Check for
Updates

Higher-Order Strictness Analysis
in Untyped Lambda Calculus

Paul Hudak
Jonathan Young

Yale Unlversity
Department of Computer Science
Hudak@Yale, Young@VYale

Abstract

A funectlon 1s sald to be strict 1n one of s formal
parameters If, In all calls to the functlon, elther the cor-
responding actual parameter is evaluated, or the call does
not terminate. Detecting which arguments a function
will surely evaluate Is 2 problem that arises often in
program transformation and compller optimlzation. We
present a strategy that allows one to infer strictness
properties of functions expressed in the lambda caleulus.
Our analysls improves on previous work in that (1) a set-
theoretic characterization of strictness ls used that per-
mits treatment of free variables, which In turn permits a
broader range of lunterpretatlons, and {2) the analysls
provides an effectlve treatment of higher-order functions.
We also prove a result due to Meyer [15]: the problem of
first-order strictness analysis Is complete 1n deterministic
exponentlal time. However, because the size of most
functions is small, the complexlty seems to be tractable in
practice.

This research was supported In part by NSF Grant
MCS-8302018, and a Faculty Development Award from
IBM.

1. Introduction

A function is sald to be siriet in one of Its formal
parameters If, in all calls to the functlon, elther the cor-
responding actual parameter Is evaluated, or the call does
not terminate. More formally, a function f(xl,xz,...,xn)

Is strict In x, if f(xl’"”ximl’J~’xi+1’”"Xn):i— for all
values of xj, ki % 1. Detecting which arguments a function
will surely evaluate Is a problem that arlses often In
program transformation and compiler optimlzation. It Is
especlally lmportant in language Implementations sup-

Permission to copy without fee all or part of this material'is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title 'of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery.. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM-0-85791-175-X-1/86-0097 $00.75

97

porting normal-order evaluation (such as ALFL (8], SASL

[18], and FEL [14]), where knowlng that a function Is
strict in a certaln argument allows one to compute its
value ahead of tlme, thus avolding the overhead of a
“closure,” "self-modifylng thunk® {9], "future," or some
similar oblect. One can think of this as converting from
a "call-by-name" or "call-by-need" evaluation strategy
1o one of "call-by-value.” Another advantage of such an
effort 1s that on parallel architectures 1t allows one o
identify subexpressions that may be safely computed in
parallel, with a potentially large reductlon in overall ex-
ecution tlme {10, 11].

As an example, conslder the functlon f(x,y,z) == if
p{x) then y else z, which 1s sirlet In x (assuming p 1s),
but not ¥ or z. Thus a language using lazy evaluation
may resuly in a more efficlent program. On the other
hand, f{x,¥,2) == if p(x) then y-+z else z Is strict 1n x
(if p 1s), and also 2. In most Implementations one would
like to compute x and z prior to calling f, to avold the
overhead of a closure.

A more interesting example derlves from the simple fac-

torial function:
fac(n) == if n=0 then 1 else n*fac{n-1)
In introductory programming one is taught that this Is an
elegant way to express factorial, but the unbounded na-
ture of the stack makes it perhaps inefficlent. A Dbetter
approach would be to make 1t tall-recursive by Introduc-
ing an "accumulator,” as in:
fac(n,acc) == if n=0 then acc
else fac{n-1,n*acc)

which a sultable optimlzing compiler will convert into a
loop. However, in a language using lazy evaluation as
the defauly function call strategy, a closure will have to
be created to delay the evaluation of the expression
n*ace, and those closures will not get invoked until the
very end of the recursion. A little thought should con~
vince the reader that this 1s no more efficlent (in fact,
probably less so) than the original solution! It is only
through a sultable strictness analysls that a compller can
infer that the second version of fac 15 strict in ace {as
well as n), at whlch polnt transformation into a loop
pays off.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F512644.512653&domain=pdf&date_stamp=1986-01-01

In this paper we present a strategy thal allows ong 1o
infer strictness propertles of funcilons expressed In the
fambda caleulus, The strategy lmproves on previous
work in that: (1) a set-theoretic characterization of
strictness Is used that permits treatment of free
variables, which In turn permits a broader range of Inter-
pretatlons, and (2) the analysls provides an effective
treatment of higher-order functlons, which Is cructal for
any lmplementation of a programming language that
treats functlons as "lirst-class cltlzens.” We also prove a
resuit due to Meyer {15]: the problem of first-order strict~
ness analysis is complete In determinlstic exponential
time. However, because the slze of most Tupctions 1s
small, the complexity seems to be tractable In practlce.

2. Preliminaries

Before one can begln to speak of strleiness propersies,
one needs to establish some prelimlnary notlon of syntax
and (standard) semantics.

2.1. Syntax

Instead of adhering to the conventlonal syntax for the
lambda calculus, we use a "syntactic sugaring" that has
become rather popular In the functional programming
community. This notatlon allows cne to give names 10
functions by expressing them as a set of mutually recur-
slve equations {and also, at least notatlonally, avolds the
need for the Y operator). We wrlie f(xyxg,,,..,xﬂ} =
body to deflne the m-ary function f (equivalently, In un-
named form, ,\(xl,xg,..,,xn}.body), We assume that the
language has been extended to Include some standard set
of primitlve constants (Including functions) such as those
to support arithmetic. Generally function appileation is
written as f{ei,ez,..,,en), where { may be elther a user-
defined functlon or primitive operator (lnformally we
sometimes use 1nfix notatlon for primitive functlons, as 1n
e1+82 -~ the convext should make the meanlng clear).

We also take as primitive a condlitional operator, which
permits expressions of the form pred — con,alt, and is
equivalent to the more traditional if pred then con else
alt. Tinally, we consider our program to be a set of
mutually recurslve functlon definivions (observing stan-
dard lexlcal scoping conventlons as in the lambda
calculus). We formalize all this In the followlng abstract
syniax:

cc Con coustants
% & By bound variables
f€Fn function variables
p & Pf primitive Tunction names
e Exp expressions, defined by:
gu==c | x| e, —eye, | flegn,e) | pleg,ne)
pr & Prog iz the set of equation groups
{programs) defined by:
pr n== { i’iﬁxi,...,xki) == By e

fn(xﬁ«,..,xkﬁ} == e}

where k§ Is the arity of .

98

Presumably the result of the program s the value of
one of the functlons belng defined, such as the Tirst or
the last -- thls issue does not concern us here. Slmiarly,
we assume that "nested” sets of equations can be
handied through the obvlous exiensions, but for clarity
we leave out the detalls.

Note that an Important restrictlon made at this polnt is
that functlon names may appear only In funciion appllica~
tion position; L.e., they may not be passed as arguments
vo functlons nor returned as values from expressions. We
relax this restriction completely in Sectlon 4.

2.2. Standard First-Order Semantics

2.2.1. Standard Semantic Domains

Bas = Int-+Bool Baslc values, integers
and booleans.

Fun = Bas”™ — Bas Flrst-order functions.

D = Bas-+Fun-+{error} Denotable values,

Env = (Bv+¥Fn)—-D Environments.

2.2.2. Auxiliary Semantic Functions
Domaln predicates: Int?, Bool?, Bas?, Env?, and D?.

Conditional:
8y > 8,8, == 1,17 elm_L
error, If not Bool?(e,)
2, if eiz-:true
€y, otherwise.

