
A t o m i c Data A b s t r a c t i o n s i n

• i a, Distributed C o l l a b o r a t ve Editing System
(Ex tended A b s t r a c t)

Irene Greif

Robert Seliger 2
William Weihl

Laboratory %r Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts
A b s t r a c t

This paper describes our experience
implementing CES, a distributed Collaborative
Editing System written in Argus, a language that
includes facilities for managing long-!ived
distributed data. Argus provides atomic actions,
which simplify the handling of concurrency and
faihres, and mechanisms for implementing
atomic data ~5'pes, which ensure serializability
and recoverability of actions that use them. This
paper focuses on the support for atomicity in
Argus, espedatly the support for building new
atomic types. Overall the mechanisms in Argus
made it relatively easy to build CES; however, we
encountered interesting problems in several areas°
For example, much of the processing of an atomic
action in Argus is handled automatically by the
run4ime system; several examples are presented
that illustrate areas where more explicit control
in the implementations of atomic types would be
useful.

1° Introduction
As distributed configurations of high-powered

workstations connected by networks become
prevalent, tools for writing distributed programs
take on increasing importance° This paper
describes our experience implementing CES, a
distributed Collaborative Editing System. CES

Permission to copy without fee all or part of this material is granted
provided that Ihe copies are not made or distributed for direct
commercial advantage, the ArM copyright notice and the title of the
publication and its date appear, and no~ice is given that copying is by
permission of ~he Association for Computing Machinery. To copy
otherwise, or ~o republish, requires a fee and/or specific permission.

© 1986 ACM~%89791-175-Xq/86,.01e0 $00.75

was written in Argus, a language that was
designed to support the construction of reliable
distributed programs° Argus provides atoznic
actions, which simplify the handling of
concurrency and failures. Atomicity is ensured
by ator, dc dater type.s; Argus provides some built-
in atomic types, along with mechanisms to permit
users to build new atomic types. Our focus in
this paper is on the support for atornicity in

Argus, especially the support for building new
atomic types. Our goal is to evaluate the

expressive power provided by Argus and to
develop a better understar~ding of the
requirements of distributed applications.

Our analysis of Argus is based on three
examples taken from CES, a collaborative editing
system developed by the second author [1@ We
originally chose Argus as an implementation
language for CES because it provides a fast
prototyping environment that would allow us to
test our co-authorship system on real users, and
then refine the design based on their input.
Argus did prove to be an excellent development
and debugging environment: the system manages
network communications and installation of
processes at remote sites, and provides a powerful
set of distributed debugging tools. In addRion,
atomic actions proved to be very convenient for

1This research was suppor ted in part by the Advanced
Research Projec ts Agency of the Depa r tmen t of Defense,
moni tored by the Office of Naval Research under
Cont rac t N u m b e r NO0014-83-K-0125, and in par t by the
National Science Founda t ion under g ran t DCR-8510014~

2On leave f rom Hewle t t -Paekard

160

http://crossmark.crossref.org/dialog/?doi=10.1145%2F512644.512659&domain=pdf&date_stamp=1986-01-01

controlling concurrency and handling failures
such as site crashes.

Although many aspects of Argus proved
extremely useful, we encountered interesting
problems in several areas. A question raised by
all three examples is how much of the processing
of an atomic action should be done automatie~flty
by the language and run-time system, and how

much should be coded explicitly by the
programmer. For example, no user code runs in
Argus when an action commits or aborts. The
examples below illustrate that the lack of explicit
control over parts of action processing can lead to
program structures tha t are awkward, indirect, or
inefficient.,

Another problem involves the way in which the
Argus system propagates information about the
commits and aborts of multi-site atomic actions
from site to site, This problem is illustrated by

the second example below, In this ease it appears
that the current semantics of Argus make it
impossible to meet plausible application
requirements.

A third area in which we encountered problems
is performance. In our initial experiments with

the editor, response time was s]ow enough for the
editor to be unusable in realistic testing. When
we ran the editor on machines with more physical
memory, however, we found that response time
was sluggish, but the editor was usable. Thus. it
appears tha t inadequate physical memory was
one of the main causes of the initial performance
problems. The sluggish response time when
running with adequate physical memory can be
at tr ibuted to a number of causes. For example,
the current Argus implementation is an untuned
prototype that is built on top of a kernel that in
many ways is not well suited to its needs. Also,
the structure of the editor itself may be a source
of some overhead. For example, the editor
checkpoints changes to stable storage every few
keystrokes. Most editors in use today save
btlffers to a file much less frequently than every
few keystrokes, so perhaps it is not surprising
that CES appears somewhat sluggish in
comparisom I he current implementation of
stable storage may intensify this problem, since

stable storage is accessed across a network, more
than doubling the access time [11]. As of this
writing, we are in the process of conducting
further experiments to gain a bet ter
understanding of the precise causes of the

performance problems.
In the next section we provide an overview of

Argus, focusing on the aspects that are most
relevant to our examples. In Section 3 we
describe the functionality of the collaborative
e d i t i n g ' s y s t e m and the organization of its
implementation. Next, in Section 4 we present
three examples -- display management, version
stacks, and document management -- that

illustrate the problems mentioned above. We
also discuss possible solutions. Finally, in Section
5 we summarize our conclusions and make some

suggestions for further work.
2. A n O v e r v i e w o f A r g u s

Argus is a programming language designed to
support the construction of reliable distributed
systems, t t is targeted primarily at applications
in which the manipulation and preservation of
long-lived online data are of principal importance.
CES is one such application; others include
banking systems, airline reservation systems,
database systems, and various components of
operating systems. A major issue in such systems
is preserving the consistency of online data in the
presence of concurrency and hardware fgflures.
Argus provides mechanisms, discussed below, to
help the programmer cope with concurrency and
failures. It is based on CLU [10]; as with CLU,
abstraction, especially data abstraction, plays a
key role in the methodology Argus is designed to

support.

