNT-1 $ CHARAC =OLDCHAR 
102 ISIT= CHARAC~ IO00OOOOOO000OOB $ ISIT=7R .OR.IS|T 
I16 RETURN 
105 CDLCOUNT=COLCOUNT-I 
104 DIGIIS=DIGITS+{I-ESIGN-ESIGN)*EXPONENT STESOC=ISN=N*II-SIGN-SIGN) 
108 IF (FLOATING) 124,109 
109 ISIT=N $ IF (DIGIIS} 126 ,114p111 
I11 IF OVERFLOW FAULT 112,112 
112 DO 120 I=[ tDIGITS $ N=ISIT+ISIT $ N=N÷N+ISIT 
120 ISIT=N÷N $ IF OVERFLOW FAULT 113,114 
113 PRINF 503 
503 FORMATIIBH INTEGER TO0 LARGE) 

ISIT=3777 7777 7717 7777B $ GO TO I14 
126 DIGITS=-DIGIIS $ DO 125 I=I,DIGITS 
125 IS IT=ISIT/ [O $ GO TO 114 
124 X=N $ K=XABSF(DIGITS) $ JI=K/IO0 $ K=R-[OO*JI 

J2=K/lO $ K=K-J2*IO $ Y=XPA[JI+I)*XPBIJ2+I)*XPC(K÷II 
IF (DIGITS) I I 5 ,116 , I 17  

I I 5  X=X/Y 
116 ISIT=I $ GO TO 114 
l i t  X=X*Y $ GO TO l i b  
107 CDLCOUNT=COLEOUNT-1 
I06 [ESDC=-i $ ISIT=WORD $1=WORD°AND.77OOOOOOOOOOOOOOB$ IF ( I )  114t132 
132 WORD=WORDIb4 $ WORD=WORDoOR.IR $ GO TO I06 

ENTRY RDIYPE $ ISIT=rESDC $ GO TO 114 
ENTRY RDPRINI $ PRINIING=ISIT $ GO TO 114 
ENTRY RDMODE $ GO TO (201 ,202) t lS IT  

201 OECISIONIIO)=DECISIONIIlI$ GO TO 11~ 
202 DECISIONIIO)=DECISION(12)$ GO TO 114 

END 
FUNCTION RDBYTE (I,J,K,KK,MASK) 
DIMENSION I ( IO)  
N = ( J - I ) / K  $ M=K+K*N-J $ I I = I ( N + I )  $ IF (MI l t l ~ 2  

2 NN=I $ DO 3 N=I,M 
3 NN=NN*KK $ I I = I I I N N  
I RDBYTE =IT.AND.MASK $ END 

CARD TOTAL = 94 

FIG. 1 

All that remains to be done is to change J to floating point 
and multiply it by 1000. 

The decision-matrix is stored within the routine 
R D N U M  by the following FORTRAN-63 data statement: 

D I M E N S I O N  D E C I S I O N  (10) 
D A T A  ( D E C I S I O N  = 8 H 5 3 2 =  = 1BA, 8 H 5 4 C C C C C A ,  

..., 8 H G G G  = = GGA)  

That  is, the matrix is represented by a table of B C D  
characters and the symbol 10, which has no BCD equiva- 
lent, is represented by = .  Suppose we are in stage J and 
encounter a character of type K; then the new stage is 
specified by the kth character in the table entry DE-  
CISION(J).  The table as it is given here would read the 
string ALPHA99 as word ALPHA, followed by number 
99. We can change this interpretation by 

DECISION(10)  = 8H = GG = = GGA 

ALPHA99 will now be read as word ALPHA99. The in- 
struction DECISION(10)  = 8HGGG = = GGA would re- 
store the original interpretation. 

8. C o n c l u s i o n  

It  is a wel l -known fact that data errors caused by human 
fallibility are responsible for wasting an appreciable 
amount  of computer time. The standard FORTRAN input 
routine will sometimes take datum that "looks reasonable" 
and interpret it in a way  that is reasonable but unfortu- 
nate. It  is possible to design a routine which both is easy 
to use and powerful, yet which interprets reasonable- 
looking data in the desired way.  
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of the features described here was written by the author 
while working for the United Kingdom Atomic Energy 
Authority  at Risley. This routine was not  published as a 
separate item but was distributed as part of a larger 
program [5]. Mitchell [9] revised and added to the routine 
in preparing the 7090 FORTRAN version at Risley. These  
earlier versions were written in machine language (FAP) 
and did not  use the decision tables method.  The final C D C  
FORTRAN-63 version reported here and the work leading 
to it was supported by Contract No.  AT GEN-10( l l -1 )  
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Reducing Truncation 
Programming 
J a c k  M. WOLFE 
Broolclyn College, Brooklyn, New York 

Errors by 

In accumulating a sum such as in a numerical integration with 
a large number of intervals, the sum itself becomes much larger 
than the individual addends. This may produce a less accurate 
sum as the number of intervals is increased. 

