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This paper describes our experience 
implementing CES, a distributed Collaborative 
Editing System written in Argus, a language that 
includes facilities for managing long-!ived 
distributed data. Argus provides atomic actions, 
which simplify the handling of concurrency and 
faihres, and mechanisms for implementing 
atomic data ~5'pes, which ensure serializability 
and recoverability of actions that use them. This 
paper focuses on the support for atomicity in 
Argus, espedatly the support for building new 
atomic types. Overall the mechanisms in Argus 
made it relatively easy to build CES; however, we 
encountered interesting problems in several areas° 
For example, much of the processing of an atomic 
action in Argus is handled automatically by the 
run4ime system; several examples are presented 
that illustrate areas where more explicit control 
in the implementations of atomic types would be 
useful. 

1° Introduction 
As distributed configurations of high-powered 

workstations connected by networks become 
prevalent, tools for writing distributed programs 
take on increasing importance° This paper 
describes our experience implementing CES, a 
distributed Collaborative Editing System. CES 
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was written in Argus, a language that was 
designed to support the construction of reliable 
distributed programs° Argus provides atoznic 
actions, which simplify the handling of 
concurrency and failures. Atomicity is ensured 
by ator, dc dater type.s; Argus provides some built- 
in atomic types, along with mechanisms to permit 
users to build new atomic types. Our focus in 
this paper is on the support for atornicity in 

Argus, especially the support for building new 
atomic types. Our goal is to evaluate the 

expressive power provided by Argus and to 
develop a better understar~ding of the 
requirements of distributed applications. 

Our analysis of Argus is based on three 
examples taken from CES, a collaborative editing 
system developed by the second author [1@ We 
originally chose Argus as an implementation 
language for CES because it provides a fast 
prototyping environment that would allow us to 
test our co-authorship system on real users, and 
then refine the design based on their input. 
Argus did prove to be an excellent development 
and debugging environment: the system manages 
network communications and installation of 
processes at remote sites, and provides a powerful 
set of distributed debugging tools. In addRion, 
atomic actions proved to be very convenient for 
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controlling concurrency and handling failures 
such as site crashes. 

Although many aspects of Argus proved 
extremely useful, we encountered interesting 
problems in several areas. A question raised by 
all three examples is how much of the processing 
of an atomic action should be done automatie~flty 
by the language and run-time system, and how 

much should be coded explicitly by the 
programmer. For example, no user code runs in 
Argus when an action commits or aborts. The 
examples below illustrate that  the lack of explicit 
control over parts of action processing can lead to  
program structures tha t  are awkward, indirect, or 
inefficient., 

Another problem involves the way in which the 
Argus system propagates information about the 
commits and aborts of multi-site atomic actions 
from site to site, This problem is illustrated by 

the second example below, In this ease it appears 
that the current semantics of Argus make it 
impossible to meet plausible application 
requirements. 

A third area in which we encountered problems 
is performance. In our initial experiments with 

the editor, response time was s]ow enough for the 
editor to be unusable in realistic testing. When 
we ran the editor on machines with more physical 
memory, however, we found that response time 
was sluggish, but  the editor was usable. Thus. it 
appears tha t  inadequate physical memory was 
one of the main causes of the initial performance 
problems. The sluggish response time when 
running with adequate physical memory can be 
at tr ibuted to a number of causes. For example, 
the current Argus implementation is an untuned 
prototype that  is built on top of a kernel that  in 
many ways is not well suited to its needs. Also, 
the structure of the editor itself may be a source 
of some overhead. For example, the editor 
checkpoints changes to stable storage every few 
keystrokes. Most editors in use today save 
btlffers to a file much less frequently than every 
few keystrokes, so perhaps it is not surprising 
that CES appears somewhat sluggish in 
comparisom I he current implementation of 
stable storage may intensify this problem, since 

stable storage is accessed across a network, more 
than doubling the access time [11]. As of this 
writing, we are in the process of conducting 
further experiments to gain a bet ter  
understanding of the precise causes of the  

performance problems. 
In the next section we provide an overview of 

Argus, focusing on the aspects that  are most 
relevant to our examples. In Section 3 we 
describe the functionality of the collaborative 
e d i t i n g ' s y s t e m  and the organization of its 
implementation. Next, in Section 4 we present 
three examples -- display management, version 
stacks, and document management -- that 

illustrate the problems mentioned above. We 
also discuss possible solutions. Finally, in Section 
5 we summarize our conclusions and make some 

suggestions for further work. 
2. A n  O v e r v i e w  o f  A r g u s  

Argus is a programming language designed to 
support  the construction of reliable distributed 
systems, t t  is targeted primarily at applications 
in which the manipulation and preservation of 
long-lived online data are of principal importance. 
CES is one such application; others include 
banking systems, airline reservation systems, 
database systems, and various components of 
operating systems. A major issue in such systems 
is preserving the consistency of online data in the 
presence of concurrency and hardware fgflures. 
Argus provides mechanisms, discussed below, to 
help the programmer cope with concurrency and 
failures. It is based on CLU [10]; as with CLU, 
abstraction, especially data abstraction, plays a 
key role in the methodology Argus is designed to 

support.  