2.1. G u a r d i a n s
A distr ibuted system in Argus is composed of a

collection of guardians. A guardian is a resource

that is resilient to crashes and that c a n be
accessed using remote procedure calls, t h e
definition of a guardian includes several

components:

® variables, which refer to objects that
represent the state of the guardian;

161

creators, which are used to create new
instances of the guardian;

operations (called handlers), which
can be invoked by other guardians to
examine or modify the state of the
guardian, and which are the only
means by which one guardian can
manipulate another guardian's state;

* a background process, which can be
used to perform periodic tasks; and

e recovery code, which is used to restore
the guardian to a consistent s tate
after a crash.

The background process in a guardian is started
automatically when the guardian is created and

when it recovers from a crasL

A guardian's variables can be designated as
either e~able or volafileo Objects reachable from

the stable variables are kept on stable storage [7],
which is extremely likely to survive site failures.
When a guardian's site crashes, its stable
variables are restored from stable storage. The
volatile variables are use%l for redundant
information, tike an index for a database, that is
easy to reconstruct after a crash. After a crash
and before the background process or handlers
are ailowed to run, the recovery code in a
guardian reinitializes the volat ib variables.

A guardian can be viewed as a kind of virtual
node. Each guardian has a separate address
space of objeets (similar to a CLU or Lisp heap).
These objects are c o m p l e t @ local to their

guardian; other guardians can access them only
through their guardian's handlers, which are call
using remote procedure call. Arguments to a
remote procedure cult are passed by value, so
'that there is no direct sharing between the
address spaeess of distinct guardians. Data can be
shared among sites, however, at the level of a

guardian. A guardian is itself an object; the
value of a guardian is simply its name. so passing
a guardian as an argument of a remote procedure
call makes it possible for the receiver of the call
~o access the guardian.

2°2° A t o m i c A c t l o n s
Concurrency and failures can be handled in

Argus by making the activities that, use and
manipubote data atomic° Simple syntax is used

to indicate that a sequence of statements should

be executed atomically° Atomic activities, or

action8 as the)' are called in Argus, were first
identified in work on databases. Actions are

characterized by two properties: seriatizability
and recoverability. Serializability means that

the concurrent execution of a group of activities
is equivalent to some serial execution of the same
activities. RecoverabiHt~¢ means that each
activity appears to be all-or-nothing: either it
executes successfully to eompletion (in which case

we say that it commits), or it has no effect on
da ta shared with other activities (in which case
we say that it aborts).

Atomicity simplifies the problem of maintaining
consistency by decreasing the number of eases

that need to be considered to understand the
behavior of a program. Since aborted activities
have no effect, and every concurrent execution is
equivalent to some serial execution, consistency is

ensured as long as every possible serial execution
of committed activities maintains consistency.
Thus, atomicity simplifies the visible failure
modes of a system, and makes it possible to
ignore concurrency when checking %r

consistency.
Atomicity ensures th.at if an activity cannot

complete successfully, it can abort and have no
el%el. To ensure that the effects of committed
actions survive site crashes, the s ta te of a
guardian is kept on stable storage. The Argus
system ensures tha t modifications made by an

action to any objects accessible through the
stable variables of a guardian are saved on stable
storage before the action commits.

Argus also supports nested actions (or
subactions), which can be used to obtain
concurrency within a single action and to isolate
the effects o f failures. For example, a remote
procedure call in Argus is executed as a subaction
of the csJling action; as a result, the call appears
to occur exactly zero or one times. If a failure
occurs during the call and causes the call to be

162

aborted, the calling action need not be aborted.
Instead, it can try an alternative if one exists.

The main difference between a top-level action
(one with no parent) and a subaction is that
when a subaction commits, its ef%cts need not be
saved on stable storage. Instead, if a crash
causes the effects of a committed subset.ion to be
lost, the el%eta of the subaction can be undone
everywhere by aborting the action's parent or
some other ancestor. A two-phase commit
protocol is used when a top-level action commits
to ensure that the effects of the action and all its

descendants are saved on stable storage before
tlie action commits; if some of the effects have
been lost in a crash, the action is forced to abort.

