
~%,rpe' I~ N o t a T y p e : P r e l h u ~ a r g lleport

Albert R. Meyer and Mark B. Reinhold

Labora tory for Compute r Science

Massachusetts L~stitute of Technology

Cambridge, MA 02139

A b s t r a c t ° A function has a dependen~ Yype when the

type of its result depends upon the value of its argu~

mont. Dependent types originated in the type theory

of intuitionistic mathemat ics and have reappeared in-

dependently in p rogramming languages such as CLU,

Pebble, and Russell. Some of these languages make the

a~sumption tha t there exists a ~ype-of-alt-~ypez which

is its own type as well as the Wpe of M1 other types.

Girard proved that this approach is inconsistent from

the perspective of mtultionistic logic. We apply Gi~

rard ' s techniques to establish that the typ~ofoM14ypes

assumption creates serious pathologies from a program-

ming perspective: a system using this assumption is

inherently not normMi~ing, term equality is undecic~

able, and the resulting theory fails to be a conservative

extension of the theory of the underlying base types.

The failure of conservative extension means that clas~

sical reasoning about programs in such a system is not

sound,

1. I m t r o d u e t ~ o n

Dependent types. A function has a dependent type when

the type of its result depends upon the value of its ar-

gument.
A simple example of a function which has a depen-

dent Wpe is the unary function zero_vector which when

applied to an integer n returns an n-vector of seroes.

No par t icular ly appropriate type wesents itse]f for the

This research was ~uppoAed by NSF grant no. DCRo8511180.

Permission to copy without fee all or p~r~ of this material is
granted provided that the cople~ are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and it8 date appear~ and notice is given
that copying is by permi~i0n of the A~oci~tion for Computing
Machinery. To copy otherwise, or ~o republish, requireg a fee
and/or ~pecific permilmion.

© 1986 ACM-0-89791-175-X-1/86-0287 $00.75

range of zero_vector, and hence zsre_vsc~or itself is typP
cAly not assigned a simple functional type. For this re~.

son, a parameteri~ed type constructor like vec to r (R) ,

which denotes the type of integer vector, of length g, is
a built-ln %ature of many p rogramming languages. In

p rogramming languages with Aeher type systems, e.g0,

CLU [lg], a type constructor {o~ parame*eri~ed dus-

ter in CLU terminology) ~uch a~)~n:inL~eetor{n) can

even be user-defined. In any case, the type of the value

zs~o_~ec~or(n) can be described ~ v e c t o r (n) .

The function An: in tovector(n) defines the ~rpe d

the value of zero_vector at ire argument n and thus is

a good candidate for specifying the dependent type of

zero_vector. However, to ma in tAn a use%l distinction

between %n: in t .vec to r (n) in its role as a %notion and

in its role as a type, we use 11 in place of A as a syntactic

marker for type expressions. T h a t is, we write

where ~:' ls r a m a~ ~ha~ type ' .

Ordinary %nction types can be regarded as a speclel
case d dependent types. Tha t is, the type (~--~ t} of

Nnct ions f rom arguments of type s to vzdues of type

is s imply (Hx:s.~) where z is chosen to be some fresh

identifier.

A more provocative example involves finding a type

for the Nnct ion

f : (A~:inthf (x = 0) t h e n 4 elee t r u e) .

Tha t is, f (0) = 4, and. f (n) = l;rue for any integer

n # O. Typically, f would be considered untypable (or
perhaps would b~ assigned some loophole type such as

h l g - * any)~ but we can easily assign an informative

dependent type t~ f , namely,

r = 0) t h e n m t else boo l) .

Of coarse, Mlowing~uch a type for f m%v undermine the

uti]ity of the type system. The difficulty is tha t the type

297

http://crossmark.crossref.org/dialog/?doi=10.1145%2F512644.512671&domain=pdf&date_stamp=1986-01-01

involves the test C a = 0) which may require the corapao
ration of ~ azbitrarT integer expression. If that is the

cas% then constructive type&ecking becomes unlikel N
~ince the distAnce;ion between type computation and are
b i r tH" computation disappears. Nevertheless, under
suitable restrictions i t is possible to define rich systems
of dependent types, in whidh %actions such as / above
are typable, while retedning effective typechecklngo