Plus standard definitlons for arithmetic and boolean
OPEeraLors.

2.2.3, 8tandard Semantic Functions
‘We adopt the convention of using double brackets
I...7 arcund syntactic arguments.

¥: {Con+Pf) — D, mapping constants to
semantic values,

E: Exp — Env — D, glving meaning to
expressions.

Ep: Prog — Env, glving meanlng to programs.

Kind == mn, If 1 15 an Integer
K Ttrue]] == true
K [falge] == false

KiI+D == xy).(Int? x AND Int? y) — x-+y,
error
Kllandll == Mx,y).(Bool? x AND Bosl? y)
-~ x AND v, error
K lcons] == aMx,y). < x5 >
and o on for other primlitive functions.

Ellc]env KT
Elxlleny env [x]l
T [Iel — ez,eSI] env

Ele,Jenv —E le,Tenv,
E [Ie3I] env
E (e, ey) lleny =
env [f1{E Te,Tenv,....Ele, T env)
B [Ip(el,n.,,ek}]] env ==

Kipl(Efle,Jenv,.. B fe, Tenv)

Epll{ fl(xlgu.,,xkl) = €4y ey

fn{x]_,,..,xkn)
whererec env’ ==

[k(vl,...,vkl}uE Te, T env’[vl/xl,...,vkl/xkl]/fl, seny
x(vl,.“,vkn).E Te T env’[vl/xl,..,,*a/lcx},/)(}‘(n]/fn]

MNote that the "meanlng” of a program Is an
environment contalning values for all of the top-level
functions fl through fn.

=e_ }l = env’

3, Introduction to Strictness Analysis

3.1. A MNaive Approach

A nalve approach to Inferring function strictness can be
described In the following way: The function f deflned
by £{xy,0.00%;) == body Is strict In x; whenever the ex-
pression body Is guaranteed to evaluate x,, accordlng to

the following (recursive) set of rules:

1. The evaluation of a parameter x always

evaluates x.

2. The evaluation of p(el,...,ek) depends on p.
For example, If 1t 1s & strlet blnary operator
such as -+, then both ey and e, are always

evaluated; If 1t 1s a "seguential® operator such
as and, then only ey is always evaluated.

3. The evaluation of e, ey, always results ln
the evaluation of e, and also all variables

that are evaluated in both e, and eg.

4. The evaluation of f(e,,...,e,) always results In
the evaluation of €, whenever f is strict In its
ith formal parameter.

Formallzing the above analysis for- a set of function
definitions results In a set of mutually recurslve (because
of the last rule) equations that can be solved In.any num-
ber of ways. This Is essentially the analysis carried out In
[18], except that there a boolean domaln is used that in-
dicates whether or not a particuler variable will -be
evaluated.

Unfortunately, the above analysls has a fundamental
difficulty, which becomes apparent when one considers
the followlng slmple prograi:

99

{ {x,¥,2) = =0 —y,2
g{a,b} == f{a,b,(b-+1)) }
Note that g 1s strict 1n both a and b, yet the simple
analysls described earller only detects that g is strict in a.
This problem arlses because even though we take into ac-
count the Interactions between the consequent and alter-
nate expressions In the condltlonal, we fatl to propagate
that information across function boundaries. Correct-
ing this sltuation requires a nontrivial shift In the
methodology, for now we must compute 2 function that
characterizes the strictness property of each defined func-
tlon in terms of information describing what <8
evaluated in the arguments to the function. The work
of Mycroft {18] does exactly that, but using a boolean
domaln as mentioned above., In the next section we
present & solution based on the more Intultive idea of
functlons on sets.

3.2. An Effective First-Order Solution

By reconsidering the problem from a set-theoretic
standpolnt, we can formallze our solution as follows: In-
tultlvely, for any expresslon e, we let Need [ell denote
the set of free varlables which are "needed" to compute
the value of e. Applying this notlon intultively to the

above example means that NeedIf(x,y,2)] ==
Need[x —»y,2] = Need[x] U {(Needlyl n
Need [[z]). Note carefully how the conditlonal Is

treated -~ the Intersection of the consequent and alternate
comes from the fact thai something evaluated in both
subexpresslons will be evaluated regardless of the value of
the predicate (unless the predicate diverges, In which case
the entlre expression diverges). Continuing with the ex-
ample, Need[Ig(a,b)] Need [f(a,b,{(b+1})1
Need [all U {(Need[bll N Need[[b+11). Clearly,
Need [b41T Need [bll, so Need g(a,b)]
Need [all U Need [b]l, as Intultlvely inferred.

‘We can formallze the above analysis by deriving an
abstract Interpretation [5, 17] of the original functions to
obtaln a new set of mutually recursive equations that
capture the propertles of interest. Rather than glve an
"informal®™ abstract Interpretation as suggested above, we
provide an alternative, or "non-standard,” semantlcs that
captures the properties of interest. We Introduce the
semantlc function IN that formally captures the intent of
Need as used above, and having type
Exp — Senv — 8v, where Senv s an envlronment con-
talnlng strictness properties of -free’ variables, and Sv 1s
the powerset of V' (the set of all varlables of Interest).
More formally:

3.2.1, Non-standard Semantic Categories (First-
Order Strictness)
V., the set of variables of interest.
§v, -the powerset of V.,
Sfun = Sv™ —» 8v, the function space mapplng
sets of strict varlables
1o other sets.
Senv = (Bv+Fn) — (Sv+Sfun),
the strictness environment.

3.9.2. Non-standard Semantic Functions (First-
Order Strictness)
Kn: Pf— {Sfun+8v), strictness propertles of
primitive functlons.
M: Exp — Senv — Sv, as Intultlvely described
earlier.
MNp: Prog — Senv, the meaning of programs,

Kal+l = M&9)EU¥F
(-+ evaluates both of 1t arguments)
Kn{and] == M&,§)%
{"sequential and” always evaluates s
first argument)
Knlconsl == \2,9).0
("lazy cons” evaluates nelther argument)
and so on for other primitlve functions.

MNIclsenv = §
NExTseny = senv [x]]
N I{ei — ezgeaﬁ senv ==

Nle,Isenv U (Ne,IIsenv N N e llsenv)
Nﬂf{el,m,ek)ﬁ geny ==

senv [(N [e,Isenv,...,N [e, Isenv)
Nip(ey,..e)Tseny ==

Knlpl(MN ﬁei:ﬂ senv,...,IN {{gk:ﬂ senv)

NpI{ fl{xlg...,xkl} == 8y, e
f (%yenxy) == e, }] == senv’
n

whererec senv’ ==
| k(%if,.,,&kl).'ﬁ Te,Jsenv’o, R,/% o]y oory

k()’l’l,m,ikn)oN Te Tsenv’[on, %;/%;, -] |

Thus the meaning of a program 1s still an environment,
but now one that binds the top-level functions to ele-
ments of Sfun. In general we say that senvy’ [f]] is the
striciness function of f, which we write in shorthand as
£, This corresponds to our use of & for bound varlables
in the "strictness domaln,” as a way of emphasizing that
we are using a non-standard semantics.