2.1.  G u a r d i a n s  
A distr ibuted system in Argus is composed of a 

collection of guardians. A guardian is a resource 

that  is resilient to crashes and that  c a n  be 
accessed using remote procedure calls, t h e  
definition of a guardian includes several 

components: 

® variables, which refer to objects that  
represent the state of the guardian; 
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creators, which are used to create new 
instances of the guardian; 

operations (called handlers), which 
can be invoked by other guardians to 
examine or modify the state of the 
guardian, and which are the  only 
means by which one guardian can 
manipulate another guardian's state; 

* a background process, which can be 
used to perform periodic tasks; and 

e recovery code, which is used to restore 
the guardian to a consistent s tate 
after a crash. 

The background process in a guardian is started 
automatically when the guardian is created and 

when it recovers from a crasL 

A guardian's variables can be designated as 
either e~able or volafileo Objects reachable from 

the stable variables are kept  on stable storage [7], 
which is extremely likely to survive site failures. 
When a guardian's site crashes, its stable 
variables are restored from stable storage. The 
volatile variables are use%l for redundant 
information, tike an index for a database, that  is 
easy to reconstruct after a crash. After a crash 
and before the background process or handlers 
are ailowed to run, the recovery code in a 
guardian reinitializes the volat ib  variables. 

A guardian can be viewed as a kind of virtual 
node. Each guardian has a separate address 
space of objeets (similar to a CLU or Lisp heap). 
These objects are c o m p l e t @  local to their 

guardian; other guardians can access them only 
through their guardian's handlers, which are call 
using remote procedure call. Arguments to a 
remote procedure cult are passed by value, so 
'that there is no direct sharing between the 
address spaeess of distinct guardians. Data  can be 
shared among sites, however, at the level of a 

guardian. A guardian is itself an object; the 
value of a guardian is simply its name. so passing 
a guardian as an argument of a remote procedure 
call makes it possible for the receiver of the call 
~o access the guardian. 

2°2° A t o m i c  A c t l o n s  
Concurrency and failures can be handled in 

Argus by making the activities that, use and 
manipubote data atomic° Simple syntax is used 

to indicate that a sequence of statements should 

be executed atomically° Atomic activities, or 

action8 as the)' are called in Argus, were first 
identified in work on databases. Actions are 

characterized by two properties: seriatizability 
and recoverability. Serializability means that 

the concurrent execution of a group of activities 
is equivalent to some serial execution of the same 
activities. RecoverabiHt~¢ means that each 
activity appears to be all-or-nothing: either it 
executes successfully to eompletion (in which case 

we say that  it commits), or it has no effect on 
da ta  shared with other activities (in which case 
we say that  it aborts). 

Atomicity simplifies the problem of maintaining 
consistency by decreasing the number of eases 

that  need to be considered to understand the 
behavior of a program. Since aborted activities 
have no effect, and every concurrent execution is 
equivalent to some serial execution, consistency is 

ensured as long as every possible serial execution 
of committed activities maintains consistency. 
Thus, atomicity simplifies the visible failure 
modes of a system, and makes it possible to 
ignore concurrency when checking %r 

consistency. 
Atomicity ensures th.at if an activity cannot 

complete successfully, it can abort  and have no 
el%el. To ensure that  the effects of committed 
actions survive site crashes, the s ta te  of a 
guardian is kept  on stable storage. The Argus 
system ensures tha t  modifications made by an 

action to any objects accessible through the 
stable variables of a guardian are saved on stable 
storage before the action commits. 

Argus also supports  nested actions (or 
subactions), which can be used to obtain 
concurrency within a single action and to isolate 
the effects o f  failures. For  example,  a remote 
procedure call in Argus is executed as a subaction 
of the csJling action; as a result, the call appears 
to occur exactly zero or one times. If a failure 
occurs during the call and causes the call to be 

162 



aborted, the calling action need not be aborted. 
Instead, it can try an alternative if one exists. 

The main difference between a top-level action 
(one with no parent) and a subaction is that 
when a subaction commits, its ef%cts need not be 
saved on stable storage. Instead, if a crash 
causes the effects of a committed subset.ion to be 
lost, the el%eta of the subaction can be undone 
everywhere by aborting the action's parent or 
some other ancestor. A two-phase commit 
protocol is used when a top-level action commits 
to ensure that  the effects of the action and all its 

descendants are saved on stable storage before 
tlie action commits; if some of the effects have 
been lost in a crash, the action is forced to abort. 