203. G u a r d i a n s v e r s u s C l u s t e r s

Argus provides two mechanisms for
implementing data abstractions. The cluster,
borrowed from CLU, is used to implement a data
type each of whose objects belongs to a single
guardian. A cluster consists of a description of
the new type 's representation, along with
implementations for each of the operations
provided by the type. A cluster's operations are
called using local procedure call: arguments are
passed by sharing (as in CLU and Lisp), the call
executes in the same guardian as its caller, and
no subaction is created for the call. A duster ' s
objects cannot be the target of remote procedure

calls,
A guardian also implements a kind of data

type. tt differs from the data types implemented
by clusters in that its objects are always remote.
and its operations are called using remote
procedure call. Since remote access is likely to be
significantly more expensive than local access, the
designer of a distrib~ited application will have to
think carefully about the distribution of data in
the system. Thus, the primary difference
between a dus ter and a guardian -- one provides
local objects, and the other remote objects --
arises naturMly in the design of a distributed
system. Other differences between guardians and
clusters, however, can force a designer to use a
guardian where a cluster might be more
appropriate. For examples a guardian can be
active, in the sense that it can have a background

process. However, there is no similar way of
obtaining a process for a local object. A guardian
can also include recovery code for restoring its
representation to a consistent state after a crash;
no similar capability is available for a cluster.
The examples below illustrate the problems
caused by these differences between guardians

and clusters.

2.4. User-deflned A t o m i c Data Types

Atomicity of activities in Argus is ensured by
atomic data types, whose operations provide
appropriate synchronization gild recovery for
actions using objects of the type.
Synchronization for the builtqn atomic types in
Argus is accomplished using strict two-phase
locking [2, 8] with read and write locks. The
usual semantics applies: read locks can be
shared, but write locks conflict with read and
write locks. Recovery for the built-in atomic
types is ensured by making a eopy of an object
the first t ime an action executes an operation
that changes the objeet 's state, and then making
any changes on the copy. If the action aborts,
the copy is discarded; if the action commits, the
original version is discarded and replaced with

the changed copy.
The built-in types permit relatively little

concurrency among actions. Argus also provides
mechanisms for implementing new, highly
concurrent atomic types [20], These mechanisms
are "implicit," in the sense that no user code is
run when actions commit and abort. Instead,
synchronization and recovery must be
accomplished by including some built-in atomic
objects at some level of the representation of a

user-defined atomie object.

One important question in the design of a
language for distributed programs is how much of
the proeessing of an atomic action should be
handled automatically by the system and how
much should be handled explicitly by the
programmer. The Argus system handles many
things automatically: it keeps track of the sites
visited by an atomic action and the objects used
at each site, it handles the details of t h e twc~
phase commit used to ensure that the outcome of
the action is recorded consistently at all sites,

163

and it manages the locks and versions fbr built-tin

atomic objects. It is clear that the programmer
does not want to handle most of these issues; for
example, the details of the two.-phase commit
protocol and keeping track of the sites visited by
an action are easily handled by the system, and
there is ao apparent reasoi~ fo:r letting the

programmer handle them more directly.
However, the examples below show that more
explicit control over the processing of commits
a n d aborts at each object (i.e, lock and version

management) would be useful.
Weihl [18, 19] has already observed some

limitations of Argus% implicit handling of
commits and aborts, and has proposed an
alternative structure in which the programmer
can provide explicit commit and abort operations
as part of the implementatio~l of a data type.
Each operation on the type must inform the run-
time system when an action uses an object; when
the action later commits or aborts, the system
invokes the commit or abort operation as
appropriate. The problems with Argus's implicit

approach illustrated by the first two examples
below are nicely solved by Weihl's a.pproach~
The examples also illustrate other areas where
more explicit control might be useful.
3. Distr ibuted Editor:

Funct ional i ty and Design
CES is a document editor that supports the

collaboration by a group of authors on a shared
document. A C E S document consists of a
structural component, viewed by the author as an
outline, and a set of textual components, referred
to as the document "nodes"° The nodes are
arbitrarily sized blocks of text. A. readable view

of the document is built by ordering the nodes
according to the outline in the structural
component. The operations in CES extend t h o s e
of a conventional real-time editor with functions
%r creating and manipulating structured
documents and for modifying the structure of a
document independently of the text°

CES is meant to b e used in a distributed
environment and allows sharing of documents
among multiple authors. Each document node is
"owned" by- an individual author° All authors

share access to the document structure, but each

is the primary a@;hor for his own ,lodes° .An
author 's nodes reside at his own machb~.c, so that

the text of the document is physbal ly distribt, ted
across all machines of all co-authors. To hnprove
availabilRy~ a copy of a document 's s tructure is
kept at all of the sites with access to the

document. Tile copies of this replicated data are
kept consistent as users make local changes.

While authors are working oil separate nodes of
the docmnent, all can be working independently.
An author can read any node of a document at
any time. If someone else is writing that node,
the reader will see a slightly out -obdate version

of the node -- CSS coordinates the a~thor's
activities and tries to minimize the delay in
making new versions avaih~ble for readh~g. If two

or more authors try to write in the same node at
the same time, synchronization facilities are
invoked to prevent inconsistencies in the text by

locking out all but one author.