MNote that the environment seny’ establishes the
property that when % is applied to the sets corresponding
1o the striciness behavior of s arguments, 1t returns the
set of variables "needed” by the appllcation of £ to those
arguments, DMote further that expressions like ~§~(x,y} get
mapped to % U ¥, nov {%,§}. This emphasizes the fact
that % and ¥ are sefs, and that % s a funetion on sets
and Is an absiract interpretation of £ that describes s
striciness properties.

3.3. Computing the Least Fixpoint
Constder the following recursive runction:}
{x,5,2,p,9) = p>0 — (p=1 — (2=0 — x,¥),
f{zizzgyp“lyx})9
f(ﬂ,ﬂ,z,i,y}

This interesting example is a variation of one due 1o Simon
Peyton Jones.

It follows from the above definltlons that:
#2,9,8,08) =pU((PUEUVENMN
£(2,2,0,0,%)) N

£(0,8,2,8,9))

=pU((FUENIN
£(2,2,0,5,%) M £(9,9,£,9,9))
From this a functional & can easlly be defined such that:

~ ~

f(f{,:?,ﬁ,f),fﬁ == G(f)(ﬁ,y,i,ﬁ,f;), or:

f o= G(%}

50 that ? is a fixpoint of the functional G. One standard
way of computing such a [ixpolnt Is by constructing
Kleene's ascending chaln of Yapproximations,” starting
with the bottom element In the lattice of functlons, and
taking the least upper bound as the fixpoint. In our case
the lattice of functions is formed based on the superset
relatlon; that 1s:

%, L%, ur %, D%,

and £, & £, 1 £, (R)E £,(R) for all &
which generallzes 1n the obvious way O m-ary functlons.
The superset relation 15 used because we wish 0 find as
many strict variables as possible. The least deflined ele-
ment In 8v we denote by _LSVQ and 1t 1s simply the set
Y, and the least defined function Un in each n-ary func-
tlon space slmply returns ~LSv‘ Note that by consiruc-

tion, all of our functions are monotonlc and contlpuous
(because they are all constructed sclely from set union
and intersection), thus guaranteelng a unlque least flx-
polnt.

Continulng wlth our example, we get the following as-
cending chaln of refined estimates for the desired func-
tton (elgments In the identifled by
supersceripting):

chaln are

%0(329?$ﬁ1}5,£i) == Us(f(,?,i,f),ﬁ) == Y

42,9500 =dU(E UGN NVNAY)
=pUZUENY
2(2,9,2,0,0) = PU(EFURERNN) N
FuUupni)
=pU2
P3,9,800) =00 (EUENN)NDNE)
=P

t42,9,,08) = dU(E UGN NDNY)
=p

Clearly, for 1 > 3, i‘i e f’3, S0 %3 must be the least fix-
point.

In this example It was obvious when the least upper
bound In the chaln was reached, but how I8 thls done in

general? In other words, how do we determine when 'i;!
= fitds Az 1t vurns oul, this problem s NP-complete,

and the obvious exponential algorithm to test for equality
s to try all 2% comblnations of true {corresponding to
non-empty) and false (corresponding to §) arguments in
1he derlved boolean formulae. Because the functions ln
she chaln are increasing in deflnedness, the 2% combina-
tions need to be tried ounly once.

1t would be convenlent If we could look for a fixpolnt
when applying ! 10 some glven arguments, rather than
finding a flxpoint in the Tunctional Itself. However, the
abhove example shows that ithls s not the case: even
though the sequence of functlons <fl> 18 strictly
inereasing untll the flxpoint Is reached, the sequence of
sets <f'i(ﬁ,37,72,f),ﬁ)> may not be. The example above
was specifically deslgned to demonstrate thils, using ac-
tual parameters & == {x}, § = {y}, & = {2z}, b =
{p}, and § == {q}; Le. for an "ordinary" application of
f. For here we find that the sequence of approximations

to the sets Is {x,¥,%,p,q}, {P:2}, {p.2}; {P}; {P}) - ~
note the "false summlt”® reached at {p,z}.

Of course, 1t would be convenlent If there exlsted an al-
gorithm to compute the flxpolnt in less than exponential
time. However, strictness functions are easlly seen as
recurslve monotone boolean functions, under the inter-
pretation of set variables as boolean variables, set union
as boolean or, and set Intersection as boclean and. Ap-
pendix I shows that evaluating even one such function at
any polnt must take at least an exponential amount of
slme In the length of the functlon definitlon (more
precisely, 1t 1s complete in deterministic exponential
time). Thus we can do no better than the above strategy
in the general case. Fortunately, in most applicatlons
user-defined functions are rather small, and do not grow
with program size, so thils method may be practical
despite 1ts exponential nature. The interested reader
should refer to [4] for a useful discusston of the prag-
matics of strictness analysis.

3.4. Correctness

In what sense 1s our algorithm correct? At a minimum,
It should possess the following safely property: the
analysls must never falsely declare that a function Is
strict in its ith argument. This Is lmportant, since
presumably one of the primary reasons for doing the
analysls 1s to allow compller optimizations that might
change the program semantics if the analysls were wrong.
However, we cannot expect the converse property:to
hold, since that would constitute a direct solution ‘to the
halting problem. That Is, we cannot always expect the
analysls to determine that a function 18 indeed strict in
lts ith argument. Our analysls Is thus only an
approzimalion, but that is the best that we can hope for.

Appendlx II contains detalled proofs. for the followlng
theorems:

101

Theoremn 1: (First-Order Safety). Let env’
Eplpr] and senv’ == Np{[prl for some program pr:

pr == { fl(xl"'”’xkl)

£ (K 000X ==
e)

€45 oon
e }
Then
x €senv’ [£ T (%0008) =
i
env’ [[f,] (di’“"dki)m—l—’ 1= 000,10

where dij whenever X &)?j, Jxl,._.,ki.

The proof of Theorem 1 lnvolves a classical use of
structural and flxpolnt inductlon.

Note that if our anslysis was perfect we could prove
that:

x €senv’ [ET (%, ..., %,) 1t
3
env’ [,]] (dﬂ'"’dki)mi’ =210

where djm_L whenever X € fcj, =1,k

l.e., that the implication goes both ways. But we Xnow
that there does not exist such a perfect analysls, because
If there did 1t would constitute a direct solution to the
halting problem.

Theorem 2: (First-Order Termination). If g Is
finite, then the standard iteratlve technlque of determin-
ing S [pll always terminates in a finlte number of steps,
for all p.

4, An Extension to Handle Higher-Order
Functions

Desplte the simplicity and Intuitive appeal of the
analysis glven so far, It 1s only applicable to first-order
systems -- note that we have not considered functions
passed as parameters in function calls or returned as
values from expressions (Including function calis}), For
example, conslder vhis slmple program:

{f(x) == x
g(x) = x-+1
h(a,b) = (a=0—f,g) b }

Qur analysls so far Is unable to detect the fact that his
strict in b, even though it is obvious to the reader that 1t
1s. Indeed, we have avolded this situation entirely by dis-
allowing functions from appearing in other than functlon
application position, which would rule out the way { and
g are used here {1.e., as the result of the conditional), We
now remove that restriction entirely and present a new
analysls that effectively deals with hlgher-order functions
of this sort.

