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A b s t r a c t °  A function has a dependen~ Yype when the 

type of its result  depends upon the value of its argu~ 

mont. Dependent types originated in the type theory 

of intuitionistic mathemat ics  and have reappeared in- 

dependently in p rogramming  languages such as CLU, 

Pebble, and Russell. Some of these languages make the 

a~sumption tha t  there exists a ~ype-of-alt-~ypez which 

is its own type  as well as the Wpe of M1 other types. 

Girard proved that this approach is inconsistent from 

the perspective of mtultionistic logic. We apply Gi~ 

rard ' s  techniques to establish that the typ~ofoM14ypes 

assumption creates serious pathologies from a program- 

ming perspective: a system using this assumption is 

inherently not  normMi~ing, term equality is undecic~ 

able, and the resulting theory fails to be a conservative 

extension of the theory of the underlying base types. 

The failure of conservative extension means that clas~ 

sical reasoning about  programs in such a system is not 

sound, 

1. I m t r o d u e t ~ o n  

Dependent types. A function has a dependent type when 

the type of its result depends upon the value of its ar- 

gument.  
A simple example  of a function which has a depen- 

dent Wpe is the unary function zero_vector which when 

applied to an integer n returns an n-vector of seroes. 

No par t icular ly  appropriate  type wesents  itse]f for the 
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range of zero_vector, and hence zsre_vsc~or itself is typP 
cAly not assigned a simple functional type. For this re~. 

son, a parameteri~ed type constructor  like vec to r (R) ,  

which denotes the type of integer vector,  of length g, is 
a built-ln %ature of many  p rogramming  languages. In 

p rogramming  languages with Aeher type systems, e.g0, 

CLU [lg], a type constructor {o~ parame*eri~ed dus-  

ter in CLU terminology) ~uch a~ )~n:inL~eetor{n) can 

even be user-defined. In any case, the type of the value 

zs~o_~ec~or(n) can be described ~ v e c t o r ( n ) .  

The function An: in tovector(n)  defines the ~rpe d 

the value of zero_vector at ire argument n and thus is 

a good candidate for specifying the dependent type of 

zero_vector. However, to ma in tAn  a use%l distinction 

between %n: in t .vec to r (n )  in its role as a %notion and 

in its role as a type, we use 11 in place of A as a syntactic 

marker  for type  expressions. T h a t  is, we write 

where ~:' ls r a m  a~ ~ha~ type ' .  

Ordinary  %nction types can be regarded as a speclel 
case d dependent  types. Tha t  is, the type (~--~ t} of 

Nnct ions f rom arguments of type s to vzdues of type 

is s imply (Hx:s.~) where z is chosen to be some fresh 

identifier. 

A more provocative example  involves finding a type 

for the Nnct ion  

f : (A~:inthf  (x = 0) t h e n  4 elee t r u e ) .  

Tha t  is, f ( 0 ) =  4, and. f ( n )  = l;rue for any integer 

n # O. Typically, f would be considered untypable (or 
perhaps would b~ assigned some loophole type such as 

h l g - *  any)~ but  we can easily assign an informative 

dependent type  t~ f ,  namely, 

r = 0) t h e n  m t  else boo l ) .  

Of coarse, Mlowing~uch a type  for f m%v undermine the 

uti]ity of the type system. The  difficulty is tha t  the type 
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involves the test C a = 0) which may require the corapao 
ration of ~ azbitrarT integer expression. If that is the 

cas% then constructive type&ecking becomes unlikel N 
~ince the distAnce;ion between type computation and are 
b i r tH"  computation disappears. Nevertheless, under 
suitable restrictions i t  is possible to define rich systems 
of dependent types, in whidh %actions such as / above 
are typable, while retedning effective typechecklngo 