203. G u a r d i a n s  v e r s u s  C l u s t e r s  

Argus provides two mechanisms for 
implementing data abstractions. The cluster, 
borrowed from CLU, is used to implement a data 
type  each of whose objects belongs to a single 
guardian. A cluster consists of a description of 
the new type 's  representation, along with 
implementations for each of the operations 
provided by the type. A cluster's operations are 
called using local procedure call: arguments are 
passed by sharing (as in CLU and Lisp), the call 
executes in the same guardian as its caller, and 
no subaction is created for the call. A duster ' s  
objects cannot be the target of remote procedure 

calls, 
A guardian also implements a kind of data 

type. tt differs from the data types implemented 
by clusters in that  its objects are always remote. 
and its operations are called using remote 
procedure call. Since remote access is likely to be 
significantly more expensive than local access, the 
designer of a distrib~ited application will have to 
think carefully about  the distribution of data in 
the system. Thus, the primary difference 
between a dus ter  and a guardian -- one provides 
local objects, and the other remote objects -- 
arises naturMly in the  design of a distributed 
system. Other differences between guardians and 
clusters, however, can force a designer to  use a 
guardian where a cluster might be more 
appropriate. For examples a guardian can be 
active, in the sense that  it can have a background 

process. However, there is no similar way of 
obtaining a process for a local object. A guardian 
can also include recovery code for restoring its 
representation to a consistent state after a crash; 
no similar capability is available for a cluster. 
The examples below illustrate the problems 
caused by these differences between guardians 

and clusters. 

2.4. User-deflned A t o m i c  Data Types 

Atomicity of activities in Argus is ensured by 
atomic data  types, whose operations provide 
appropriate synchronization gild recovery for 
actions using objects of the type. 
Synchronization for the builtqn atomic types in 
Argus is accomplished using strict two-phase 
locking [2, 8] with read and write locks. The 
usual semantics applies: read locks can be 
shared, but  write locks conflict with read and 
write locks. Recovery for the built-in atomic 
types is ensured by making a eopy of an object 
the first t ime an action executes an operation 
that  changes the objeet 's  state, and then making 
any changes on the copy. If the action aborts, 
the copy is discarded; if the action commits, the 
original version is discarded and replaced with 

the changed copy. 
The built-in types permit relatively little 

concurrency among actions. Argus also provides 
mechanisms for implementing new, highly 
concurrent atomic types [20], These mechanisms 
are "implicit," in the sense that  no user code is 
run when actions commit and abort. Instead, 
synchronization and recovery must be 
accomplished by including some built-in atomic 
objects at some level of the representation of a 

user-defined atomie object. 

One important  question in the  design of a 
language for distributed programs is how much of 
the proeessing of an atomic action should be 
handled automatically by the system and how 
much should be handled explicitly by the 
programmer. The  Argus system handles many 
things automatically: it keeps track of the sites 
visited by an atomic action and the objects used 
at each site, it  handles the details of t h e  twc~ 
phase commit used to ensure that  the outcome of 
the action is recorded consistently at  all sites, 
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and it manages the locks and versions fbr built-tin 

atomic objects. It is clear that the programmer 
does not want to handle most of these issues; for 
example, the details of the two.-phase commit 
protocol and keeping track of the sites visited by 
an action are easily handled by the system, and 
there is ao apparent reasoi~ fo:r letting the 

programmer handle them more directly. 
However, the examples below show that more 
explicit control over the processing of commits 
a n d  aborts  at each object (i.e, lock and version 

management) would be useful. 
Weihl [18, 19] has already observed some 

limitations of Argus% implicit handling of 
commits and aborts, and has proposed an 
alternative structure in which the programmer 
can provide explicit commit and abort operations 
as part  of the implementatio~l of a data type. 
Each operation on the type must inform the run- 
time system when an action uses an object; when 
the action later commits or aborts, the system 
invokes the commit or abort operation as 
appropriate. The problems with Argus's implicit 

approach illustrated by the first two examples 
below are nicely solved by Weihl's a.pproach~ 
The examples also illustrate other areas where 
more explicit control might be useful. 
3. Distr ibuted Editor: 

Funct ional i ty  and Design 
CES is a document editor that supports the 

collaboration by a group of authors on a shared 
document. A C E S  document consists of a 
structural component, viewed by the author as an 
outline, and a set of textual components, referred 
to as the document "nodes"° The nodes are 
arbitrarily sized blocks of text. A. readable view 

of the document is built by ordering the nodes 
according to the outline in the structural 
component. The operations in CES extend t h o s e  
of a conventional real-time editor with functions 
%r creating and manipulating structured 
documents and for modifying the structure of a 
document independently of the text° 

CES is meant  to b e  used in a distributed 
environment and allows sharing of documents 
among multiple authors. Each document node is 
"owned" by- an individual author° All authors 

share access to the document structure, but each 

is the primary a@;hor for his own ,lodes° .An 
author 's nodes reside at his own machb~.c, so that 

the text of the document  is physbal ly  distribt, ted 
across all machines of all co-authors. To hnprove 
availabilRy~ a copy of a document 's  s tructure is 
kept at all of the sites with access to the 

document. Tile copies of this replicated data are 
kept consistent as users make local changes. 