41, Preliminaries = Standard Higher-Order
Semantics ' '

Wenow eonsider - all funetions to be - "curried”
{(Inclitding ‘primisive ones) and thus our-functlon defint-
tlons might look like: £ Xy Xy e X = body. However,
we use the more verbose lambda calculus notation § ==
AKX XK gs oo mn.body (or: equivalenty, -f == dxy Xy

xﬁ»bﬁdy), because it simpiifies the inferencing rules.

The one other change to the syntax is thal we now allow
nested groups of equations, and we take the value of the
right-hand-side of the first equation as the value of the
eguation group. The new absiract syatax Is thus:

¢ & Con constants, Including primitive funections
¥FE€V wvariables
eg € BqgGrp equation groups, defined by:
eg s== { f, == €5 weny
f, == e }

eE Exp expressions, defined by:
en==—c|x|[f|e —eye,|e e, |ixe]eg
pr € Prog s the set of programs, deflned by:

prou== eg

4.1.1. Standard Semantic Categories

Bas == Int + Bool, domaln of basls values,
D = Bas + (D — D}, domaln of denotable values.
Env == ¥ — [, domaln of environments.

4.1.2. Standard Semantic Functions
K: Con—D

E: Exp — Env - D
Ep: Prog— D

Elclenv Kl

EllxTenv env [x]]

Efflenv = env [T

E Hjel —egedleny = E iIe}I} env — E {[ezfﬁ env,
Ele,env

Elle; eyllenv = (Elle,Tenv) (Elle,Tenv)

Elx.elenv == \v.Elelenv]v/x]

Bl { fi TR R4y aaey
f,=-=e_ } 1 == Elle,Jenv’
whererec env’ == env| Elle,] [t oo

Ele /1,]
Epllpr] = Elprlnull-env

4.2, Strictness Pairs

The important observation to be made is
pression not only has a "direct strietness®
variables which are evaluated when It Is),

that an ex~
{the set of
but also a

“delayed striciness™ {(the set of variables which are
evaluated when the expression s upplied). In fact, an ex-
pression has a doubly, triply, indeed "n-ly" delayed

strictness, corresponding to the
evaluated when the expression Is applled twice, three
times, and n times, respectively, This suggests that the
striciness property should perhaps be captured by an ob-
Jeet of type T, say, where T = 8v X {T—8v) X
(T — T — 8v) X ..” Note In particular that the abstract
functions take arguments of type ‘T, slnce in the higher-
order case functlons may be passed as arguments,

variables which will be

Qiizdeea, shis was the domaln of siriciness ladders used in [13).

102

However, a more conclse and completely equivalent
representation 18 the domaln of siriciness pairs, SP,
deflned by:

SP == 8v X (8P — 8P)
We often write a particular strictness palr as <lsv, af>>,
and we use the followlng subsecript notatlon to select ele-
ments from the palr:

< SV, si’>v = 8V
<8V, sf;:-f == gf

With every expression exp In a “sirlctness
environment" senv, we assoclate a8 strictness palr
Sllexplsenv that provides striciness properties of exp
both as an !solated value and as a functlon to be applled.
We write 8 [expllsenv for (S[expl senv) , and
8, [explsenv (8 Lexpl senv}f. Intultively,
8 Hexplsenv 1s a set of sirlet varlables much llke
MNlexpllsenv in our previous analysis. But in addition
we now have information that captures exp’s behavior as
a function. In particular, N[lexp ellsenv
S, lexplsenv U ((8,lexplsenv) (SIelsenv)), since
when evaluating a functlon call one must evaluate the
functlon, and then apply it to its argument. Simllar
results are obtalned for repeated (lL.e., currled) applica-
tlons. Note that the entire sirictness pair 8 [ellsenv Is
passed to S [lexplisenv, since we do not know how e
will be used within the body of exp; lL.e., 1t could be used
as a base value, applled to one argument, applied to two,
etc. We formalize all this below (which the reader should
compare 0 that given for the first-order case).

for

4.2.1. MNon-standard Semantic Categories (Higher-
Order Strictness)

Y, variables of Interest

8v, the powerset of ¥V

B8P = 8v X (8P — 8P), domaln of sirictness palrs

Benv = ¥V -— 8P, the "strictness environments”

For clarity, we write e, M e, to mean kﬁh({el f:)v g
(eg %),» (ey %) M (e, %)p>. We also deflne 2 speclal er-
ror element serr == A\%.<0, serr >, to be used when an
expression has been applled Ytoo many tlmes.”

4.2.2. Non-standard Semantic Functions (Higher-
Order Strictness)
¥s: Con — 8P, maps constants to SP.
8: Exp - Benv — 8P, maps expresslons to s-palrs.
Bp: Prog — Senv, gives meanlng to programs.

Kallell == <0, serr>, If ¢ 18 Integer or boolean
Esl+1 == <8, »&. <8, A <R U, serr> > >
Ksl[=1 == Ke[[+]

EsTAND] = <§, »x%. <0, 2. <%, serr > > >
and so on for other primitive functions.

Blclls = Ksllcl
S80xls = sx]
Sifls == a[[f]

8 E[«f:1 — €y, ezﬂs e
<8, [e s U (S, [e, s NS [e,ls),
Sfﬁezﬂa M Sfﬁeaﬂs>
Sle; e lls = <8 [e,Is U sv, sf>>
where <sv, sf> == ((8;[e,1s) (Sle,Ts))
8 Dwxells = <¥, 32.80els[/x]>
SI{f, =
£

n
whererec g’

€45 aeny

e, s = S[Iel:[}s’
s[S{le, 1] s’/fl, vosy
S5le Is'/t]

Spl{f; == e,
e
fo==e }ls=13s
whererec 8’ == s[8[le, T8’ /1, ...,
)
Sle 1s/f]

Thus the abstract "meaning” of a program Is agaln a
"sirictness environment,” but that now binds the top-
level functlons to siriciness pairs. As in our earller
analysls, we refer Informally to the strictness palr of one

of these functions as ? .

As an example, consider the program glven earller,
rewrltten below In currled form:
{fx==x
gx =+ x1
hab={((ra0)—1f,g b}
From this we dertve the following (1n which, for clarity,
we omlt the environment argument to 8 in all cases):

fo= SDxxl = <f, 3R>
Shhx. +x 171

<P, Z&S 04 x 11 >
<f, Z&. <%, serr>>

g

o

S[(=20)—1, gl = <3 U Ng,) 8>
SI{{(=a0)—1 g)bl =

<évu(f’vﬂgv)Usv, sf>

where <Csv, sf> = (f'fl'lgf)fa

which, after substituting for f and £, ylelds:
SI{(= a 0) —1, g)bll == <ﬁvU’0v, serr >

so {inally:
h= SDab.((=a0)—~1 gbl
= <f, \a.<f, b <a Ub, serr>>>
This Indicates that the function h Is strict In both of its
arguments, as was intuitively Inferred eariler.

4.3, Correctness

As with first-order strictness, we would like to prove
certaln correctness properties of the higher-order analysis.
To make the presentatlon :clear, we first deflne some
auxillary functions and concepts.

Definition: Let SA.Pn be a specisl "apply" operator

for strictness palrs that glves meaning %O the application
of a strictness palr to n strictness palrs. 1t 1s defined by:

103

SAP_(sp, spys-.sSp,) ==
8D, if n=0

sp, U SAP_ . (sps spy, SPgyeenSPy
fTn>0
By conventlon, SAPp(sp) == 1f n < 0.