.Polymor'phic types. A particularly ~4ch effectivelyotyped 
calculus is A a , the polymorpMc (or second,oorder) A- 
calculus {15~ 29], The polymorphic A-calculus allows 
variables ranging over the class of all types (second.. 
order variabtes)~ reflecting facilities available m Ads [1], 
CLU, Russell [4, 11], and other programming languages. 
%~iables ranging over objects of some particular type 
are called tlns~orde~ variables° {Note that a variable of 
type int o-, Ant ranging over fsnctions would be called 
fi~t,~..order in this context,) N AA~ the fi~t-order bind° 
iag operators A and fl are paralleled by the correspon& 
ins operators A and A, for secondo, order variables° J~%r 
example, the polymorphic identity %notion I can be 
w~Jtten (izoAy:x.y)o This means that f can be applied 
to any argament ~ which is a type, and returns as its 
value the identity function on t~ cog../(lug) is the idea° 
try %notion on integers which when in turn applied to 
amy integer ,n yields no Si:nce the type of if(t) is ~ --~ t, 
we assign f itself the polymorphic type (Ax.z ~ ¢). 

A striking %stare of the polymorphic calculus is that 
a polymorphic function may be appl%d to any type, ino 
ch:ding its own: I{Axox- ,  x) is the identRy functir.~n on 
identity %nctionso This turss out to W e  the system 
enormous expressive power while retaining easy type~ 
checking of a very irlormative kind [12]. {This kind of 
indirect ci.rcutarity~ reminiscent of the dbecgly cbcular 
selfoapplicadon potable in the nntyped localcnlus, rates 
out any naive setotheoreglc explanation of the semantics 
of terms or types [5, 28].) 

In particular, l A retains five surprising and vMuable 
properties possessed by the more familiar finitelyotyped 
A~ealculss {2, Appendix A]: 

{t) Provable equality is sharacterised by a set of di- 
reefed row:rite rules {reduction) satisfymg the cone 
flaence {Ch~ch~Rosser) propergy~ 

{2) Reduction ~ strongly normalizing {te~ninaging), 
Le. eve W way of applying redactions to a term 
eventually leads to a term i~ norrad fsrm whic'h 
cannot be farther reduced, 

(a) The  equational gheo~ T d terms is decidable., 

{4) The theo~7 of type ~er~ ions  s:t is decidable. 

{5) Tf[e polymorphic th~.~ry of any algebraic stracture 
is ~ conservative extension of the ordb~a<y {As. 
first-order in the usual sense) equational theory of 
the structure; in other words, the equations b~ 
tween terms of" the algebra provable using A ~ are 
jrast those in the original theorw, 

Several other rich calcali wRh fira,- and second-order 
dependent types have been developed which retain these 
properties while allowing type constralcgors like those in 
the examples above [19~ 21, 10~ g, 23, 24~ 7]. 

The *ype-of-ML*ypes assumFtiO~o The application of a 
polymo:iphic %action to a gyps argument is evaluated 
by substRution {fl,oreduction) exactly as for an ordinary 
A-expression; e.g.  (Az,a)~ can be reduced by substi. 
tuting s for M1 free occurrences of the variable ~ in ao 
Because of the distinction between the first- and second: 
order binding operators A and A (Kkewise t~ and zX), a 
duplicate set of computation rules is generally needed 
for fi~to and second-oMer terms. The system would be 
simpler ff we could use Ao and H-binding for second- 
order variables. 

One comprehensive way to do this is to introduce a 
type-ofoalgtypes, % such that fur. Then, for exaanpl% 
the polymorphic identity %ncgion can be rewritten as 
{Az:roay:x.y) and its type as (Hx:ros-* X)o ~arther, 
(IIx:rox .-~ x) has in turfs type r since ig is a type exo 

pressiono Thus the combination of fAr, reorder dependent 
types and the typ~of-all-types assumption subsumes 
A A, cf~ [3]o Moreover, the vector type constructor used 
above can now easily be typed as lnt  -+ r, and the ff- 
then-else construct within the type expre~ion 

{nz:int.if (~ = O) ~he= i=t else bool) 

has type {bool X r X r) -+ r0 
tn shorL the r:r aasuraption exten& and apparently 

simplifies systeras of fi:r~t- and second-order dependent 
types. 

We will be concerned below with four distinct A- 
calculi, namely: 

A ~ the finitely typed {first-order) A-calcuhs, 
A ~ the polymorphic {second-order) A-calculus, 
A r1 She typed Aocalculus with H-types, and 
A r~ A n extended by the r:r assumption. 