.Polymor'phic types. A particularly ~4ch effectivelyotyped
calculus is A a , the polymorpMc (or second,oorder) A-
calculus {15~ 29], The polymorphic A-calculus allows
variables ranging over the class of all types (second..
order variabtes)~ reflecting facilities available m Ads [1],
CLU, Russell [4, 11], and other programming languages.
%~iables ranging over objects of some particular type
are called tlns~orde~ variables° {Note that a variable of
type int o-, Ant ranging over fsnctions would be called
fi~t,~..order in this context,) N AA~ the fi~t-order bind°
iag operators A and fl are paralleled by the correspon&
ins operators A and A, for secondo, order variables° J~%r
example, the polymorphic identity %notion I can be
w~Jtten (izoAy:x.y)o This means that f can be applied
to any argament ~ which is a type, and returns as its
value the identity function on t~ cog../(lug) is the idea°
try %notion on integers which when in turn applied to
amy integer ,n yields no Si:nce the type of if(t) is ~ --~ t,
we assign f itself the polymorphic type (Ax.z ~ ¢).

A striking %stare of the polymorphic calculus is that
a polymorphic function may be appl%d to any type, ino
ch:ding its own: I{Axox- , x) is the identRy functir.~n on
identity %nctionso This turss out to W e the system
enormous expressive power while retaining easy type~
checking of a very irlormative kind [12]. {This kind of
indirect ci.rcutarity~ reminiscent of the dbecgly cbcular
selfoapplicadon potable in the nntyped localcnlus, rates
out any naive setotheoreglc explanation of the semantics
of terms or types [5, 28].)

In particular, l A retains five surprising and vMuable
properties possessed by the more familiar finitelyotyped
A~ealculss {2, Appendix A]:

{t) Provable equality is sharacterised by a set of di-
reefed row:rite rules {reduction) satisfymg the cone
flaence {Ch~ch~Rosser) propergy~

{2) Reduction ~ strongly normalizing {te~ninaging),
Le. eve W way of applying redactions to a term
eventually leads to a term i~ norrad fsrm whic'h
cannot be farther reduced,

(a) The equational gheo~ T d terms is decidable.,

{4) The theo~7 of type ~er~ ions s:t is decidable.

{5) Tf[e polymorphic th~.~ry of any algebraic stracture
is ~ conservative extension of the ordb~a<y {As.
first-order in the usual sense) equational theory of
the structure; in other words, the equations b~
tween terms of" the algebra provable using A ~ are
jrast those in the original theorw,

Several other rich calcali wRh fira,- and second-order
dependent types have been developed which retain these
properties while allowing type constralcgors like those in
the examples above [19~ 21, 10~ g, 23, 24~ 7].

The *ype-of-ML*ypes assumFtiO~o The application of a
polymo:iphic %action to a gyps argument is evaluated
by substRution {fl,oreduction) exactly as for an ordinary
A-expression; e.g. (Az,a)~ can be reduced by substi.
tuting s for M1 free occurrences of the variable ~ in ao
Because of the distinction between the first- and second:
order binding operators A and A (Kkewise t~ and zX), a
duplicate set of computation rules is generally needed
for fi~to and second-oMer terms. The system would be
simpler ff we could use Ao and H-binding for second-
order variables.

One comprehensive way to do this is to introduce a
type-ofoalgtypes, % such that fur. Then, for exaanpl%
the polymorphic identity %ncgion can be rewritten as
{Az:roay:x.y) and its type as (Hx:ros-* X)o ~arther,
(IIx:rox .-~ x) has in turfs type r since ig is a type exo

pressiono Thus the combination of fAr, reorder dependent
types and the typ~of-all-types assumption subsumes
A A, cf~ [3]o Moreover, the vector type constructor used
above can now easily be typed as lnt -+ r, and the ff-
then-else construct within the type expre~ion

{nz:int.if (~ = O) ~he= i=t else bool)

has type {bool X r X r) -+ r0
tn shorL the r:r aasuraption exten& and apparently

simplifies systeras of fi:r~t- and second-order dependent
types.

We will be concerned below with four distinct A-
calculi, namely:

A ~ the finitely typed {first-order) A-calcuhs,
A ~ the polymorphic {second-order) A-calculus,
A r1 She typed Aocalculus with H-types, and
A r~ A n extended by the r:r assumption.

The new systera, A n, defined in Section 2, is designed
to be one of the simplest systems wRh first-order d~
pendent types. Indeed, wRhout the aAdRion of farther

288

axiom%)i n will be shown to be a notationM variant of
the finitelyotyped A~caleulu% I r. In other words, des
pendent types appear only in degenerate form in i ~.
Choosing such a system strengthens our (negative) re-
suits, since the pathologies we exhibit when pin is ex-
tended with {he typo-of-ail-types assumption will surely
apply to any less degenerate system.