Definition: Let APn be a slmilar "apply” operator for
elements in the standard domain, defined by:
A.Pn(e, €508) =
e, If n=0
AP (eej ey e),ifn>0
APn 1s used to glve symmetry to our presentation; note
that APH(e, €,nne) Is really Just e e, €y e

Next we deflne our interest In safety, which Is a blt
more complex than ln the flrst-order case, because now
we must conslder expresslons that may evaluate to func-
tlons. We say that sp € 8P is safe af level n for value
eCE (with respect to a varlable v) if for all m <n,
siESP,] and ¢, €D (I=1,..,m) such that 8, Is safe at

level n-1 for &3,3 we have:
vE SAPm(8Py BypeeeS,,)
= AP (e, e,..ne)= |
Furthermore, we say that a strictness palr sp Is safe for

a value e {(with respect to v) If for all n > 0, sp Is safe at
level n for e.

Finally, we wish to define a point-wise safety property
for environments. We say that a strictness environment
senv Is safe for a standard environment env (with
respect to a variable v) If Yx €V, senv [x]1 is safe for
env [x] (with respect to v). Two environments related
in this way are sald to correspond. Thls leads us to:

Theorem 3: (Higher-Order Safety) For all expres-
slons exp, varlables v, and corresponding environments
senv and env (wlth respect to v),

8 fexplsenv Is safe for E [expllenv.
Proof: See Appendix IIL

4.4, Computing the Least Fixpoint of Strictness
Pairs

Given our higher-order analysls, how does one apply 1t
to a partlcular program? That Is, how does one compute
the flxpolnt of the resulting mutually recursive equations
defining strictness palrs? - The domain SP Sv. X
(SP —» SP) seems to have unbounded "depth,” making
the computation seemingly difficult. = Fortunately, the
second element in a- palr almost always degenerates 10
serr at some polnt, which can be represented compactly.
Further, strictness palrs: are almost never applied more
than 2 finite number of times. Thus one may use the
standard technigue of starting with an inltial approxima-
tion -LSP for-all strictness palrs, and iterating in the nor-
mal way 1o refine the approximations to whatever degree
is necessary for the particular application.

The complexity of the resulting analysls Is, of course, no
petter than in the first-order case. Indeed, 1t Is worse, for
in general i Is not guaranteed to terminate! The reason
1s that there Is occasion when a strictness palr needs to be
applied an Inflnite number of times. Conslder, for ex-
ample, the function £ == x, fx x:

f= <, 2.<f, U (E %), U((f %) %),
(g %) 2)p>>*
Note that early Sv elements In the nested palrs depend
on "deeper” 8P — §P elements, creating a clreularly in
computing f This aspect of untyped lambda calculus 1s
an unfortunate one, considering thai most programs have
little need for functions such as this.® Our only solution
1o thls problem currently ls to lmpose a wealk type dis-
cipline that disallows functlons whose type is of arbitrary
vorder” or “depth". In particular, most versions of
1yped lambda calculus provide the necessary consiralnts

[2}, and schemata of this kind have been studled exten-

stvely elsewhere [6, 71.

4.5. Other Interpretations

Assume x does not occur free in e. Then note that
8le x| == <& U sv, sf>> where <(sv, sf> == &, X,
and thus:

Shxe x] = <0, AR, <C€ Usv, sf> >
However, by Eta-conversion Ax.e X = €, yel:

Slell = & = <&, &>
8o strictness s not preserved under Eta-conversion by
our analysis. This reflects our interpretation of a lambda
expresston as a "thunk,” whose body Is not evaluated un-
31l 1y is called, and Is manlfested more seriously In ex-
amples such as g x ¥ == -+ x ¥, which ylelds:

8lgl = g =

<P, 2R LB, NF <R T, seTT > > 2>

For here note that S[[g e,1 = <0, 2§.<8, Te, U,

serr > > and thus g e, does not evaluate ey (since
3 Ig elﬁ == §), even though g e, e, does.

Although thls interpretation of strictness Is reasonable,
It 18 easy to lmagine sltuatlons where one would want g
g, 1o evaluate ey whenever g e, ey does, Indeed, the
only time one would normally evaluate g 2y s when it 1s
about to be applied, so evaluating e, ¥early" would seem
to be a safe thing to do. The only exception to this is In
the use of predicates such as funetion? which might be
expected 1o return true whenever its argument Is a func-
tlon. RBut since FEta-conversion s preserved In only
tirmlted and often differing ways in a glven implemen-

YSince SIf x] = <f:v U (i:f %), (%{. %)p>>, and SI{f =) x1

<f, U (Fp2), U ((F R)g R, ((Fg R)g 0>

“Note that the function g == ix.g does not have the circularity
problern mensioned above, since “deep” elements depend only on
more “shallow” ones. yet g 1s equivalent 1o §in the Beta-theory of
the lambda ealcuius - thelr Bohm trees are identical.

104

satlon, 1t might also be reasonable to define function?
{g 1) == | tostead of true. We can alter our analysls
to conform to thls new Interpretation by slmply changing
the deflnition of 8§ when applied to lambda expressions,
from:

Shx.ells = <0, &8 [els[&/x]>
t0:
S Mx.els = <8 [le] s[Lgp/%]
2%.8 Tells(R/x] >

With this new lnterpretation, we arrive at the following
for the function g deflned above:
Slgl = <, 3&.<%,, IS U
serr>» > >
so that 8 [g e, = 8 e, I, which means that ey 15
evaluated when g &, 1s. This
generallty of the strictness palr approach, stemming from

result highllghts the

1t’s treatment of free variables.’®

Note that a similar change (to preserve conslstency in
the way partlal applicatlons are treated) could be made
to the primitive definltlon of 4 as given by Ks:

Ks[+1 = <0, »&. <R, z\7. <X UT,,
seryr > > >

4.8, Comparison to First-Order Analysis

it should be obvious that our new analysis provides ad-
dislonal information that the old analysls does not. It ls
also the case that the new analysls does not lose any of
the power of the old. 1In particular, suppose we have an
uncurried funcstlon f of n arguments defined by f(xl,

Xzam,xn} == exp and sublect to the restrictions given in
Section 3.2 {lLe., functlons only appear In application
position). We would like the strictness properties com-
puted for 1t to be the same as for the curried function
defined by £ X, Xg .. % == exp’, where exp’ cor-
responds to exp except that all Tunctlon applications are
curried. In other words, we would llke the set of
"things" needed to evaluate an application of the un-
currled functlon to be the same as those needed to
evaluale the appllcatlon of the corresponding currled
function,

We can state this more preclsely by first creating an In-
duction hypothesis in which se and se’ are two
"strictness™ environments whose bindings preserve the
property 1n question for the first-order and higher-order
cases, respectively. Then what we wish to prove Is:

Theorem 5: N [explise == 8 {[exp’]]:ée’

That 15, the first element of the strictness palr provides
all of the Information that the first-order analysis
provided. A review of the definttions for N and 5 should
convinece the reader of this, but the detalls are omlited

<] - s

Mote that by giving » unique name to esch node in a parse-ires,
one tan use the same strategy to determine all subexpressions that
will be svaluated. This may be useful for compiler optimizations.

here.