The new systera, A n, defined in Section 2, is designed 
to be one of the simplest systems wRh first-order d~  
pendent types. Indeed, wRhout the aAdRion of farther 
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axiom% )i n will be shown to be a notationM variant of 
the finitelyotyped A~caleulu% I r. In other words, des 
pendent types appear only in degenerate form in i ~. 
Choosing such a system strengthens our (negative) re- 
suits, since the pathologies we exhibit when pin is ex- 
tended with {he typo-of-ail-types assumption will surely 
apply to any less degenerate system. 

Penalties off ~he ~ype-@alL~ypes assump~ioe° Program~ 
m i n t  languages such a8 Pebble [fi] and A-calculi sudh 
ae Margin-LSf% theory of types [20] with Vpe systems 
incorporating a Wpe-of-all~types seem capable of satls~ 
lying two principal goals of a gyps system: 

(6) Freedom from runtime type-errom 

(7) Nepresentation independence of abstract data 
types Is0, 1L 22l. 

Our objective in the rest of this paper is to demonstrate 
that  other valuable properties, namely (2)-(5) above, 
fail even for the minimal type~ofoall~types system pirr o 

The failure of property (2) (strong normalisation) 
ig not by itseN surpr~ing, since in a general program- 
ming language one expects terms which define diver° 
gent computations not to have normal forms. Simio 
larly, the failure of property (3) {undeeidability of term 
equivalence) is to be expected. But the failure of prop~ 
any  (4) means that  it is not decidable whether a term 
has a given type, and more generally whether two types 
are equal. This undermines the possibility of effective 
%ratio ~ typecheeMng before runglrae. Finally, the fail- 
ure of proper~y (5), conservative extension, is also seri- 
ous a~ we indicate in Section 4 beiow. 

The finitely typed A-calculus, A ~, is well-known to 
satisfy the confluence and decidability properties (I)- 
(4), and can be proved trivially to satisfy property (5) 
(conservative extension) by an easy model-theoretic ar- 
gument given La Section 4. It follows that  ~pare" piE, 
which is a notat ional  variant d A ~ , a l e  ~atisfies (1)-(5), 
whereas the extension of A n to I rr by the single a~dom 

r:r destroys everything but confluence. 
We remark that  in order to identify r:r ag the mMn 

culpAt, we plan in our full paper also to argue that  
n - near the brink of ~xndecidability that  less A ~ not ~o 

forceful jolts than r:r will throw it over ~ well. In par- 
ticular, we will ~how that  pin can be safely extended in 
other ways, for example to ~ubsume pia, while preserw 

ing properties (i)-(5}. 

Girard'8 aparadox ~. There is a purely formal correspon- 
dence, known ag the Nrmufae-~-~yp~ anatogy~ between 

some Aocalculi and intuitlonistic logks [8, 16]. Types axe 
seen a~ logical '.propositions, and (closed) toexpressions 
are proofs of the propoeltions whi•  are their" types. The 
intuitionistieally provable propositlons are exactly those 
types ~ for which closed terms of type $ exist, tntuitiono 
istic absurdity is the proposition that  all propositions 
are provable; in a Aocatculus this corresponds to the 
type (Hx:r.x). So in A-calculi where the %rmuI~e~a~ 
types analogy hold% there are no closed A-expressions 
of type (gx:r .x).  

An early formulation of hlghe>order intuitionisQc 
logic b ~ e d  upon ~he typeoofoMlotypes agsumption wag 
laid out by MartinoLgf [20]; the k~calcuhxs correspond- 
Lug to this logic subsumes pi~'r Shortly after Martin~ 
LSf's proposal, Girard [15] showed tha t  the system wag 
batuitinnNtlcatly incons~tent. A closed term of Wpe 
(Hx:r.x) can actually be extracted from Girard's proof. 

Ntuitionistic inconsistency by no means implies that 

~he associated A~calculus is trivial; on the contrapt, the 
theory is so rich that  it ~ undecidable. From a program° 
min t  perspective, the ability to define a term of type 
(Hx:rox) in a pi-cMculus is not intrlnskally objectionable 
and does not appear to have the negative consequences 
noted above. 