While authors are working oil separate nodes of 
the docmnent, all can be working independently. 
An author can read any node of a document at 
any time. If someone else is writing that  node, 
the reader will see a slightly out -obdate  version 

of the node -- CSS coordinates the a~thor's 
activities and tries to minimize the delay in 
making new versions avaih~ble for readh~g. If two 

or more authors try to write in the same node at 
the same time, synchronization facilities are 
invoked to prevent inconsistencies in the text by 

locking out all but  one author. 

The nature of this application is such that an 
author could accidentally keep a document 
section locked for an arbitrarily long time. For 

example, he might receive a phone call and stop 
editing for a while. To protect, against 
unintentional holding of locks, "tickle" locks 

were designed to be held for as long as some 
editing activity continues, and to be released if 
requested by a co--author after an idle period. 
Rather  than abort  changes made by the original 
holder of the  lock, small actions are cornmitted 
during the t ime that  the lock is held, and all of 
these actions remain visible when th.e tickle lock 

is released. The correct scope of such small 
actions may vary for different situations and 
different users [3]o The system currently commRs 
user activities after certain "significant" editing 
commands such as word detedons and carriage 
returns. 

When authors find themselves examining the 
sa~me node of a document;, they may want  to 
eoordinate their work more ctosely, perhaps even 
shifting into a reabtime meeting [t2, 13] in which 
a group of co-authors talk to each other over a 
voice conneetion while viewing the document  on 

t h d r  individual screens. To support  this, we do 
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not prevent reading of text that  is being 

modified° Instead, screens of all readers are 
updated at regular intervals as each small action 

commits. 

4o Examptes  f rom the Edi tor  
In this section we present three examples of 

user-defined data types to illustrate the problems 

we encountered in using Argus to build CES. In 

the first exampte~ the physical screen is 

encapsulated in an abstraction whose job is to 
refresh the screen when an action that wrote on 

the screen aborts. The techniques available in 

Argus for detecting tha t  an action has aborted 
and then taking appropriate action are indirect 

and awkward to use. A user-defined abort 
operation would give a simpler and more direct 
solution. The first example also illustrates a 
problem arising from the differences between 
guardians and clusters. A guardian can have a 

background process, but there is no simple way of 
associating a background process with a local 

object. 
In the second example, we consider a data type 

designed to permit a high level of concurrency 
among users of a document. As in the first 
example, the implicit handling of commits and 

aborts leads to awkward program structures that  
could be avoided by using a more explicit 

approach. In addition, the way in which Argus 
propagates information about the commits and 

aborts of actions h'om site to site does not 

provide a sufficiently strong semantics to permit 
us to meel certain application requirements. 

In the third example, we consider a large data 
structure tha t  is kept on stable storage. Because 

stable storage is relatively slow, it is important to 
minimize the amount of data written to stable 

storage as part  of the commit of each action. 
Argus permits obieets to be designated as either 

stable or 
guardian; 

then its 

storage. 1 
or reiniti~ 

only be 1: 
su ggests t 

in a cluster. 

4,1. D i s p l a y i n g  T e x t  

The display buffer and the physical screen %r a 

CES user are encapsulated in a single abstract 
object, the display. The job of the display object 
is to keep the screen consistent with the contents 
of the buffer. As a user edits a document, the 
objects representing the document are modified. 

At the same time, text is written to that user's 

display buffer, and a side-effect is made visible to 
the user: text appears on the screen. This 

immediate feedback is required to keep the user 
apprised of the system's response to keyboard 
input. Each change to the document (and the 
corresponding change to the display) is made as 
part of an atomic action. A user sees his changes 
on his screen as he types characters; however, if 

several users are editing the same document, one 

user's changes do not become visible to other 
users until the atomic action in which they are 

made commits. If this atomic action instead 
aborts, it is necessary to restore the first user's 

screen to its state at the start  of the action. To 
accomplish this, we need to be able to detect that  

an action has aborted and to take appropriate 

action to reh'esh the screen. Since no user code 
runs when an action commits or aborts, indirect 

methods must be used to detect aborts. 

The display object is implemented as an Argus 

guardian. The state of the display guardian 
includes two counters. The first, the 
commit  count, is used to keep track of the 
number of actions that  have used the display and 

committed. The second, the action count, is 
used to keep track of the number of actions tha t  
have used the display, regardless of whether they 

committed or aborted. The state of the guardian 
also contains a lock tha t  is acquired by every 
action that  uses the display, and released when 
the action commits or aborts. It" the 
action count is greater than the commi t  count, 

then either some action is currently using the 
display or some action used the display and 

aborted. We can tell whether an action is 
currently using the display by testing the lock in 
the guardian's state. Thus. we can detect tha t  

an actiou has used the display and aborted. 
The background process in the display guardian 
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is dedicated to the task of checking for aborted 
~ctions and, if necessary, refreshing the screen. 
When an abort is detected and the screen has 
been refreshed, the acf ioncount  and 

cornmi~count are reset to indicate that  all 
aborts have been processed. 

