Check for
Updates

5. Examples

A number of examples were programmed on the CDC
1604 at the University of Wisconsin and the two deseribed
below are typical. Detailed aspects of the programming are
given in [18].

Fxample I.  Let region R be the quarter circle bounded
by 2° + 4" = 1,2 = 0 and y = 0. Consider problem D,
with k = —5, ¢ = 2 + ¢°. Method D; was applied with
o= .03, (9) = (0,03), h = 025, ” = .01. The result-
ing set of 2947 linear algebraic equations was solved by
over-relaxation [17]. The running time was 9 minutes.
Selected, but typical, results are recorded under #* in
Table 1.

Example II. Let R be a rectangular region whose
boundary has consecutive vertices A(0,0), B(1,0), C(1,2)
and D(0,2). Consider problem D, with ¥ = 1, ¢ =
—22" + 4°. Method D, was applied with ¢ = 02 (z,9) =
(0,.02), b’ = .02, B” = .04. The resulting set of 2401
linear algebraic equations was solved by over-relaxation.
The running time was 10 minutes. Selected, but typical,
results are recorded under »* in Table II.

It should also be noted that Methods D, and D, yielded
good approximations to certain problems in which u,,
became infinite as y approached zero.
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A method for obtaining test matrices with a prescribed distri-
bution of characteristic roots is given. The process consists of
using particularly simple similarity transformations to generate
full matrices from canonical forms. The matrices generated also
have known characteristic vectors, inverses and determinants.

There are several well-known methods for generating
matrices whose characteristic roots and vectors are known
(see, e.g. [1-5]). If one wishes a matrix with a preseribed
distribution of characteristic roots, however, it is natural
to resort to the similarity transformation A = CRC™'
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where the characteristic roots of B are known. The purpose
of this note is to describe a simple way of generating
matrices by this transformation that does not seem to be
as well known as it should be. Although the emphasis
here is on matrices with known characteristic roots, it
should be mentioned that since A™ = CR™C™" one can
easily construct the inverses of these matrices also.

Let ¢ = I4+uv* where u and » are nX1 and * denotes
conjugate transpose.! Only the fact that ¢ = I—
(1+v*u)""uv* is needed, but it is also easily verified that
any vector orthogonal to » is a characteristic vector of
C corresponding to the root 1 and u is a characteristic

* Present address: Computer Science Ctr., Univ. of Maryland,
College Park, Md.

1 Tt should be noted that the matrices discussed recently by Pei,
LaSor, Rodman and Newberry in the Pracniques section of the
Communications of the ACM are of the form v (I+uu*), v a sca-
lar. For a discussion of these and a more general class of matrices
see [2].
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vector corresponding to 14+»*u. If v*u = 0, C has a non-
diagonal canonical form and v is a principal vector, i.e.,
(C—I)» = 0. Because of the characteristic root of mul-
tiplicity n—1, these matrices themselves have limited use
as test matrices for characteristic value problems although
they are quite useful as test matrices for inversion pro-
grams.

With a =
then becomes

A = (I+w*)R(I—ow™*)
= R+w*R— aRuw*—a(v*RBu)uw®,

(14v*u)”", the similarity transformation

which can be carried out with O(n”) operations. For testing
accuracy of programs, however, it is imperative that A
be generated exactly and we now consider some special
choices of u, v and R that facilitate the computation. For
simplicity we consider only real %, » and R and thus gen-
erate only real matrices A. The examples are meant only
to be illustrative and there is obviously a great flexibility
available in choosing « and ».

Symmetric Matrices
Let 2-v=1,u= —2andR = D = diag(dy, - - -, d).
Then I—2w" is orthogonal and
A= (I-20")D(I—2w")
= D—20w"D—2Dvw"+4(»"Dv)w"”
is symmetric with characteristic roots d;, ---, d, and

characteristic vectors which are the columns of I— 2",
In particular, if »” = (n™, ... n™}) then

A = n_l(ndlﬁ,,—2d1—2d1+27),
where 7 = 2n™') d; and 8; is the Kronecker symbol.

Note that because of the divisions by n a little care is
required to generate this matrix exactly.

Nonsymmetric Matrices with Real Roots
Again choose R = D = diag(d:, ---, d,). There is
considerable freedom in choosing % and » although the
restriction u"» = 0 affords some simplification. For ex-
ample, if n = 2k, «" = ¢(1,1,---,1), 2" = (1,---,1,
—1,--.,—1)and ¢ = v"Du, then
A = D+w'D—Duw"—ow” = (ay),
where
d,-B,-,-—c(di—dj—}—a),
\dibss+e(di—di+o),
This matrix has real roots dy,- - -,d, and characteristic

vectors which are the columns of I+w”. It is easy to
generate exactly since only additions of the d; and mul-

1=Z75k,
a;; =
k+1Zi<n.
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tiplications by ¢ are involved; if ¢ = 1, only additions are
involved. The parameter ¢ allows some control over the
“condition” of the problem since the condition number of
the mth root, defined as the Kuclidean length of the mth
row of (I+wuw”)™ times the length of the mth column of
(I+w™), is [14+c'n* 428 (n—2)].

Another choice of 4 and v that maintains the relation
u'v = 0 but gives varying condition numbers for the
roots is u* = (1,2,--,k, 1,2,---,k) and " = (1,2, -k,
—1,~2,.--,—k). The corresponding matrix is easily con-
structed and it suffices to remark that the condition
number of the mth and (m--k)-th roots is 1{[3-+m’k(k+1) -
(2k+1))*—36m"}%.

Real Matrices with Complex Roots

Let B = diag(Ry,---R,) be a block-diagonal matrix
where the R, have known characteristic roots and vectors.
For example, the B; may be 1X1 and 2X2 although we
do not preclude the use of larger blocks. Partition «* =
(", up") and v¥ = (»,", -+ w,") to correspond to
the R; and assume that v"u = 0. Then if B;; = uw;"R;,
Cij = Rauw;" and ¢ = w"Rv, A can be written in parti-
tioned form as

By -+ By,
A=R+]| : N :
_Bpl' : 'B:op C:DI' . 'C:Dp

If, for example, the elements of u and v are —1, 0 and 1,
then the elements of A are just sums and differences of
the elements of R and thus are easily generated. The
characteristic and principal vectors of A are the columns of

T T
C11"'C1p U1 * * U p

- o- . .
T
Upl1* * *Uplp

u1111TQ1 o 'uﬂ);Qp
I+| :

3

upvlTQl' : 'UPU;QI’

where R; = Q.J.Q. " and J; is the Jordan form of R, .
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