However, one ~echnlcal consequence of intuitionistie 
inconsistency turns out go be fairly immediate: the cal- 
culus ie Inot strongly normalising° Indeed, it is e ~ y  to 
show that any pure closed terra of type {HX:foX) has no 
normal form under the usual reduction rMes. 

One might hope to restore normMi~ation by intro~ 
ducing some new notion of reduction, tlowever, the 
construction of the germ of type (11~:f°~) .from Girard's 
proof indicates how to construct a fixed~point combina~ 
tot  which can then be used to show that arbitra<g par- 
tim recm~ive functions are numeralwise representable in 
pi~. This implies that term equMity in pirr is undecido 
able, and therefore f~uCher implies tha t  no complete set 
of effective reducglon rules exists which are both con flUe 
ent and normalising [2]. The presence of a fixedopoint 
operator a~o emily implie~ that  the calcukts is not 
conservative extenelon of algebraic equational theories, 

2. A pi-calculu~ w i t h  dependen% ~ype~ 

Ix We now formallse pi , the A-calculus with dependent 
~ypes sket6hed in Section 1o 

The yynYax of ~ermso Let V = {xx, ~ , ° .  o} be a count- 
ably infinite set of wrlableso In what follows a, Q s, 
f ,  and g are raetavarlables for terms, u, v, and w are 
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metavariables for variables, and s and t ~'e metava :b  

abtes for terms appearing ;~ types, The set of raw un- 

typed terms i g is the smallest set defined by the fop 

lowing inductive clauses: 

V C A R (c rew variable is a tern:), 

r 6 A a {~r' is a term),  

{a b) 6 An: (application)~ 

(),v:s.e) 6 A a (Mabstraction), 

(n~:s,~) ::~ ,t: (n=abs~ract:on). 

Let fv~a] denote the sea of free vagiables of a, defined 

h~ductively in the usual way on the structure of terms. 

h: raw abstractions it is possible to have occu:Tences 

of v free in s; for definiteness we adopt  the convention 

ghag such oee':h~renees are in ~he scope of % ¢  or 'Hv' ,  

but in fact our typing rules wilt forbid such occurrences° 

The fnnetion-spaee expression s --.~ ~ stands for (~v:s.~) 

"where v does not  occur free in s or to We follow the usual 

convention tha t  when -+ appears as a blnagy connective, 
it a~oeiates  to the right, so tha t  s-+ s ~ .-~ s" abbreviates 

s ,-+ (s* -* s '} .  Application ~ssociates to the left so el:at 

of a b a b b r e v i a e s  ( f  a) bo 

We adopt  the following wari%bte eonven¢iom if a set 

of terms occurs gogetheG %r example, in a definition, 

then a[l bound variables in these terms are distinct 

from each other  and from the free vagiables {2]. We 

also identify terms modulo the uniform renarming of 

bound variables {a-conversion}; in combinat ion with 

the variable convention this allows ns to work with rep= 

reeentativss of the c~=equiveAenee clazf~eas of terms ra ther  

than  te/rm.e themselves°* Henceforth ~ '  denotes syn- 

tactic temn equality modulo c~-eonversiom The substi- 

tut ion operator  [a/v] denoting the replacement of all 

free occurrences of v with a is defined recur~iveIy in 'the 
usnaI way. 

Typed A~eulsuJi as proof systems. We formulate  our var- 

ious Wped A-calculi, i ~ for a one of r,  A, H, or r% as 

proof systems for s ta tements  about  rearms [3]. A state- 

ment  is a pa£r consisting of a context  r ,  and a sentence, 

~o, and is v~q°itten P % po There are two kinds of sen- 

genes,  namely equa~ons of the fom~ a = b and ~pings 
of the %:crn ad. 

8h~ce sentences may have fre~ variabte~, contexts r 

are needed to ~psc~fy the ~.ypes of the t}ee variables. 