Unfortunately,  the only way for the background 
process to detect, aborts in Argus is for it. to busy- 
wait, checking periodically whether an abort has 
occurred. To avoid the overhead of busy-waiting, 
we added a new type, called a trigger queue, to 
Argus~ A process can catl an operation to wait 
on a trigger queue, causing the process to be 
blocked until another process calls an operation 
to wa]ce up the waiting process. (This data  type 
could not be implemented in the language itself, 
since Argus contains no primitives that  permit 
one process to wake up another process. We will 
return to this issue in ~qeetion 4.4.) 

The trigger queue is used in the following 
manner to avoid busy-waiting. The background 
process in the display guardian begins by waiting 
on a trigger queue. When an action invokes a 
handler to use the guardian, it acquires the lock 
in the guardian's state, and then wakes up the 

background process. When the background 
process is scheduled to run (which might be 

immediately after it is awakened and might be at 
some later time depending on how the system 
happens to schedule processes), it also at tempts  
to acquire this lock. If the handler action has not 
yet  committed or aborted, the background 
process will be blocked, waiting for the lock, until 
the action (not just  the handler) completes. If 
the action has completed, the background process 
checks whether the action had aborted, and if so 
it refreshes the screen. It then waits again on the 
trigger queue. With this program structure, the 
background process only wakes up when a 
handler action starts to use the guardian, and 
only checks whether an action has aborted after 
the action has actually completed. Thus~ the 
likelihood that  the background process witl do 
unnecessary work is significantly tess than it 
would be if we used busy-waiting. 

Using u background process to detect  aborts, 
however, has other problems besides the overhead 

of busy-waiting. First, in Argus a background 
process can only be defined as part  of the 
background code of a guardian° This makes it 
difficult to encapsulate the entire implementation 
of a type whose objects need a background 
process in a single module, unless that  module is 
a guardian, tn other words, it is difficult, to build 
a cluster-based type, whose objects are local to a 
guardian, and associate a background process 
with each of' the type's objects. 

In the prototype of CES that  was built, the 
display abstraction is a guardian, but this choice 
would have to be reconsidered to permit more 
flexible use of windows on the display. We might 
desire to manage each window on the display 
separately. Each window should be a local object 
in a single screen manager, so we would define a 
cluster-based window data  type to handle 
window management.  If, however, we need to 
use a background process to detect the aborts of 
actions that  use windows, each window object 
must be known to some background process in 
the guardian. This means that  any code that  
creates a window object must also record the 
object in some global da ta .  s tructure in the 
guardian so that  the appropriate background 
process can find it. Furthermore,  the window 
abstraction must provide operations that  permit 
a background process to detect aborted actions 
and refresh windows on the screen° The 
modularity of the system would be improved if 
these details of using windows were hidden from 
their users. 

Second, there are timing problems with using a 
background process to detect aborts. If the 
background process does not wake up 
immediately after an action that  used the display 
aborts, another action might a t tempt  to use the 
display before the background process detects the 
abort and refreshes the screen. This means that  
each action that  uses the display must cheek 
before updating the screen whether an earlier 
action had aborted, and then refresh the screen if 
necessary. We cannot eliminate the background 
process, however, since if no new action a t tempts  
to use the display for a tong time, we need the 
background process to ensure tha t  the screen is 
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refreshed quickly. Thus, responsibility for 
detecting aborts  and refreshing the screen cannot 
be allocated to a single piece of code or a single 
process. 

The ability to associate a background process 
with a local object within a guardian, rather than 

just  with the guardian itself, would avoid the 
modulari ty problems discussed above. However, 
the timing problems would not be solved. In 
addition, using a background process for each 
window object  could be a source of performance 
problems. 

If the programmer could define explicit commit 
and abort operations as part of the 
implementation of each type. the abort operation 
could refresh the screen as needed. With this 
approach, there would be no need for a 
background process or for busy-waiting; instead, 
the abort operation would run only when needed. 
The modularity problems with multiple windows 
would be avoided, since there is no need for a 
background process, and hence no need for 
coordination between the window type and the 
guardian in which it is used. The timing 
problems mentioned above would also be avoided 
if the commit and abort  operations explicitly 
release locks, rather than having the system 
release locks automatically as is currently the 
ease in Argus. 