The nature of this application is such that an
author could accidentally keep a document
section locked for an arbitrarily long time. For

example, he might receive a phone call and stop
editing for a while. To protect, against
unintentional holding of locks, "tickle" locks

were designed to be held for as long as some
editing activity continues, and to be released if
requested by a co--author after an idle period.
Rather than abort changes made by the original
holder of the lock, small actions are cornmitted
during the t ime that the lock is held, and all of
these actions remain visible when th.e tickle lock

is released. The correct scope of such small
actions may vary for different situations and
different users [3]o The system currently commRs
user activities after certain "significant" editing
commands such as word detedons and carriage
returns.

When authors find themselves examining the
sa~me node of a document;, they may want to
eoordinate their work more ctosely, perhaps even
shifting into a reabtime meeting [t2, 13] in which
a group of co-authors talk to each other over a
voice conneetion while viewing the document on

t h d r individual screens. To support this, we do

164
i ¸

not prevent reading of text that is being

modified° Instead, screens of all readers are
updated at regular intervals as each small action

commits.

4o Examptes f rom the Edi tor
In this section we present three examples of

user-defined data types to illustrate the problems

we encountered in using Argus to build CES. In

the first exampte~ the physical screen is

encapsulated in an abstraction whose job is to
refresh the screen when an action that wrote on

the screen aborts. The techniques available in

Argus for detecting tha t an action has aborted
and then taking appropriate action are indirect

and awkward to use. A user-defined abort
operation would give a simpler and more direct
solution. The first example also illustrates a
problem arising from the differences between
guardians and clusters. A guardian can have a

background process, but there is no simple way of
associating a background process with a local

object.
In the second example, we consider a data type

designed to permit a high level of concurrency
among users of a document. As in the first
example, the implicit handling of commits and

aborts leads to awkward program structures that
could be avoided by using a more explicit

approach. In addition, the way in which Argus
propagates information about the commits and

aborts of actions h'om site to site does not

provide a sufficiently strong semantics to permit
us to meel certain application requirements.

In the third example, we consider a large data
structure tha t is kept on stable storage. Because

stable storage is relatively slow, it is important to
minimize the amount of data written to stable

storage as part of the commit of each action.
Argus permits obieets to be designated as either

stable or
guardian;

then its

storage. 1
or reiniti~

only be 1:
su ggests t

in a cluster.

4,1. D i s p l a y i n g T e x t

The display buffer and the physical screen %r a

CES user are encapsulated in a single abstract
object, the display. The job of the display object
is to keep the screen consistent with the contents
of the buffer. As a user edits a document, the
objects representing the document are modified.

At the same time, text is written to that user's

display buffer, and a side-effect is made visible to
the user: text appears on the screen. This

immediate feedback is required to keep the user
apprised of the system's response to keyboard
input. Each change to the document (and the
corresponding change to the display) is made as
part of an atomic action. A user sees his changes
on his screen as he types characters; however, if

several users are editing the same document, one

user's changes do not become visible to other
users until the atomic action in which they are

made commits. If this atomic action instead
aborts, it is necessary to restore the first user's

screen to its state at the start of the action. To
accomplish this, we need to be able to detect that

an action has aborted and to take appropriate

action to reh'esh the screen. Since no user code
runs when an action commits or aborts, indirect

methods must be used to detect aborts.

The display object is implemented as an Argus

guardian. The state of the display guardian
includes two counters. The first, the
commit count, is used to keep track of the
number of actions that have used the display and

committed. The second, the action count, is
used to keep track of the number of actions tha t
have used the display, regardless of whether they

committed or aborted. The state of the guardian
also contains a lock tha t is acquired by every
action that uses the display, and released when
the action commits or aborts. It" the
action count is greater than the commi t count,

then either some action is currently using the
display or some action used the display and

aborted. We can tell whether an action is
currently using the display by testing the lock in
the guardian's state. Thus. we can detect tha t

an actiou has used the display and aborted.
The background process in the display guardian

165

is dedicated to the task of checking for aborted
~ctions and, if necessary, refreshing the screen.
When an abort is detected and the screen has
been refreshed, the acf ioncount and

cornmi~count are reset to indicate that all
aborts have been processed.

Unfortunately, the only way for the background
process to detect, aborts in Argus is for it. to busy-
wait, checking periodically whether an abort has
occurred. To avoid the overhead of busy-waiting,
we added a new type, called a trigger queue, to
Argus~ A process can catl an operation to wait
on a trigger queue, causing the process to be
blocked until another process calls an operation
to wa]ce up the waiting process. (This data type
could not be implemented in the language itself,
since Argus contains no primitives that permit
one process to wake up another process. We will
return to this issue in ~qeetion 4.4.)

The trigger queue is used in the following
manner to avoid busy-waiting. The background
process in the display guardian begins by waiting
on a trigger queue. When an action invokes a
handler to use the guardian, it acquires the lock
in the guardian's state, and then wakes up the

background process. When the background
process is scheduled to run (which might be

immediately after it is awakened and might be at
some later time depending on how the system
happens to schedule processes), it also at tempts
to acquire this lock. If the handler action has not
yet committed or aborted, the background
process will be blocked, waiting for the lock, until
the action (not just the handler) completes. If
the action has completed, the background process
checks whether the action had aborted, and if so
it refreshes the screen. It then waits again on the
trigger queue. With this program structure, the
background process only wakes up when a
handler action starts to use the guardian, and
only checks whether an action has aborted after
the action has actually completed. Thus~ the
likelihood that the background process witl do
unnecessary work is significantly tess than it
would be if we used busy-waiting.