Separate variables can be established as accumulators to 
hold partial sums within various distinct intervals. Thus, the ex- 
tensive successive truncations are eliminated. 

When accunmlating a sum such as would be involved 
in performing a numerical integration with a large number 
of intervals, the sum itself becomes much larger than the 
individual addends. Consequently, because of the shifting 
to line up the decimal points, there is a loss of significant 
digits from the right-hand end of the addends. As the 
sum grows increasingly larger, the res.ulting truncation 
for the remaining addends becomes more extensive. Thus 
an increase in the number of intervals beyond a certain 
point produces results that  are actually less accurate 
rather than more accurate. 

By a simple programming technique this error can be 
reduced significantly. Separate variables can be established 
as accumulators to hold the sums that  are i n  various in- 
tervals. For example, $1 can be used to hold sums from 
1 to 9.9999999; $2 can be used to hold sums from 10 to 
99.999999; $3 for sums from 100 to 999.99999;etc. The 
summing is done in the lowest level accumulator until it is 
about to overflow. At that  point the sum is added to the 
next higher accumulator, and it is then initialized to the 
value of the number that  was to have been added to it. 
The successive accumulators are treated similarly in chain 
fashion. By this technique the successive and progressively 
more serious truncations that  result from the usual pro- 
cedure of accumulating the sum are eliminated. 

Figure 1 shows a portion of a flowchart that  illustrates 
the principle of these special accumulators. The illus- 
tration refers to the area under the curve Y = f ( X )  in the 
interval from X = A to X = B, calculated by means of 
the trapezoid rule using N-intervals. In  this illustration it 
is assumed that  .1 N Y < 10. Thfis we shall use S1, the 
lowest level accumulator, to hold sums up to .99999999. 
$2 will then be used to hold sums from ,1.0000000 to 

9.9999999; S3 for sums from 10.000000 to 99.999999; $4 
for sums from 100.00000 to 999.99999; etc. As many of 
these accumulators should be established as may be needed 
to hold the largest sum possible, which may often be es- 
timated easily if one knows the largest number of inter- 
vals that  he intends to employ in the calculations and an 
approximate value of the average Y or even of the maxi- 
nmm Y. In  the flowchart shown in Figure 1 it is assumed 
for illustrative purposes that  the total sum will not exceed 
999.99999. To allow for a possibly larger total stun, $5 
can be established to hold sums from 1000 to 9999.9999. 
The flowchart can be extended in similar fashion but its 
basic logic would be the same as in the illustration. 

I t  should be noted that  the stepping up of X, indicated 
in the flowchart at connector 5, must not be performed by 
simply adding H to X. For if H were very small compared 
with X, the same kind of truncation errors would appear 
in this sum as in the sum of the Y values. Thus if X were 
stepped up by use of the statement X = X + H, it would 
be necessary to set up a set of special accumulators for this 
summing in addition to the set of special accumulators 
for the summing of the Y values. These special accumu- 
lators can be avoided in the stepping up of X, however, 
by taking advantage of the fact that  X is always being 
incremented by the same amount, H. Thus we may use 
the statements 

X = A + C * H  

C = C . - k l  

to step up X. The value of C would have been initialized 
as 2 prior to entering the main loop where Y is calculated. 

As an illustrative application of these principles the 
area under the line Y = .55555550 in the interval from 0 
to 1 was calculated using various numbers from 10 to 9000 
as the number of intervals. In  this calculation S1 was 
used to hold sums up to 9.9999999. Since the largest total 
sum is 9000 times the Y-value, the highest level accumu- 
lator must accommodate a number with four significant 
digits to the left of the decimal point. Thus the accumu- 
lators were set as follows: $2 for sums from 10.000000 to 
99.999999; $3 for sums from 100.00000 to 999.99999; and 
$4 for sums from 1000.0000 to 9999.9999. The errors in 
the area found using these special accumulators are shown 
in Table 1 along with the corresponding errors found using 
the usual method of obtaining a sum by establishing a 
single variable to hold the total sum. 
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