Raw contexts age d o t i n g  go be paa¢iM functions from 

g to raw gems, The empty  context  is written t o ,  and 

*In ~he fu}: p a p e r  we mm p:!if¥ ~hs h a n d l i n g  of  b o u n d  va~b~e:~  by  
~ i n g  ~ v~rian~ of d~ B : u ~ j n ~  sameTess  ~erme [9L 

Plv:~] denotes the context. P modified or extended so 

~hat P(v) ~ e. (Contexts  do not  record their history; 

equals 
In the most generaJ situation, welLfbrmed eontexts, 

equations, and typlngs must be mutual ly  recursively 

definedo This :is because well*formed equations are con- 

strMned to be between typable ~erms {of the same ~ype), 

so the inference rules for equations typically have an- 

tecedents which are ~ypingso The inference males for 

typings must {n turn allow fbr equations between types, 

so these rules may  have equat ional  antecedents° Fb 
nally, the range of a context  is intended to contain only 

r or terms e which are type expressions, £e., terms such 
that  the typing tar is provable {in an appropriate con- 

text),  so the definition of well-formed con~e×t depends 

on provabilRy of typings, 

We wrRe P ~<~ 99 when the s ta tement  P R 9o is A% 

provable. If (A) is a set of s tatements,  then An{A) de-- 

notes the extended system obtained by adding {A) 2o 

~he axioms of k ~, tn pagticular, A ~ will be defined to 
be kn(Fo  ~ r:r). 

The k n-cateuluso The  axioms and inference rules of the 

AUocalcuhs are presented in a form similar to Gentsen% 

calculus of sequents [14, 27, 21]o Navh rule consists of 

a set of s ta tements  (whirl: have ak'eady been defined 

using the usuad notat ion,  F', for seqnents) cMled the an= 

~eeeden~s and a s ta tement  called the eonaequenC graph- 

ically separated by a hoN~ontM line. In the case of an 

axiom or axiom scheme, there are no antecedents and no 

hori~ongM line is drawn. The consequent d am inference 

male is provable if eaa:h antecedent is itself p~vableo 

All An-proofs begin with an instance of the type vari- 

able introduct ion (r-vi) axiom scheme since R is the 

only m~iom in the system. The  pair of s ta tements  r k- e4 

and P R ~:r and i~ abbreviated r k e:t:r. 

Rulez for typing,st 

(r~vi} rovardable introduct ion 

r0[~:r] ~ v:r 

[vi) variable in t roduct ion 

r e ~:r, v ~ dora(r) 
r:v:q vat 

{Hi) Hdngroduet ion 

r k (I:s:s@r 
(li} lomtroduegion 

* S : > air, r{v: d > .:tar 

2 ~  



(~e) H-eiLvai~aation 

r v o:8. r , ::(r~v:8.,):r 

{re) type conversion 

r v a:,, r v s = t  
r ~ a:t 

(r) reflexivity 

(s) symmetry 

(t) transitivity 

R~dss /or ,yu¢*iou,. 

r ~ a = a  

P V a = e  

(el) ]e~t c~agruence 

r ~ a:,. r P/:(Hv:z.t):r, r ~- ] = ]~ 
r e (: ~) = (:' ~) 

(or) right congruence 

r v a:,. r P/:(H,:,°*):r,  r v o = a' 
r e (: ~) = (f ~') 

(~fl) p-conversion of A~$erms 

r e o:8, r ~ (~:8.e):(H~, . , ) ," 

r ~ ( (~, : , . , )~)  =- 8lo/, l  

( ~ )  weak extensiona~ity for Aoterms 

r ~ s:~, rI~-I ~ e:~:~, r[~:sl ~ o = o' 

r ~- (~v:8.s) = (,~v:s.e') 

(rt~) weak exten~ionality for H-terms 

(A~) ~-conver~ion of A-terms 

r ~- s:r, r ~- / : (H~:s . , ) :r ,  v 6 dora(r) 
r ~ (~,:s.(/v)) =: 

(A-re) binding type conversion in A-terms 

r ~- 8:r, r tv : ,  ] P e:~:r, r P s = d 
r ~ ( ~ , , . e )  = ( ~ , , , . s )  

(H-re) binding type conversion in H-terms 

r ~ (H~:, . , )  = (H, , :¢ . , )  
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(cx) eonte×t extension 

(roex) rocontext extension 

r ~ ~ ~ ~ domIr) 

The rule, may seem cumberuome at first, but moet of 
them axe fomzmlations, using dependent types~ of familo 
iar rules of the Arocalculus° 