Using u background process to detect aborts,
however, has other problems besides the overhead

of busy-waiting. First, in Argus a background
process can only be defined as part of the
background code of a guardian° This makes it
difficult to encapsulate the entire implementation
of a type whose objects need a background
process in a single module, unless that module is
a guardian, tn other words, it is difficult, to build
a cluster-based type, whose objects are local to a
guardian, and associate a background process
with each of' the type's objects.

In the prototype of CES that was built, the
display abstraction is a guardian, but this choice
would have to be reconsidered to permit more
flexible use of windows on the display. We might
desire to manage each window on the display
separately. Each window should be a local object
in a single screen manager, so we would define a
cluster-based window data type to handle
window management. If, however, we need to
use a background process to detect the aborts of
actions that use windows, each window object
must be known to some background process in
the guardian. This means that any code that
creates a window object must also record the
object in some global da ta . s tructure in the
guardian so that the appropriate background
process can find it. Furthermore, the window
abstraction must provide operations that permit
a background process to detect aborted actions
and refresh windows on the screen° The
modularity of the system would be improved if
these details of using windows were hidden from
their users.

Second, there are timing problems with using a
background process to detect aborts. If the
background process does not wake up
immediately after an action that used the display
aborts, another action might a t tempt to use the
display before the background process detects the
abort and refreshes the screen. This means that
each action that uses the display must cheek
before updating the screen whether an earlier
action had aborted, and then refresh the screen if
necessary. We cannot eliminate the background
process, however, since if no new action a t tempts
to use the display for a tong time, we need the
background process to ensure tha t the screen is

166

refreshed quickly. Thus, responsibility for
detecting aborts and refreshing the screen cannot
be allocated to a single piece of code or a single
process.

The ability to associate a background process
with a local object within a guardian, rather than

just with the guardian itself, would avoid the
modulari ty problems discussed above. However,
the timing problems would not be solved. In
addition, using a background process for each
window object could be a source of performance
problems.

If the programmer could define explicit commit
and abort operations as part of the
implementation of each type. the abort operation
could refresh the screen as needed. With this
approach, there would be no need for a
background process or for busy-waiting; instead,
the abort operation would run only when needed.
The modularity problems with multiple windows
would be avoided, since there is no need for a
background process, and hence no need for
coordination between the window type and the
guardian in which it is used. The timing
problems mentioned above would also be avoided
if the commit and abort operations explicitly
release locks, rather than having the system
release locks automatically as is currently the
ease in Argus.

4.2 . V e r s i o n S t a c k s
CES maintains a stack of versions of each

document node as it is modified by the various
co-authors. The version stack is used to log
changes by different authors and to allow an
author to back up to a previous version. Each
version stack provides operations to push a new
version onto the stack, to pop a version off the
stack, to read the top of the stack, and to reset

the stack (flushing the current contents and
pushing a single new entry). A checkpoint can be
taken by pushing a new version onto the stack
and then modifying that version; operations since

the last checkpoint can be undone by pepping the
top version off the stack. Version stacks are
atomic, so modifications t o n version stack do not
become permanent until the action that made
them commits. Thus, until an action commits,

changes made by the action can be undone
simply by aborting the action. The backup
capability provided by a version stack is useSal
for undoing a sequence of operations that is

longer than a single atomic action.

One of the goals of CES is to permit each
author to read the entire document, even while
other authors are editing parts of the document°
Each author would like to see recent changes
made by other authors. However, if one author is
in the middle of some changes to a node, other
authors should not be permitted to read what
might be an inconsistent state of the node. In
such a situation authors read a version that is
not being modified by another author but is as
close so the t o p as possible. An extra operation
on version stacks, fasttop, is proYided for this
purpose. The specification of the fasttop
operation is nondeterministie: the version
returned is not necessarily the sop one. but is
guaranteed to be no older than one returned in a
previous call unless there has been an intervening
pop or reset operation. This specification permits
more concurrency among actions than would an
ordinary " top" operation. In particular, one
action can execute fasttop while another action
executes push or pop as long as the version
returned by fasttop is not the pushed or popped
version.

The implementation of the version stack follows
the 15aradigm for highly concurrent atomic types
in Argus, such as the semiqueue type. defined in
[20]. The representation of a version stack

consists of a non-atomic sequence of atomic
objeetso The non-atomic sequence object in the
representation is used to achieve the concurrency
permitted by the type's specification; the
existence o f this non-atomic object in the
representation • is not visible outside the
implementation, so ag the abstract level Version
stacks appear atomic to their users. The objects
in the sequence must be atomic objects to ensure
that modifications made by aborted actions
appear to be undone.

When an action modifies a version stack, i t m a y
simply modify an atomic object in the
representation of the stack (e.g., when popping a

167

version off the stack), or it. may create a new
atomic object and add it to the sequence (e.g,
when pushing a new version onto the stack)~ If'
the action later aborts, any modified atomic
objects are restored to theh ° previous states.
Modifications to the non-atmnic sequence,
however, are not undone. Instead, the atomic
objects added to the sequence by the aborted
action are p]aced in a state that allows other
actions to detect, that the objects' creator
aborted~ and to act, as if they were not present in
the sequence at all.