4.2 .  V e r s i o n  S t a c k s  
CES maintains a stack of versions of each 

document node as it is modified by the various 
co-authors. The version stack is used to log 
changes by different authors and to allow an 
author to back up to a previous version. Each 
version stack provides operations to push a new 
version onto the stack, to pop a version off the 
stack, to read the top of the stack, and to reset 

the stack (flushing the current contents  and 
pushing a single new entry). A checkpoint can be 
taken by pushing a new version onto the stack 
and then modifying that  version; operations since 

the last checkpoint can be undone by pepping the 
top version off the stack. Version stacks are 
atomic, so modifications t o n  version stack do not 
become permanent until the action that made 
them commits. Thus, until an action commits, 

changes made by the action can be undone 
simply by aborting the action. The backup 
capability provided by a version stack is useSal 
for undoing a sequence of operations that  is 

longer than a single atomic action. 

One of the goals of CES is to permit each 
author to read the entire document, even while 
other authors are editing parts of the document° 
Each author would like to see recent changes 
made by other authors. However, if one author is 
in the middle of some changes to a node, other 
authors should not be permitted to read what 
might be an inconsistent state of the node. In 
such a situation authors read a version that  is 
not being modified by another author but  is as 
close so the t o p  as possible. An extra operation 
on version stacks, fasttop, is proYided for this 
purpose. The specification of the fasttop 
operation is nondeterministie: the version 
returned is not necessarily the sop one. but is 
guaranteed to be no older than one returned in a 
previous call unless there has been an intervening 
pop or reset operation. This specification permits 
more concurrency among actions than would an 
ordinary " top"  operation. In particular, one 
action can execute fasttop while another action 
executes push or pop as long as the version 
returned by fasttop is not the pushed or popped 
version. 

The implementation of the version stack follows 
the 15aradigm for highly concurrent atomic types 
in Argus, such as the semiqueue type. defined in 
[20]. The representation of a version stack 

consists of a non-atomic sequence of atomic 
objeetso The non-atomic sequence object in the 
representation is used to achieve the concurrency 
permitted by the type's  specification; the 
existence o f  this non-atomic object  in the 
representation • is not visible outside the 
implementation, so ag the abstract  level Version 
stacks appear atomic to their users. The objects 
in the  sequence must  be atomic objects to ensure 
that  modifications made by aborted actions 
appear to be  undone. 

When an action modifies a version stack, i t m a y  
simply modify an atomic object in the  
representation of the stack (e.g., when popping a 
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version off the stack), or it. may create a new 
atomic object and add it to the sequence (e.g, 
when pushing a new version onto the stack)~ If' 
the action later aborts, any modified atomic 
objects are restored to theh ° previous states. 
Modifications to the non-atmnic sequence, 
however, are not undone. Instead, the atomic 
objects added to the sequence by the aborted 
action are p]aced in a state that allows other 
actions to detect, that  the objects'  creator 
aborted~ and to act, as if they were not present in 
the sequence at all. 

In implementing the version stack, we 
encountered two problems. The first is once 
again related to the inability to write explicit 
comrnit and abort  procedures for new types, The 

second involves the way Argus propagates 
information about aborts and cornn~its of actions 
from site to site. 

The first problem is that  the representation of a 
version stack gradually accumulates objects that  
do not represent useful data. For example, as 
mentioned above, when an action adds a new 
atomic object, to the representation and then 
aborts, the atomic object is no longer needed. 
However, it still uses space in the representation. 
To prevent the representation of a version stack 

Jfrom growing arbitrarily large with such useless 
components, it is necessary to find and discard 
such objects. 

This kind of garbage collection of 
representations is typical of implementations of 
user-defined atomic types in Argus; we have 
observed it in many other examples (e.g., 
see [i8, 20])° It can be accomplished by cleaning 
up the representation as part  of some or alt of the 
operations on the object, or by using a 

background process tha t  performs this task 
periodically. Using a background process for this 
purpose has the same problems as for detecting 
aborts. Cleaning up the representation as part of 
the operations, however, also has problems. 
Scanning the representation t o  find useless 
components imposes some overhead, so it should 
not be done too frequently. It should also not be 
done too infrequently, however, since then the 
representation wilt grow and the operations will 

take longer to run. lit can be difficult to decide 
how frequently, and as part  of which operations, 

tills cleanup task should be performed. Using 
WeihI's alternative approach, in which the 
programmer provides commit and abort 
operations that  are executed automatically by the 
system, it is possible to remove d~ta from the 

representation of an object exactly whorl it ls no 
longer needed, rather than having to notice at 

some later thne that  the data  is no longer needed 

and theu discard it. 

The second problem reveals itself in some 
surprising behavior visible on the screen to end- 

users of CES. Suppose the user is working on one 
machine, and part  of the document library is 

stored on another machine. The user could make 
a change to a document node stored on the 
second machine in one action. Once that  action 
has committed, the user could ask to see that  
part of the document (using the fasttop 

operation). If the machine on which the 
document node is stored does not yet know that  
the first action committed, the fasttop operation 
might return an older version of the node. The 
user knows that  the node has been changed and 
that  the modifications have been comrnitted, but 
until the commit event is known at all machines 
involved he may see information that  is out of 
date. 