We do not have t ime here to explain in detail the 
severaJ design choices embodied m the rales~ However, 
the context extension rules, (cx) and (r-cx), axe worth 
noting. These rules asse~ tha t  what ~ provable in a 
context may a~o be concluded when tha t  context is exo 
tended by assigning a type to a fresh variable, Such 

rules axe generally not neceuaary in ~ystems which pro~ 
vide a con*ex~ projection rule 

r v v:~ 

However, including context projection seems to force 
complications in other males in order to preserve the ins 
tended behavior of the system. Thus, in systems with 
context projection Is°go, various fomula t ions  of AU- 
TOMATH [3~ 31]), the notion of context well~formedne~ 
i~ explicitly introduced into the proof system a~ a third 
kind of sentence. Inference rules which extend contexts 
must assert tha t  ~he extended context is well-forrraed, 
and rules which project contexts must check that  their 
antecedent contexts are well-formed. 

i key aspect of well-formed contexts is tha t  circular 
type assignments in which the type of a variable de~ 
pends on the value of the vaz4able do nor occur, For 
example, a circular assignment such a8 

can lead to undesirable Aoabstractions such as 

~x: [if  (x = O ) ~ h e n  in t  else boo]) .x  

which are not  typable in the sy~emo It ~ helpful to 
realL~e in read ing the  axioms and rules of )~  that  they 
are formulated so t ha t  ff r ~ v:8, r ~ (~v..a):~, or 
r ~ (n,:8o,):~. then t w i l l  not be circular and ~ ¢ fv[8~. 

Equiva~,~ce of X* ~ d  pure ~n The pure )~1~ system 
designed to provide the basic facilities for a rich depen- 
dent type system through i ts  introduction and elimina~ 
~ion rules for manipulating these types° However, these 



~iligiee have no :~ opportuigy go come into play in 

the pure system because the only axioms are those for 

~@pe variable introduction. So until  we add more as: 
iotas ~ in the next eecgion~ the system is very limiged~ 

More prec:isely~ we can prove by ( i  surprisingly in= 
g:icage but ultbnagely routine} huducgion on the length 
of A'n=p:roofs that if l? ~ (Hv:s2):% then in fact v .does 

.nee occ~r free ha s or t; consequently this typing state= 
ment may be abbrevlaged as 17 }- {s --+ t):r.  Ig fo~ows 
gnat the only variables v which can appear free in a 
type exi~ession s, .Le. an s such ghag P ~ S:% are free 
type readables, vka,.~ I? ~ v:r~ Such free ~ype variables 
behave essentially a~ the ground types of the finitely 
typed A=.c~/cutus, A r. 

From this ob~errvagion we can establish a translation 
T from terms and contexts of A n go terme and type 
expree~sions of A'~ ~ u m i n g  that  A r ~lows an infinite 
number d ground types. 

L e m m a  Io r ~n a:~::r iff ~" rMr:rMr, ~ d  

Hence A n may be regarded as a notational variant of 
At,, Prom this it follows ghag A N has a confluent system 

of reduction rule% is strongly normi i~ lng ,  and eonse= 
quengly decidable° 

Theorem l .  It is decidable whether a raw sgage= 
merit is ,l:oprovable. 

g~ N o n o n o r m a l i a a b i l i t y  a n d  u n d e e i d a b i l i W  

By assuming tha t  t y p e '  is a types we obtain from A n a 
~ystem eeeengiai1y eqwivaleng go Mactin~Lgf% 1971 the= 
o f t  of ~ypeso 

The proof system for the k~%ealculus is just  the A n 
proof system, angmep~ed with g;he axiom 

(rr)  )2o >'~ r:r. 