4.7. A Final Exampls
The observant reader will have noticed that we did not

provide a strictness palr for cons In the deflnltlon of Ks,
1% turns out that one can deflne cons, car, and cdr as
higher-order functions In the pure lambda calculus, and
get the "lazy® behavior that we desire. The definitions
are:

CONS XY E=gXY

car a = a (Zx ¥.X)

edr a == a (’x y.¥)
Applying our analysis to these functlons Is a good test of
its effectiveness, since higher-order functions get used In
several ways., Indeed, the analysis 1s able to determine
that the function £ defined by:

fpxy=={p— car, cdr) {cons x {4+ x ¥))
15 strict In p and x. The detalls of the analysls are left to
the reader.

5. Acknowledgements

Over the past year many people have contributed In
varlous ways to the overall content of this paper.
Thanks first of all to Slmon Peyton Jones, whose en-
Jlghtening visit insplred us to pursue thls toplc Turther.
‘We are also indebted to Sam Kamin, who first polnted
out that our original domain of strictness ladders could
be slmplified. Albert Meyer was the flrst to state the
complexity result In Appendix I [15]; glven his resuls, our
proof was developed lndependently in conjunction with
Nell Immerman; Dana Angluin and Michael Flscher also
provided invaluable heip.

1. Complexity Result for First-Order
Strictness

Definition: A recursive monotone boolean function
(RMBF) is an equation f(xl,..,,xn) == body, where
body Is an expresslon with syntax:

exp == eXp A exp | exp Vexp | 0| 1|
f(expy,emexp,) | X (1=1,....0)

The semantics are that £ 1s the least fixpolnt of this
equation on the bhoolean doman 0 1, with the standard
interpretation of A and V. That Is, If we view body as a
runction from (2% — 2) — (2" — 2), then f 13 the fixpolnt
found by lterating body applied to zero, the funcilon
which maps all arguments {0 zero:

zero, body(zero), body(body(zero)), ...
(Clearly this sequence terminates at a unique fixpolint,
since there are a finlte number of such funtlons and
body 1s monotonic.)

Definition: (RMBF) An tnstance of RMBF s an equa-
tlon eq == f(xl,...,xn)mbody and a set of n arguments
a = {aje,a). (eqa) ERMBEF i fay,.ay)=1 un-
der the above semantlcs.

Definition: Deterministic exponential tame Is defined
by:
EXPTIME[n] = U TIME{cY
c>0
(See [1] for the definition of TIME classes.)

Theorem: RMBF 1s complete in deterministic exponen-
tlal time In the length of the instance {eq, a). That is,
evaluating a2 RMBE at any polnt takes, 1n the worst case,
an exponential amount of tlme as a [unctlon of the
length of the functlon definltion.

Proof: Clearly 1t takes no longer than exponential time
t0 evaluate a RMBF f(xi,...,xn}mbody at any point.
Observe that the number of arguments (n) Is bounded by
the length of the function, 1, and write down a truth
table of slze 27, all zero. Tteratively find body(g) where
g 18 the functlon represented by the truth table until the
table ceases to change. This Is the truth table for £, We
have ‘taken at most 2" iterations,
body(g)(xs--%,) at 2" places for each lteration.

evaluating

Clearly, evaluating body{g)(x,,...,x;) takes at most I

lookups in 2's table, or 1*n%2", so we took total time
T < 2Px2™xlxn*2” < ¢ for 0 > 8 and sufficiently large L.
(Remember that n < 1),

Now we must show that RMBPF s EXPTIME-hard.
This 18 shown by slmulating an alternating turing
machine {3] with Of{n) scratch space by a recursive
monotone boolean function of length O(n). The function
applied to a set of arguments will return 1 It and only if
the turing machine accepts on the corresponding Input.

Recall from (3] that an alternating turing machine Is 2
tuple:

M == (k7 Q8 g g), where

k Is the number of work tapes,

Q 1s a finlte set of states,

2 1s a finlte Input alphabet.

I’ is a finlte work tape alphabet,

5C(Q x ¥ x £) x (Q x I x {left, right}*)

15 the next move relation,

% € Q 1s the Inlvlal state,

2:Q — { AND, OR, NOT, accept, reject }
1t g(q) = AND (respectively, OR, NOT, accept, refect},
then ¢ 1s sald to be a universal (respectively, existential,
negating, accepting, rejecting) state.

Quoting {3}, “"we require of § that an accepting or
rejecting conflguration have no successors, universal and
existential conflgurations have at least one, and negating
configurations have exactly one." (Recall that a non-
deterministic turing machine has only exlstentlal, accept-
ing, and relecting states, while a determlinistic turing
machlne has® at most one successor for each
configuration.)

Suppose that A Is an ATM which uses at most O(n)
space on loput x ({x] = n). Note that by Theorem 2.5 in

105

[3], we can assume that A has no negating states, In ad-
ditlon, we assume that A does not use 1ts Input tape,
since, In lght of the fact that we have O(n) space, we
could stmulate the Input tape on the work tape by copy-
Ing 1t there flrst. 20 we will take k=1 and [“x{o_ H
An ID (or conflguration) for A (qa € Q.
Je {l,,..,n} T::(ci.*c,z“..,.c»n))o where T s the contents of

looks like

the work tape.

We will stmulate A by a RMBF C such that C{ID) == 1
Just when A halts after belng started In state ID.

Let Aol Pyoen Py BeonsBy LITLA tl,..
our function. The arguments to C will represent the IDs
as follows: 1D (qi, Dy ”E‘x(ai,,.,,t»n)) will correspond $o:

b P be

C(0vnnq=1.....0.
0,0, =1,..,,0,
1, ,'DJ::O...”L
by
1, -t)

Let ZERO ==
and ONE ==

v (b, & 1),
N (pj & tj)

Clearly, If the wvarlables represent a valld ID, then
ZERO 15 true iff the tape head reads a zero, while ONE
Is true if the tape head reads a one.

Let CODE[g,b] (for g€ Q, b € {0,1}) be
1 if qls an accepting state

0 i gisa rejecting state

ANVYCL g,

Py = (pj+iA(d3r:!ei‘£)) v
(pjﬁl/\(dirzﬂgm)),‘.a
2B = (B Aldir=left) Vv

(%ﬂl/\(dlr:rzgm)),..,
sy = {%/\tj) \% {pj A D),

b= {g/\%j} \Y (pl. A =B
)

' g 1s o universal {existentlal) state where the large
AND or OR Is over all {{g,b),{¢",b",dlr)) In 4

Now, C{ID) ==
[ONE A (V g A CODE[g,1])] v
[ZERO A (V g, A CODE[4g,,0])]
{where the OR 1s over all g, € Q)

It should be clear that I € Is called wlih arguments
representing a valld ID, then C only makes recursive calls
with arguments representing valid IDs, s0 we can define
the C "transition relation® I3 $ID' 1f CUID) calls CUID")
recursively 1n one step. It should be clear that the tran-
sitlon relasion % is equivalent to the ATM transition
relation % defined in {3] {because C preserves the state,
position, and tape contents durlng each transition). In

106

addition, by construction C correcily deals with accepting
and relecting states and quantified transitions, SO
C(ID) 15 1 Ml the ATM accepts. (The lnductive proof is
left to the reader, who should note that the semantles of
an ATM Maccepting” are themselves
construction.)

and

a least [lxpolnt

Now we note that the slze of C 1s O(n), where n was
the slze of the Input to the ATM. Thls follows because
|ONE| = |ZBRO]| == O(n), and [CODE[q,b]| == O(n), so

e

= |ONE| + [ZERO| + 2q * [CODE[q,b]| =

Thus RMBF 15 complete for ASPACHE, which by
the same as EXPTIME.