In implementing the version stack, we
encountered two problems. The first is once
again related to the inability to write explicit
comrnit and abort procedures for new types, The

second involves the way Argus propagates
information about aborts and cornn~its of actions
from site to site.

The first problem is that the representation of a
version stack gradually accumulates objects that
do not represent useful data. For example, as
mentioned above, when an action adds a new
atomic object, to the representation and then
aborts, the atomic object is no longer needed.
However, it still uses space in the representation.
To prevent the representation of a version stack

Jfrom growing arbitrarily large with such useless
components, it is necessary to find and discard
such objects.

This kind of garbage collection of
representations is typical of implementations of
user-defined atomic types in Argus; we have
observed it in many other examples (e.g.,
see [i8, 20])° It can be accomplished by cleaning
up the representation as part of some or alt of the
operations on the object, or by using a

background process tha t performs this task
periodically. Using a background process for this
purpose has the same problems as for detecting
aborts. Cleaning up the representation as part of
the operations, however, also has problems.
Scanning the representation t o find useless
components imposes some overhead, so it should
not be done too frequently. It should also not be
done too infrequently, however, since then the
representation wilt grow and the operations will

take longer to run. lit can be difficult to decide
how frequently, and as part of which operations,

tills cleanup task should be performed. Using
WeihI's alternative approach, in which the
programmer provides commit and abort
operations that are executed automatically by the
system, it is possible to remove d~ta from the

representation of an object exactly whorl it ls no
longer needed, rather than having to notice at

some later thne that the data is no longer needed

and theu discard it.

The second problem reveals itself in some
surprising behavior visible on the screen to end-

users of CES. Suppose the user is working on one
machine, and part of the document library is

stored on another machine. The user could make
a change to a document node stored on the
second machine in one action. Once that action
has committed, the user could ask to see that
part of the document (using the fasttop

operation). If the machine on which the
document node is stored does not yet know that
the first action committed, the fasttop operation
might return an older version of the node. The
user knows that the node has been changed and
that the modifications have been comrnitted, but
until the commit event is known at all machines
involved he may see information that is out of
date.

The delays that result in this behavior are due
to the way in which commits and aborts of
actions are processed by the .Argus system.
When an action commits or aborts, the event is
recorded locally on the machine where the action
is running, but is not necessarily communicated
immediately to other machines at which the
action (or its subactions) might have run. If the
action holds a lock on other machines and
another action tries to acquh'e the lock, the Argus
system witt send query messages to other
machines to find out the outcome of the action
holding the lock. tf the action that tries to
acquire the lock uses an operation that tests the
lock but does not wait for it, however, the action
will be told that the lock is unavailable. Such
tests are common in implementations of user-
defined atomie types; t%r example, the fasttop

168

operation scans the representation of the version

stack looking for a component atomic object that
is not locked.

There are two ways in which the semantics of

Argus could be changed to solve this problem.

One is to change tile operation that tests whether
a lock is held so that rather than always

returning immediately, it waits until it receives a

message in response to its query. This response

could indicate that the action that holds the lock
is still active, or that it has commRted, or that it

has aborted. If the action has committed or

aborted, the lock can be released in the
appropriate manner. If the action is still active,

then the action tha t is testing the lock should be
informed that the lock is still held. The problem

with this approach is tha t the delay until a

response is received could be long. Furthermore,

it is difficult to know how long to wait before

deciding tha t the other machine must be down or
that the network must be broken. In addition, if

we decide to sfop waiting, it is no1 clear what

answer ~,o give the action that is testing the lock,

The second solution is to require that
information about commits and aborts be
propagated among machines more quickly. We
could require that if there ~s a chain of events

leading from the commit or abort of an action ~o
a test for a lock held by tha t action, vhen tile test

must indicate that the lock is no longer held. 'By

"chain of events" we mean events connected by
the "happens before" relation of [6], and

including events on a single machine and
messages over the network.~ The difficulty with
this approach is that it is not clear whether it can

be implemented efficiently enough. It appears to
require tha t each machine keep track of all the
actions known by it to have committed or

aborted, and that this information be propagated

on all messages.
4.3. D o c u m e n t L i b r a r y

As mentioned earlier, a CES document consists

of a structural component, viewed by the author
as an outline, and a set of textual e0mpenents.

referred to as the document "nodes". The nodes

are arbitrarily sized blocks of text. The CES
document library is a collection of documents

whose storage is distributed among guardians on

each author's site. In each guardian, the contents
of the library are kept on stable storage to

protect, 'the data against crashes. If an atomic
action modifies the library, the modified objects

must be copied to stable storage by the time that
the action commits° If a guardian containing
part of the document library trashes, the copies
of objects on stable storage are used to restore
the objects to their most recent committed state.