(We t h a  in pr+enco of ( , d ,  (r-v0 
iota and the (?-<x) rule ace become redundeaugo) 

Anad~is .of the properties of Art hinges on replaa:ing 

the equaglonal pales of 7C* by directed rewrite pales {reo 
ducgions). Namely, leg ~ > b be a new" kNd d sentence 
called a red~c~o~. We modKy the A +r proof oysters 
go prove reduction sg . Rules for reductions are 
obtained from g/he pales of  I g by replacing M1 equations 
a = b by reductions a ~ 5 and deleting the reflexive and 
~cym.me~rie rules (r), (s), The key gechnicM fae~ aboug 
reduction is th~ ig :~ conguent: two terms axe provably 

equM in some context iff they have a common reducg 
that contexts 

As indicated in the introduction, we can establish a 
translation ~ from germs and contexts of A a go those 
d I r" by replacing ~Av' and ~Pv' by 'Av:r'  and ' tIv:r ' ,  
respectively° Under this t ranslat ion ig is easy go see that 
A r reductions can simulate 1 a reductions+ Given ghag 
Ar%reducgiou is confluent, ig is not }lard go verify that 

the simulation is faigMul: 

It follows that  the da t a  types and operations definable 
in the polymorphic k:cMcutus ace available in Afro In 
pacticulac, using 

as the type of the polymorphic Church numeral% we 
conclude tha* the prlmkive recursive (and many more) 
functions on the integers are nnmerMwise representable 

by ~erms of M'*" {12]. 
So for any primitive recur~ive function f with one 

integer e~rgumen% choose a term af such that Fo F rr 

af:(N~+JY) and af numeralwise represents f, It is well= 

known to be undeeidable whether f(n) = 0 for some 

integer no Let g to be the p&~ial recunsive function of 

one integer  gumeng such ghag = 0 = 0 
for some n 7~ m and ~ undefined otherwise; hence it is 
undecidable whether g(O) = O~ 

With a fixed=polnt operator Y N : ( ( N - +  N) ~-+ N),  it 
is easy *o construct from af a germ ag in A r~ which 
nnmeratwise repr~en~s 9. (The confluence of reduction 
and the .fact tha t  numeraI~ ace normal forms make ig 
easy go chow gha~ if g(O) = 0 then F0 ~r~ (%0} = 0 

where O:N is the nnmeral for O, Showing the conver~e 

requh~es more detailed information about  the behavior 
of YN under reduction.} In fa+A, when g{0) is unde~ 

fined, the gea~n (% O) does not have a normal (or even 
he~=normal) form. These to prove ~he undecidabiligy 
of X ~¢ i~ is su~eieng go construct a fixed~poing combi~ 
nagor YN, 

Analysis of Giracd% proof enables us go construct 

a combinagor Y satizfying ~he poTymorphic  f i x e d ~ p o ~  

rule: 
r > f:(e s) 

r+vsf=ftY /)' 
Moreover~ this is essentially ~he only pale needed go de~ 
rive ell the A** =provab:e ~g~emengs about  Y~ Now Yar 
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simply (Y N). Time ~raitat~ons prevent u~ from ~n~ 
chding the con~tructlen of Y and a prec~e ana]ys~ of 
its behavior under reduction. 

This completes the outline of the proof of 

Theore~n ~o The equational theory of A ~* is uno 
decidable. In fac% it is undecidable whether 

re V r~ a = 0 

where 0 :~ %x:~o%y:Xoy and a is a raw term. 

Coro l l a ry  t There m no decidable, confluent, 
and normalizing set of reduction rules for the equa~ 
tlona] theory of ~r~ 

&o Conuervat i~e  e ~ e n ~ i o n  

We fihstra~e conservative extension metatheorems with 
s~nple example suggested by Gordon Plotkln [26]. 
Consider an algebraic structure ~ containing distinct 

elements 0 and 1, a quaternary operator cond (condi- 
tional equa],ity)~ and a unary operator s~c (successor) 

~at~fying the pair of equational axioms (A): 

~ o ~ d x x y z =  y 

codex {~uc z) y z  = z .  