1. Correctness Proofs for First-Order
Strictness

To ald the proofs that follow, we need to more precisely
define the environments envy’ and seny’ as Tixpolnts of
the whereree clauses. These environments should be
viewed as vectors of functions that satisfy the respective
systems of mutually recurslve eguations. Therefore we
can talk about solutions to the system as Instances of
these environments. Consldering the system as a whole,
let <Cenv,senv > be oune such solutlon. Then starving
with the program:

{vens fi(xl,.,.?xk‘} == €)
we deflne the fumcmo;al Tau by:
Tau <en"va,senva> s <envb,senvb>,
where;
envy

| A(vl,,,,,vki).E e,D envﬂ{vl/xl,,.,,vki/xki}
VA
senv, ==

[s0es)\{il,..a,iki}.N el senva[ﬁl/xl,“.,)‘cki/xki]

/ fy]
The desired solution can then be found Iteratively In
the standard way; l.e., by creating Kleene's ascending

chaln of approximatlons, startlng with the "leass,” or
bottom element:

<env6,se_nv0> where
[eres)\(Vl"""vki}’—tl)/fi’ o]
|- Mﬁl”“’ﬁki)"wl—Sv/fi’ voe]

&0y
0

& femed
QDVO

7 e s

Unfortunately, under a strict interpretation of input length, this
proof I8 not quite correct. If we charge for each character in the
function definition, including subscripts, we may need O(nlog(n))
characters to write the whole function definition, because the sub-
script n takes log(n) space (written in binary). Although our proof
still works, we should really be more rigorous and state what type of
reduction we are using to prove completeness. It is clear that a

polynomial-time {(sgy O(nz)) transducer could output € ziven a
description of the machine A, 50 the proof holds under a polynomial-
timne reduction. We believe that a log-space reduction would pot be
difficult.

where | and | g are the bottom elements in the
domalns D and 8w, respectlvely (thus ~st == V), The
next solution Is:

<env1,senv1> == Tau <env0,senv0>
and generally:
<envyseny, > == Tau <lenv, ,,senv, >
Note that <envi,senvi> 1s less deflned than

deflne
< env’',senv’> (defined earller using whererec) as the
jeast upper bound of this ascending chaln, and 1t Is thus
the least flxpolnt of the system.

<envj,senvj> whenever 1< j. We then

Theorem 1: (Flrst-Order Safety).. Let env’ ==
EpIprll and seny’ = Np [prll for some program pr:
pr == {.., fi(xl"""xk.) = e, weo}
1
Then:
x € senv’ [f,]] (fcl,u..,fcki) =
env’ [f;1] (dl,...,dki)xj_, 1=1,...,0
where djmj_ whenever x € fcj, J=1,.,k
Proof: (using fxpoint induction)

Let Psi be the predicate:
Psi <env,senv> ==
x € senv [f] (ﬁl,...,ﬁki) =
env [f,]] (dly..e,dki):i, i=1,...,1

where djm_L whenever x €)‘cj, J=1,...,ki.

Conslder first the least element:
Psi <envgsenvy> = (x€ | = l=1)
which 1s trivially true.

Now suppose Psi Is true for some element
<envk~1,senvk_1> in the ascending chaln. Then con-

sider <envy,senv, > == Tau <env, j,senv; ,>:

Pl < env, ,senv, >

= x €senv, [f1(&,,...,.%) =
env, {Ifi],'} (dl,..,,dm)m_j_, i==1,...,n
where dj.mﬂL whenever x € 5(5

=x & Nlel senvkwl[f(l/xl,..,?im/xm] =
EIIei]}envknlidl/xl,...,dm/xm]
= |,l1=1,..0 (1)

where djzj_ whenever X €)?:j
the proof of which requires structural induction on e,.
First let a = env, ;[d /xye0d /x| and b =
senv, (R, /%y 0% /%] =] whenever
xeﬁj. Then elther:

where

1. e Is a constant. Then the lhs of (1) must be
false, and so the implication s trivially true.

2. 8 1s a bound varlable. Then there 1s some I
such that {1) becomes: x&X, = dy== 1,

which 18 true because of the qualification that

djm_[_ whenever X € icj, =1,k

3. ei = el

true, elther:

- e,,e5. For the lhs of (1) to be

a. x€M ([elIJ b. Then by the (structural)

induction hypothesis, E[{el:{}a == |
and by definition of the conditional,
E[[ei:{]a, == | . Thus the implicatlon
(1) holds.

b. (x €Nle,Ib) AND (x€Nlezlb).
Then by a slmilar applicatlon of the
(structural) inductlon hypothests,
Elella = (pred — |, 1} = | and
thus lmplication (1) follows.

4. &, == f(e;;e--e,). Then (1) becomes:
x EbIEI{N Le,Ib,....N[e T b) =
alfl(Ele,la,...Ele T a)==_|
But a[[f] ==env, , [f] and
b [fll ==senv, , [f], since £ ¢ Bv, leading to:

x € senv [fI (N [Te,Ib,...,N e Tb) =

env [f](Ele,la,...,.Ele Ta)=]
Note now that by the {structural) lnduction
hypothesls, A [[ei]] a== |
xe N [Ie.l]} b. But then the (flxpolint) Induc-

tlon hypothesls lmmediately applles, and the
implication (1) holds.

whenever

5. e == p(e,,..se,). This depends on the cor-
rectness of Kn, which we take as given.

Thus implication (1) holds, and the theorem follows. [

Corollary 1:

Psi <env,senv> =

(x € N[elsenv = Ellellenv[| /x] = |)
Theorem 2: (Termination). If | o Is finite, then the

standard lteratlve technique of determlning S[pl al-
ways terminates in a finlte number of steps, for all p.

Proof: Rather obvious: The strategy terminates when
one iteration ylelds the same solution as the previous one.
Since —LSv is finlte, and the approximatlons are
monotonleally decreasing, a flxpolnt must be reached In a
finite number of steps. [

Iil. Correctness Proof for Higher-Order
Strictness
Theorem 3: {Higher-Order Safety) For all expres-
slons exp, variables v, and corresponding environments
senv and env (with respect to v),

S explisenv is'safe for Ellexplienv.
Proof; We proceed by structural Induction on exp.

(1) exp 1s a constant: Trivially true.

107

(2) exp 15 & bound variable v. Then S{visenv ==
senvIv] and Elvienv == env{vl, but slnce env
snd senv correspond, senv [v] Is safe for env Iv] (wre
v),

(3) exp 1s a functlon application fe. Flirst recall:

S[If ellsenv == ‘<SAP1(S Iflisenv, 8 {elsenv),

((8fIsenv), S [elsenv),>

Elf elenv == (E[flenv) (Elelenv).