Penalties off ~he ~ype-@alL~ypes assump~ioe° Program~
m i n t languages such a8 Pebble [fi] and A-calculi sudh
ae Margin-LSf% theory of types [20] with Vpe systems
incorporating a Wpe-of-all~types seem capable of satls~
lying two principal goals of a gyps system:

(6) Freedom from runtime type-errom

(7) Nepresentation independence of abstract data
types Is0, 1L 22l.

Our objective in the rest of this paper is to demonstrate
that other valuable properties, namely (2)-(5) above,
fail even for the minimal type~ofoall~types system pirr o

The failure of property (2) (strong normalisation)
ig not by itseN surpr~ing, since in a general program-
ming language one expects terms which define diver°
gent computations not to have normal forms. Simio
larly, the failure of property (3) {undeeidability of term
equivalence) is to be expected. But the failure of prop~
any (4) means that it is not decidable whether a term
has a given type, and more generally whether two types
are equal. This undermines the possibility of effective
%ratio ~ typecheeMng before runglrae. Finally, the fail-
ure of proper~y (5), conservative extension, is also seri-
ous a~ we indicate in Section 4 beiow.

The finitely typed A-calculus, A ~, is well-known to
satisfy the confluence and decidability properties (I)-
(4), and can be proved trivially to satisfy property (5)
(conservative extension) by an easy model-theoretic ar-
gument given La Section 4. It follows that ~pare" piE,
which is a notat ional variant d A ~ , a l e ~atisfies (1)-(5),
whereas the extension of A n to I rr by the single a~dom

r:r destroys everything but confluence.
We remark that in order to identify r:r ag the mMn

culpAt, we plan in our full paper also to argue that
n - near the brink of ~xndecidability that less A ~ not ~o

forceful jolts than r:r will throw it over ~ well. In par-
ticular, we will ~how that pin can be safely extended in
other ways, for example to ~ubsume pia, while preserw

ing properties (i)-(5}.

Girard'8 aparadox ~. There is a purely formal correspon-
dence, known ag the Nrmufae-~-~yp~ anatogy~ between

some Aocalculi and intuitlonistic logks [8, 16]. Types axe
seen a~ logical '.propositions, and (closed) toexpressions
are proofs of the propoeltions whi• are their" types. The
intuitionistieally provable propositlons are exactly those
types ~ for which closed terms of type $ exist, tntuitiono
istic absurdity is the proposition that all propositions
are provable; in a Aocatculus this corresponds to the
type (Hx:r.x). So in A-calculi where the %rmuI~e~a~
types analogy hold% there are no closed A-expressions
of type (gx:r .x).

An early formulation of hlghe>order intuitionisQc
logic b ~ e d upon ~he typeoofoMlotypes agsumption wag
laid out by MartinoLgf [20]; the k~calcuhxs correspond-
Lug to this logic subsumes pi~'r Shortly after Martin~
LSf's proposal, Girard [15] showed tha t the system wag
batuitinnNtlcatly incons~tent. A closed term of Wpe
(Hx:r.x) can actually be extracted from Girard's proof.

Ntuitionistic inconsistency by no means implies that

~he associated A~calculus is trivial; on the contrapt, the
theory is so rich that it ~ undecidable. From a program°
min t perspective, the ability to define a term of type
(Hx:rox) in a pi-cMculus is not intrlnskally objectionable
and does not appear to have the negative consequences
noted above.

However, one ~echnlcal consequence of intuitionistie
inconsistency turns out go be fairly immediate: the cal-
culus ie Inot strongly normalising° Indeed, it is e ~ y to
show that any pure closed terra of type {HX:foX) has no
normal form under the usual reduction rMes.

One might hope to restore normMi~ation by intro~
ducing some new notion of reduction, tlowever, the
construction of the germ of type (11~:f°~) .from Girard's
proof indicates how to construct a fixed~point combina~
tot which can then be used to show that arbitra<g par-
tim recm~ive functions are numeralwise representable in
pi~. This implies that term equMity in pirr is undecido
able, and therefore f~uCher implies tha t no complete set
of effective reducglon rules exists which are both con flUe
ent and normalising [2]. The presence of a fixedopoint
operator a~o emily implie~ that the calcukts is not
conservative extenelon of algebraic equational theories,

2. A pi-calculu~ w i t h dependen% ~ype~

Ix We now formallse pi , the A-calculus with dependent
~ypes sket6hed in Section 1o

The yynYax of ~ermso Let V = {xx, ~ , ° . o} be a count-
ably infinite set of wrlableso In what follows a, Q s,
f , and g are raetavarlables for terms, u, v, and w are

ii

L

289

metavariables for variables, and s and t ~'e metava :b

abtes for terms appearing ;~ types, The set of raw un-

typed terms i g is the smallest set defined by the fop

lowing inductive clauses:

V C A R (c rew variable is a tern:),

r 6 A a {~r' is a term),

{a b) 6 An: (application)~

(),v:s.e) 6 A a (Mabstraction),

(n~:s,~) ::~ ,t: (n=abs~ract:on).