It ~ eazy to find such ~tructure~, and since I = 0 ls not 
true in them, it cannot be derived from (A) by sound 

inference rules. 
Any algebr~c structure can be chosen as the base 

type of a %* mode] using the cla~slc~ interpretation 

of function types s -* ~ a~ all functions from s to *. 
Since the rules of %~ are sound in any such model, it 
fo~ow~ that all equations between algebraic terms over 
the signature of ~ (Le., ordinary fire.order terms with 
free variables of type ~) provable in A ~ (A) are valid in 
all models of (A)o Substitutiug equals for equals is a 
derived rule of A ~, and the rule of substituting equals 

for equals is welloknown to be sufficient for proving all 

the logical consequences of ~ny set of equation~ ax- 
ioms, Hence, the equations between algebraic terms 
over the signature of ~ provable in A ~ (A) coincide with 
those provable by substitutL~g equa l  for equ~ls~whieh 
are~ in turns exactly the equations v~id in ~]I models of 
(A)° In ~um, the provable equations between ~gebr~c 

° * e ~errns do not change when we ~w~tch to A ru]e~, .g. 
° ~ A Th~ ~ what ~ meant l=Oisnotprowble~A { ), i i ] 

Men of the [fix~ordex) equational theory of (A}. More 

generally~ 

Theo rem ~o A ~ (~) yields a conservative exteno 
slon of the equatlonM theory of (~) for any set 
(~) of algebraic equations° 

Now let (Ar~ / be the set of statements 

re V ~:r, 

r0 V cored u u v w = % 

re ~ ~ o ~ d  u ( s u e  u )  v w = w .  

The correspondence between I* and I n in Lemma 1 
easily seen to continue to hold in the presence of aL 

gebraic a~dom~, ~o ~n(An), ~ike ~(A),  a le  yisld~ a 
conservative extension of the equational theory of (A). 

(We remark that we expect to prove in the full paper 
that a similar conservative extension theorem holds for 
AA(EA)o Since it is not known whether an arbitrary 
algebraic structure can be fully and faithfully embedded 
~n some model of %A the proof of conservative extension 
cannot proceed along the mode]otheoretic lines of the 
argument used above fox' %¢. ~nsteac~ we use a proof° 
theoretic argument based on the confluence and strong 

normalisabfiity of A~.) 
On the other hand, in A*~ IA~I, the polymorph~c 

comb~nator Y supples ~ closed term a of type ~ such 
that a = (~c  a) ~ provable, namely a ~ Y ~ ~uco But 

now, from (A) we have 

co~dgg~ ¢3tY ~ D 

and 

and since a = {sac a), we conclude ~ = w° Hence aH 
equations between terms of the same type are provable 
in A ¢~ (An). In particular, 1 = 0 ls not true i n ,  but is 
provable in A~ (A n) even though * satisfies the set of 

adorn8 (An)~ 

T h e o r e m  5. ~** {A n) does not yield a conserv~ 
rive extension o f  the equation~ theory of the set 
IA n } o f  algebraic equational statements above. 

This faJ~ure o f  conservative extension in A¢~ is actually 
a fam~iar one. In a theory of computation on the inter 
gers, say, one expects to have dlvergent eomputation~ 
of integer type. In the ~ u a l  appro~h of denotational 
semantics, ~UCh divergent computations are sam to come 
pure a speci~ divergent integer valu% &~ Now £ scrv~ 
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a~ a fixed point of ~he ~:cce~or functions Although 
the theory of integere with _L may not  seers any harder 
than the s tandard the.o<y, the technical complications 
in proofs about integer computations caused by 2_ has 
prompted recent eJ~%rts to find better theories [25, 26]. 

We expect that the introduction of fixed points is 

not the only source of fa lhre  of conservative extension. 
Hence "we raise the following open problem: 

(:) Let (E) be a set of alga'orals (d 0ical flAt-.order) 
typing and equational statements,  and let (fix) be 

r0 :" = 4.(Y v). 

I~ An((iix), E) conservatively extended by 

A-((fix), 

We alas mention that we do no~ know whether the r:r 
~zdom, in ~he absence of any o~he~r axioms, violutes cons 
~exvative extensions namely, 

a eonee .ativo exton0:on of 

In generals conservative extension theorems offer the 
oppo~unity to c~z~%" claesicM mathematics  into a come 

v~tat ional  se~h:g without change. The need ~o reason 
about divergent v a l u ~  and more generally about the 
ordering and topological prope~iee typiczdly euperimo 
posed on discrete structea:es iu compntationM settings 
would be avoided. Ig remMns to be seen how much como 
patation theory we can fully develop while weserving 
c~a~ical reasoning. 
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