The delays that  result in this behavior are due 
to the way in which commits and aborts  of 
actions are processed by the .Argus system. 
When an action commits or aborts, the event is 
recorded locally on the machine where the action 
is running, but  is not necessarily communicated 
immediately to other machines at which the 
action (or its subactions) might have run. If the 
action holds a lock on other machines and 
another action tries to acquh'e the lock, the Argus 
system witt send query messages to other 
machines to find out the outcome of the action 
holding the lock. tf the action that  tries to 
acquire the lock uses an operation that tests the 
lock but  does not wait for it, however, the action 
will be told that  the lock is unavailable. Such 
tests are common in implementations of user- 
defined atomie types; t%r example, the fasttop 
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operation scans the representation of the version 

stack looking for a component atomic object that  
is not locked. 

There are two ways in which the semantics of 

Argus could be changed to solve this problem. 

One is to change tile operation that  tests whether 
a lock is held so that  rather than always 

returning immediately, it waits until it receives a 

message in response to its query. This response 

could indicate that  the action that  holds the lock 
is still active, or that it has commRted, or that it 

has aborted. If the action has committed or 

aborted, the lock can be released in the 
appropriate manner. If the action is still active, 

then the action tha t  is testing the lock should be 
informed that  the lock is still held. The problem 

with this approach is tha t  the delay until a 

response is received could be long. Furthermore, 

it is difficult to know how long to wait before 

deciding tha t  the other machine must be down or 
that the network must be broken. In addition, if 

we decide to sfop waiting, it is no1 clear what 

answer ~,o give the action that  is testing the lock, 

The second solution is to require that 
information about commits and aborts be 
propagated among machines more quickly. We 
could require that if there ~s a chain of events 

leading from the commit or abort of an action ~o 
a test for a lock held by tha t  action, vhen tile test 

must indicate that the lock is no longer held. 'By 

"chain of events" we mean events connected by 
the "happens before" relation of [6], and 

including events on a single machine and 
messages over the network.~ The difficulty with 
this approach is that  it is not clear whether it can 

be implemented efficiently enough. It appears to 
require tha t  each machine keep track of all the  
actions known by it to have committed or 

aborted, and that  this information be propagated 

on all messages. 
4.3. D o c u m e n t  L i b r a r y  

As mentioned earlier, a CES document consists 

of a structural component, viewed by the author 
as an outline, and a set of textual e0mpenents. 

referred to as the document "nodes". The nodes 

are arbitrarily sized blocks of text. The CES 
document library is a collection of documents 

whose storage is distributed among guardians on 

each author's site. In each guardian, the contents 
of the library are kept on stable storage to 

protect, 'the data  against crashes. If an atomic 
action modifies the library, the modified objects 

must be copied to stable storage by the time that  
the action commits° If a guardian containing 
part  of the document library trashes, the copies 
of objects on stable storage are used to restore 
the objects to their most recent committed state. 

Stable storage is expensive, and relatively slow 
compared to virtual memory. Thus, R is 

important  to lainimize the total amount of data  
kept on stable storage, and to copy as little data  

as possible when a given action commits. Argus 
allows objects to be partitioned into pieces that  
are copied to stable storage independently, so 

that  only those pieces that  are actually modified 
by an action need to be copied when the action 
commits. Also, recall that  the state of a guardian 

can be partitioned into ,stable and volatile 
variables, so that  information that  can be 
reconstructed after a crash need not be kept on 
stable storage, kOf course, there is a trade-off 
here. since reinitializing the volatile variables of a 
guardian may cost more than keeping them on 
stable storage°] 

The representation of a CES document node 
contains several fields: a unique identifier; a 

version stack° which contains old versions of the 
node for backing up over a scope larger than a 
single atomic action: and a tickle lock. which 
consists of the name of the user holding the lock 
and the time at which it was last %iekled." 

Some of this information does not need to be 
recorded on stable s-corage. For example, tickle 
locks are intended to be released whenever a 

guardian crashes, so there is no need to record 
the state of a tickle lock on stable storage. 

avoid T h e  mechanisms in Argus can be 
~rit ing the entire representation le to 
stable storage, but it is awkward to ~here 
are two possible approaches. The first is to use 

the partitioning of a guardian's variables into 
stable,~ and volatile subsets. Since each document 
node is identifie([ by a unique identifier, the tickle 
locks %r nodes could be maintained in a separate 

169 



table that maps node identifiers to tickle locks 
and is kept in a volatile variable. Whenever a 
node is used, the table of tickle locks in the 
guardian's state must be accessed to cheek and 
update the node's tickle lock. 

The second approach is to use the mutex type 
in Argus~ A mutex object is essentially a 
container for another object. The mutex object 
Rself performs several hmetions. :First, it can be 
used to ensure mutual exclusion among processes 
using the contained object. Second, each distinct 
mutex object is written independently to stable 
storage. Furthermore, when an action eommits~ a 
mutex object is only copied to stable storage if 
the action had executed the changed operation 
(provided by the mutex type) on the object. 
Thus, if we enclose the tickle lock in the 
representation of a document node in a mutex 
object and never call the changed operation, the 
tickle took will be copied to stable storage only 
once when it. is created and never after that.. 