Let fv~a] denote the sea of free vagiables of a, defined

h~ductively in the usual way on the structure of terms.

h: raw abstractions it is possible to have occu:Tences

of v free in s; for definiteness we adopt the convention

ghag such oee':h~renees are in ~he scope of % ¢ or 'Hv' ,

but in fact our typing rules wilt forbid such occurrences°

The fnnetion-spaee expression s --.~ ~ stands for (~v:s.~)

"where v does not occur free in s or to We follow the usual

convention tha t when -+ appears as a blnagy connective,
it a~oeiates to the right, so tha t s-+ s ~ .-~ s" abbreviates

s ,-+ (s* -* s '} . Application ~ssociates to the left so el:at

of a b a b b r e v i a e s (f a) bo

We adopt the following wari%bte eonven¢iom if a set

of terms occurs gogetheG %r example, in a definition,

then a[l bound variables in these terms are distinct

from each other and from the free vagiables {2]. We

also identify terms modulo the uniform renarming of

bound variables {a-conversion}; in combinat ion with

the variable convention this allows ns to work with rep=

reeentativss of the c~=equiveAenee clazf~eas of terms ra ther

than te/rm.e themselves°* Henceforth ~ ' denotes syn-

tactic temn equality modulo c~-eonversiom The substi-

tut ion operator [a/v] denoting the replacement of all

free occurrences of v with a is defined recur~iveIy in 'the
usnaI way.

Typed A~eulsuJi as proof systems. We formulate our var-

ious Wped A-calculi, i ~ for a one of r, A, H, or r% as

proof systems for s ta tements about rearms [3]. A state-

ment is a pa£r consisting of a context r , and a sentence,

~o, and is v~q°itten P % po There are two kinds of sen-

genes, namely equa~ons of the fom~ a = b and ~pings
of the %:crn ad.

8h~ce sentences may have fre~ variabte~, contexts r

are needed to ~psc~fy the ~.ypes of the t}ee variables.

Raw contexts age d o t i n g go be paa¢iM functions from

g to raw gems, The empty context is written t o , and

*In ~he fu}: p a p e r we mm p:!if¥ ~hs h a n d l i n g of b o u n d va~b~e:~ by
~ i n g ~ v~rian~ of d~ B : u ~ j n ~ sameTess ~erme [9L

Plv:~] denotes the context. P modified or extended so

~hat P(v) ~ e. (Contexts do not record their history;

equals
In the most generaJ situation, welLfbrmed eontexts,

equations, and typlngs must be mutual ly recursively

definedo This :is because well*formed equations are con-

strMned to be between typable ~erms {of the same ~ype),

so the inference rules for equations typically have an-

tecedents which are ~ypingso The inference males for

typings must {n turn allow fbr equations between types,

so these rules may have equat ional antecedents° Fb
nally, the range of a context is intended to contain only

r or terms e which are type expressions, £e., terms such
that the typing tar is provable {in an appropriate con-

text), so the definition of well-formed con~e×t depends

on provabilRy of typings,

We wrRe P ~<~ 99 when the s ta tement P R 9o is A%

provable. If (A) is a set of s tatements, then An{A) de--

notes the extended system obtained by adding {A) 2o

~he axioms of k ~, tn pagticular, A ~ will be defined to
be kn(Fo ~ r:r).

The k n-cateuluso The axioms and inference rules of the

AUocalcuhs are presented in a form similar to Gentsen%

calculus of sequents [14, 27, 21]o Navh rule consists of

a set of s ta tements (whirl: have ak'eady been defined

using the usuad notat ion, F', for seqnents) cMled the an=

~eeeden~s and a s ta tement called the eonaequenC graph-

ically separated by a hoN~ontM line. In the case of an

axiom or axiom scheme, there are no antecedents and no

hori~ongM line is drawn. The consequent d am inference

male is provable if eaa:h antecedent is itself p~vableo

All An-proofs begin with an instance of the type vari-

able introduct ion (r-vi) axiom scheme since R is the

only m~iom in the system. The pair of s ta tements r k- e4

and P R ~:r and i~ abbreviated r k e:t:r.