Stable storage is expensive, and relatively slow
compared to virtual memory. Thus, R is

important to lainimize the total amount of data
kept on stable storage, and to copy as little data

as possible when a given action commits. Argus
allows objects to be partitioned into pieces that
are copied to stable storage independently, so

that only those pieces that are actually modified
by an action need to be copied when the action
commits. Also, recall that the state of a guardian

can be partitioned into ,stable and volatile
variables, so that information that can be
reconstructed after a crash need not be kept on
stable storage, kOf course, there is a trade-off
here. since reinitializing the volatile variables of a
guardian may cost more than keeping them on
stable storage°]

The representation of a CES document node
contains several fields: a unique identifier; a

version stack° which contains old versions of the
node for backing up over a scope larger than a
single atomic action: and a tickle lock. which
consists of the name of the user holding the lock
and the time at which it was last %iekled."

Some of this information does not need to be
recorded on stable s-corage. For example, tickle
locks are intended to be released whenever a

guardian crashes, so there is no need to record
the state of a tickle lock on stable storage.

avoid T h e mechanisms in Argus can be
~rit ing the entire representation le to
stable storage, but it is awkward to ~here
are two possible approaches. The first is to use

the partitioning of a guardian's variables into
stable,~ and volatile subsets. Since each document
node is identifie([by a unique identifier, the tickle
locks %r nodes could be maintained in a separate

169

table that maps node identifiers to tickle locks
and is kept in a volatile variable. Whenever a
node is used, the table of tickle locks in the
guardian's state must be accessed to cheek and
update the node's tickle lock.

The second approach is to use the mutex type
in Argus~ A mutex object is essentially a
container for another object. The mutex object
Rself performs several hmetions. :First, it can be
used to ensure mutual exclusion among processes
using the contained object. Second, each distinct
mutex object is written independently to stable
storage. Furthermore, when an action eommits~ a
mutex object is only copied to stable storage if
the action had executed the changed operation
(provided by the mutex type) on the object.
Thus, if we enclose the tickle lock in the
representation of a document node in a mutex
object and never call the changed operation, the
tickle took will be copied to stable storage only
once when it. is created and never after that..

Both of these approaches, however, have
problems. The problem with the first approach is
that whenever a document node is created, a
tickle lock must be created for it in the
guardian's table. In .addition, whenever the node
is used, the table must be accessed to get the
tickle lock. The variables holding a guardian's
state can be accessed directly by code in the

guardian, but are not accessible to code in other
modules. Instead, the table must be passed as an
argument to any code that creates or uses a
document node. As in the previous example, this
need to coordinate use of local objects with the
rest of the code in the guardian leads to a toss of
modularity.

The problem with the second approach arises if
a node's tickle lock needs to be reinitialized after
a crash. The only way of reinRializing an object
after a crash is to do it irn the recovery code of a
guardian. This means that a record of all objects
requiring reinitialization must be kept in part of
the guardian's state so the recovery code can find
the objects. As with the first approach, the part
of the guardian's state recording these o~ects
must be passed as an argument to aJl code that
creates a document node (though not to all code

that merely uses a document node), tn fact,
tiekte locks do not need to be reinRialized after a
crash, so the second approach would work well
for CESo Nevertheless, we can easily imagine
situations in which this approach would not

work.

The problems illustrated by this example are
similar to the problem discussed in the previous
section, in which a background process can only
be obtained as part of a guardian. R~covery code
can be written only for a guardian, and objects
can be partitioned into stable and volatile sets
only at the top level of a guardian's state. This
means that it can be difficult to encapsulate all
details of an object's implementation inside a
single module, unless that module is a guardian.
This example suggests that expticR control over
recovery would be useful in clusters as well as in
guardians.
4.4. S u m m a r y

All three examples illustrate problems with the
support in Argus for building user-defined atomic
data types. The first and second examples
illustrate problems that can be solved by
providing explicit commit and abort operations as
part of the implementation of a data abstraction.
The first and third examples also illustrate
modularity problems caused by the differences
between guardians and clusters.

We can imagine several possible solutions to the
problems with crash recovery illustrated by the
third example. As mentioned earlier, it seems
worth exploring alternative approaches that
provide more direct control over how an object is
stored on stable storage. Approaches that
obviate the need for such fine control are Mso
worth investigating; for example, it may be
possible to design a hardware stable storage
device with access times comparable to virtual
memory. If stable storage were cheap and fast
enough, one would not need to be concerned with
optimizing its use.. It mac also be possible to
dispense with stable storage altogether by
replicating objects on several sites (though. sueh
an approach may require complicated recovery
algorithms). It is not clear which, of these

170

approaches will lead to the simplest and clearest
programs.

The problems with propagation of commit and
abort information illustrated by the second
example could be difficult to solve. As noted
above, a naive approach to implementing a
stronger semantics would require inordinate
amounts of communication. It is not clear to
what extent the communication can be reduced.
As an aside, we note that this problem is similar
to the orphan detection_ problem [17, 9]; similar
solutions may work here as well.

The lack in Argus of a primitive for one process
to awaken another process makes it impossible to
program a type such as the trigger queue, and
thus %tees some applications to use busy-waiting.
A signalling primitive was not included in the
language primarily because the significant events
for synchronizing and scheduling atomic actions
are the completion (commit or abort) of other

actions. Since no user code runs when actions
commit and abort, there is no way for one action
to signal another when the first action finishes.
WeihFs proposal for explicit commit and abort
operations includes a signalling mechanism that
provides much finer control over scheduling of
actions.