Both of these approaches, however, have 
problems. The problem with the first approach is 
that whenever a document node is created, a 
tickle lock must be created for it in the 
guardian's table. In .addition, whenever the node 
is used, the table must be accessed to get the 
tickle lock. The variables holding a guardian's 
state can be accessed directly by code in the 

guardian, but are not accessible to code in other 
modules. Instead, the table must be passed as an 
argument to any code that creates or uses a 
document node. As in the previous example, this 
need to coordinate use of local objects with the 
rest of the code in the guardian leads to a toss of 
modularity. 

The problem with the second approach arises if 
a node's tickle lock needs to be reinitialized after 
a crash. The only way of reinRializing an object 
after a crash is to do it irn the recovery code of a 
guardian. This means that  a record of all objects 
requiring reinitialization must be kept in part of 
the guardian's state so the recovery code can find 
the objects. As with the  first approach, the part 
of the guardian's state recording these o~ects 
must be passed as an argument to aJl code that 
creates a document node (though not to all code 

that merely uses a document node), tn fact, 
tiekte locks do not need to be reinRialized after a 
crash, so the second approach would work well 
for CESo Nevertheless, we can easily imagine 
situations in which this approach would not 

work. 

The problems illustrated by this example are 
similar to the problem discussed in the previous 
section, in which a background process can only 
be obtained as part of a guardian. R~covery code 
can be written only for a guardian, and objects 
can be partitioned into stable and volatile sets 
only at the top level of a guardian's state. This 
means that it can be difficult to encapsulate all 
details of an object's implementation inside a 
single module, unless that module is a guardian. 
This example suggests that expticR control over 
recovery would be useful in clusters as well as in 
guardians. 
4.4. S u m m a r y  

All three examples illustrate problems with the 
support in Argus for building user-defined atomic 
data types. The first and second examples 
illustrate problems that can be solved by 
providing explicit commit and abort operations as 
part of the implementation of a data abstraction. 
The first and third examples also illustrate 
modularity problems caused by the differences 
between guardians and clusters. 

We can imagine several possible solutions to the 
problems with crash recovery illustrated by the 
third example. As mentioned earlier, it seems 
worth exploring alternative approaches that 
provide more direct control over how an object is 
stored on stable storage. Approaches that 
obviate the need for such fine control are Mso 
worth investigating; for example, it may be 
possible to design a hardware stable storage 
device with access times comparable to virtual 
memory. If stable storage were cheap and fast 
enough, one would not need to be concerned with 
optimizing its use.. It mac also be possible to 
dispense with stable storage altogether by 
replicating objects on several sites (though. sueh 
an approach may require complicated recovery 
algorithms). It is not clear which, of these 
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approaches will lead to the simplest and clearest 
programs. 

The problems with propagation of commit and 
abort information illustrated by the second 
example could be difficult to solve. As noted 
above, a naive approach to implementing a 
stronger semantics would require inordinate 
amounts of communication. It is not clear to 
what extent the communication can be reduced. 
As an aside, we note that  this problem is similar 
to the orphan detection_ problem [17, 9]; similar 
solutions may work here as well. 

The lack in Argus of a primitive for one process 
to awaken another process makes it impossible to 
program a type such as the trigger queue, and 
thus %tees some applications to use busy-waiting. 
A signalling primitive was not included in the 
language primarily because the significant events 
for synchronizing and scheduling atomic actions 
are the completion (commit or abort) of other 

actions. Since no user code runs when actions 
commit and abort, there is no way for one action 
to signal another when the first action finishes. 
WeihFs proposal for explicit commit and abort 
operations includes a signalling mechanism that  
provides much finer control over scheduling of 
actions. 

5o C o n c l u s i o n s  
The main features of CES were suggested by 

related work on co-authorship [1, 16, 4] and on 
systems that  support  collaboration in other 
applications such as calendar management [5], 
real-time conferencing [13] and software 
development [15]. Most of the details of the 
design, including the basic structure of 
documents and the user interface requirements. 
were set out  before we decided to use Argus. 
Thus the CES experience was not preconceived as 
an Argus-programming exercise and so provides 
an objective test  ease for that  programming 
environment. It is the first large program written 

in Argus. 
The question of how much expressive power to 

provide in a language is always a difficult one. 
Much of the  processing of an atomic action in 
Argus is handled automatically by the run-time 
system. The examples above illustrate that  more 

explicit control over some aspects might be 
useful. More examples need to be studied to 

decide exactly how much control is needed and 
what form it should take. Nevertheless, the 
examples presented here arose in a real 
application, and thus indicate that  serious 
attention should be paid to the problems they 
illustrate. 
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