Then we proceed by first fixing n > 0, and showing that

SIf elsenv is safe at level n for E[If ellenv., To do

this we must show that for m < n, and 8, safe ab n-1 for

e, (I==1,..,m), then: V€ SAP_(SIf ellsenv, sl,e.,gsm>
= AP_(Elfellenv, e;,...e,)= lp

v € SA.Pm(S[f ellsenv, 8,008)

=ve(8 [felsenv U
SAPm-1((SIf ellsenv)y 8y, 8550008 j}
{by defn of SAPn)
= v & (SAP,(S[flsenv, Slel senv) U
SAP_ (((s8L@f] senv), 8 el senv),
8y5 BgpeneS, b))
(by defn of 8)
= v €(SAP (8 [fIsenv, Slel senv) L
SAP_((8[fDsenv), STelsenv,
8450008 b))
(because SAP_ 8Py 8y, +rey S)
SAPm(8Dy BypeeeS 1)
= v &(SAP,(S[flsenv, 8[elsenv) U
SAPm+1{ S[fTsenv, 8{lelsenv,
SypeenrSyy)
= elther AP (E[[flenv, Efellenv) == |,
or AP_ . (ElfJenv, Ellelenv,
ety)=1p
(since S [fTsenv 1s safe for Ellfllenv and
S Telsenv is safe for Ellellenv)

Then clearly the result:
AP (E[felenv, ey)=1p
follows by a case-by-case analysis (since | e == |).

-

(4) exp Is a lambds abstraction Av.e. Recall:

ghw.ellsenv <9, \9.8 [ETsenv[¥/v]>
EDw.elenv == »x.Elelenv(x/v]

We need to show that S[expllsenv Is safe for
Ellexplenv. That Is, for all n, m < n, and &, safe at

n-1 for e, {I==1,...,m}
vE SAPm{ 8 [Dwv.ellsenv, s 5.8,)
= A,Pm{ Elwv.elenv, e,..,8, J=_1p
Clearly this 1s true for n==0, since:
SAP (8 Dw.el senv) == B_[v.ellsenv == 9
On the other hand, for n > 0, we have:

108

SAPm(Shv.ellsenv, 8,008 3
== 8 _[v.ellsenv U
SAP_ ((8[wv.elsenv)ysy,.0ns)

= QUSAP _ ((S[v.ellsenv)es,,....8)

== SAP_ ,(S[EDsenvis,/v], 85,008,)
But since senv and env correspond, and 8, 1s safe at n-1
for e,, we have senv[s,/v] corresponds to envle, /v]
(wrt v), and thus S[Elsenv[s,/v] 1s safe for
ElE]envle,/v]. Further:

vESAP . (SIEIsenv(s,/v], 808,)
= AP_ _(E[ETlenvle,/v], eg e,)= 1y
= AP_ (EDv.Elenv ey, ey..e)=1p

= AP_(EDwv.Elenv, e,, ey...r8 J=1p

(5) exp Is an equation group {.., f, = e, oo}l
BL{w £, == e, ..}lsenv == 8[le,seny’
whererec senv’ == senv[8 [e,Isenv’/f]]
EL{.., f, = e, ...}]env == Elle,env’
whererec env’ == env(E [eJlsenv’/f]
We must show that S[expllsenv s safe for
Ellexplenv, which we do by flxpolnt lnductlon. First
recall iS? == <l Y, Asp.J_SP> s the bottom element
of 8P. Then let:

senv’ == aox==f, = | op, senv Ix3

eny’y == Mx.x==f, = |, env Ix1
Clearly senv’e is safe for env’ﬂ. Now let:
i)
senv’

3\x@x--—fi — 8 ﬁeiﬂ senv’nnl,senv =1
eny’ e
o

Then we clalm that semr’n is safe for erw’n for all n,

. I 3
wx==f, - EleJenv’ jenv[x]

since senv’ml is safe for env’n_l and thus by the struc-
tural Inductlon hypothesis S {[eil} sen‘v’n_l 1s sale for
3
EfleJenv’ ..
for env’, and
Elexplenv’. O

Then by fixpolnt Induction senv’ Is safe

thus S[explsenv’ s safe for

References

1. Aho, AV, Hopcroft, J.E., and Ullman, I.D.. The
Design and Analysis of Computer Algorithms.
Addison-Wesley, 1874,

2. Burn, G.L., Hankin, C.L., and Abramsky, 8. The
theory and practice of strictness analysis for higher order
functlons. DoC 85/8, Imperial College of Sclence and
Technology, Department of Computing, Aprll, 1985.

3. Chandra, AK., Kozen, D.C,, and Stockmeyer, L.J.
"Alternation". JACM 28, 1 (Jan. 1981).

4. Clack, C., and Peyton Jones, S.L. Strictness analysis
-- 2 practical approach. Functlonal Programming Lan-~
guages and Computer Architecture, Sept, 1985, pp.
35-49,

5. Cousot, P. and Cousot, R. Abstract Interpretation: a
unified lattice model for static analysls of programs by
construction or approxlmation of flxpolnts. 4th ACM
BSym. on Prin. of Prog. Lang., ACM, 1877, pp. 238-252.

6. Damas, L. and Milner, R. Princlple type schemes for
functional languages. 9th ACM Sym. on Prin. of Prog.
Lang., ACM, Aug., 1982.

7. Gordon, J.C.. The Denotational Description of Pro-

grammang Languages. Springer-Verlag, New York, 1979.

8. Hudak, P. ALFL Reference Manual and Program-
mers Gulde. Research Report YALEU/DCS/RR-322,
Second Edition, Yale Unlversity, Oct., 1984.

9. Hudak, P. and Kranz, D. A comblnator-based com-
piler for a functional language.
of Prog. Lang., ACM, Jan., 1984, pp. 121-132.

10, Hudak, P. and Goldberg, B. Distributed execution
of functional programs using serlal combinators.
Proceedings of 1985 Int’l Conf. on Parallel Proc. . (and
IEEE Trans. on Computers October 1985), Aug., 1985,
pp. 831-830.

11th ACM Sym. on Prin.

109

11i. Hudak, P. and Goldberg, B. Serial comblnators:
"optimal® grains of parallellsm. Functlonal Program-
ming Languages and Computer Archltecture, Sept, 1985,
pp. 382-388.

12. Hudak, P. and Young, J. A set-theoretic charac-
terization of function strictness in the Lambda Calculus.
Research Report YALEU/DCS/RR-391, Yale Unlversity,
June, 1985.

13. Johnsson, T. Detectlng when call-by-value can be
used Instead of call-by-need. Laboratory for Program-
mlng Methodology Memo 14, Chalmers University of
Technology, Dept. of Computer Sclence, Oct., 1981,

14. Keller, RM. FEL programmer’s gulde. AMPS TR
7, University of Utah, March, 1982.

15. Meyer, A.R. Complex!ity of program flow-analysls
for strictness.

186. Mycroft, A. The theory and practice of transform-
ing call-by-need into call-by-value. Proc. of Int. Sym. on
Programming, Springer-Verlag LINCS Vol. 83, 1980, pp.
269-281.

17. Mycroft, A. Abstract Interpretation and Optimiz-
ing Trans formations for Applicative Programs. Ph.D.
Th., Unlv. of Edinburgh, 1981.

18. Turner, D.A. SASL language manual. Unlversity of
St. Andrews, 1978.