5o C o n c l u s i o n s
The main features of CES were suggested by

related work on co-authorship [1, 16, 4] and on
systems that support collaboration in other
applications such as calendar management [5],
real-time conferencing [13] and software
development [15]. Most of the details of the
design, including the basic structure of
documents and the user interface requirements.
were set out before we decided to use Argus.
Thus the CES experience was not preconceived as
an Argus-programming exercise and so provides
an objective test ease for that programming
environment. It is the first large program written

in Argus.
The question of how much expressive power to

provide in a language is always a difficult one.
Much of the processing of an atomic action in
Argus is handled automatically by the run-time
system. The examples above illustrate that more

explicit control over some aspects might be
useful. More examples need to be studied to

decide exactly how much control is needed and
what form it should take. Nevertheless, the
examples presented here arose in a real
application, and thus indicate that serious
attention should be paid to the problems they
illustrate.
g. Acknowledgements

We thank Barbara Liskov for her many helpful
comments on drafts of this paper, Bob Scheifler
and Paul Johnson for their help during the
construction of CES, and all the members of the
Programming Methodology Group at MIT for
their feedback on the ideas presented in this
paper.

Y. R e f e r e n c e s

io Englebart, D. C. Toward High-Performance
Knowledge Workers. Office Automation
Conference Digest, AFIlPS, April, 1982, pp.
279-290.

2o Eswaran, I(. P , et al.. "The notions of
consistency and predicate locks in a database
system"° Comm. ACM 19, 11 (November 1978),
624-633.

3. Gifford° D. K. and J. E. Donahue.
Coordinating Independent Atomic Actions.
Proceedings of the IEEE CompCon85, IEEE.
February, 1985, pp. 92-94.

4. Greifo t. Computer Support for Cooperative
Office Activities. Proceedings of the 1982 Office
Automation Conference, AEIPS, San Francisco.
California. April, 1982.

5. Greif, L Teleconferencing and the Computer-
Based Office Workstation. Teleconferencing and
Interactive Media '82,. Madison. Wisconsin, May,
1982.

6. Lamport , L. "Time, Clocks, and the ,,
Ordering of Events in a Distributed System .
Communications of the ACM 21, 7 (?uly 1978),
558-565,

7. Lampson, B. Lecture Notes in Computer
Science. Volume I05: Atomic transactions. In
Distributed Systems: Architecture and

t71

Impkmentation, Goos and Hartmanis, Eds.,
Springer-Verlag, Berlin, 1981, pp. 246-285.

8. Liskov, B. and R. Seheifler. "Guardians and
Actions: Linguistic Support for Robust,
Distributed Programs"° ACM g~ansactions on
Progra~ming Languages and Systems 5, 3 (July
1983), 38>404.

9. Liskov, B. Lecture Notes in Computer
Seience. Volume 190: The Argus Language and
System. In Distributed Systems: Methods and
7bols for Specification; An Advanced Course,
Coos and Hartmanis, Eds, Springer-Verlag,
Berlin, 1985, pp. 343-430.

i0. Liskov, B. e~ aL CLU reference manual. In
Lecture Notes in Computer Science, Coos and
Hartmanis, Ed., Springer-Verlag, Berlin, 198to

11. Oki, B., B. Liskov, and R. Scheifler.
Reliabte object storage to support atomic actions.
Proceedings of the Tenth ACM Symposium on
Operating Systems Principles, Rosario Resor%
Washington, December, 1985.

12, Sarin, S. and I. Greif. Software for
Interastive On-Line Con%fences. Proceedings of
the Second Conference on Office Information
Systems, ACM, Toronto, Canada, June, 1984, pp.
45-58.

13. Satin, S. and I. Greif. "Computer-Based
Real-Time Conferences"° IEEE Computer 1& 10
(October 1985), 33-4& Special issue on Computer-
Based Multimedia Communication.

14. Setiger, R. The Design and Implementation
of a Distributed Progrmn for Collaborative
Editing. Master Th., Massachusetts Institute of
Technology,September 1985.

15. Sluizer, S. and P. Cashman. XCP: An
Experimental Toot for Managing Cooperative
Activity. Proceedings of the ACM Computer
Science Con%renee, ACM, New Orleans, LA,
March, 1985.

10o Trigg, R. H. A Network-Based Approach ~o
Text Handling. Ph.D. Th., UniversiV of
Maryland, November i98&

17. WMker~ E, Orphan detection in the Argus
system. Master Th., Massaehuse%s Institute of

Technology,June 1984, Available as
M T/LCS/T {-3 6
t8. Weihl, W. E. SpecijVcation and
Implementation of Ator~'ie Data l~pes. Ph.D.
Th., M~tssachasetts Institute of Technology,
Mm'eh t984. Available as Technical Report
MIT/LCS/TR-3 4.

19. Weihl, W. Lingvlstic Support lbr Atomic
Data Types. Proceedings of the Workshop on
Persistence and Date~ Types, SeotMnd, August,
:~985.

20. Weihl, W. and B. Liskov. "Implementation
of R.esilient, Atomic Data Types". A.CM
Transaction on Programming Languages and
Systems 7, 2 (April 1085).

172