Rulez for typing,st

(r~vi} rovardable introduct ion

r0[~:r] ~ v:r

[vi) variable in t roduct ion

r e ~:r, v ~ dora(r)
r:v:q vat

{Hi) Hdngroduet ion

r k (I:s:s@r
(li} lomtroduegion

* S : > air, r{v: d > .:tar

2 ~

(~e) H-eiLvai~aation

r v o:8. r , ::(r~v:8.,):r

{re) type conversion

r v a:,, r v s = t
r ~ a:t

(r) reflexivity

(s) symmetry

(t) transitivity

R~dss /or ,yu¢*iou,.

r ~ a = a

P V a = e

(el)]e~t c~agruence

r ~ a:,. r P/:(Hv:z.t):r, r ~-] =]~
r e (: ~) = (:' ~)

(or) right congruence

r v a:,. r P/:(H,:,°*):r, r v o = a'
r e (: ~) = (f ~')

(~fl) p-conversion of A~$erms

r e o:8, r ~ (~:8.e):(H~, . ,) ,"

r ~ ((~, : , . ,)~) =- 8lo/, l

(~) weak extensiona~ity for Aoterms

r ~ s:~, rI~-I ~ e:~:~, r[~:sl ~ o = o'

r ~- (~v:8.s) = (,~v:s.e')

(rt~) weak exten~ionality for H-terms

(A~) ~-conver~ion of A-terms

r ~- s:r, r ~- / : (H~:s . ,) :r , v 6 dora(r)
r ~ (~,:s.(/v)) =:

(A-re) binding type conversion in A-terms

r ~- 8:r, r tv : ,] P e:~:r, r P s = d
r ~ (~ , , . e) = (~ , , , . s)

(H-re) binding type conversion in H-terms

r ~ (H~:, . ,) = (H, , :¢ . ,)

291

(cx) eonte×t extension

(roex) rocontext extension

r ~ ~ ~ ~ domIr)

The rule, may seem cumberuome at first, but moet of
them axe fomzmlations, using dependent types~ of familo
iar rules of the Arocalculus°

We do not have t ime here to explain in detail the
severaJ design choices embodied m the rales~ However,
the context extension rules, (cx) and (r-cx), axe worth
noting. These rules asse~ tha t what ~ provable in a
context may a~o be concluded when tha t context is exo
tended by assigning a type to a fresh variable, Such

rules axe generally not neceuaary in ~ystems which pro~
vide a con*ex~ projection rule

r v v:~

However, including context projection seems to force
complications in other males in order to preserve the ins
tended behavior of the system. Thus, in systems with
context projection Is°go, various fomula t ions of AU-
TOMATH [3~ 31]), the notion of context well~formedne~
i~ explicitly introduced into the proof system a~ a third
kind of sentence. Inference rules which extend contexts
must assert tha t ~he extended context is well-forrraed,
and rules which project contexts must check that their
antecedent contexts are well-formed.

i key aspect of well-formed contexts is tha t circular
type assignments in which the type of a variable de~
pends on the value of the vaz4able do nor occur, For
example, a circular assignment such a8

can lead to undesirable Aoabstractions such as

~x: [if (x = O) ~ h e n in t else boo]) .x

which are not typable in the sy~emo It ~ helpful to
realL~e in read ing the axioms and rules of)~ that they
are formulated so t ha t ff r ~ v:8, r ~ (~v..a):~, or
r ~ (n,:8o,):~. then t w i l l not be circular and ~ ¢ fv[8~.

Equiva~,~ce of X* ~ d pure ~n The pure)~1~ system
designed to provide the basic facilities for a rich depen-
dent type system through i ts introduction and elimina~
~ion rules for manipulating these types° However, these

~iligiee have no :~ opportuigy go come into play in

the pure system because the only axioms are those for

~@pe variable introduction. So until we add more as:
iotas ~ in the next eecgion~ the system is very limiged~

More prec:isely~ we can prove by (i surprisingly in=
g:icage but ultbnagely routine} huducgion on the length
of A'n=p:roofs that if l? ~ (Hv:s2):% then in fact v .does

.nee occ~r free ha s or t; consequently this typing state=
ment may be abbrevlaged as 17 }- {s --+ t):r. Ig fo~ows
gnat the only variables v which can appear free in a
type exi~ession s, .Le. an s such ghag P ~ S:% are free
type readables, vka,.~ I? ~ v:r~ Such free ~ype variables
behave essentially a~ the ground types of the finitely
typed A=.c~/cutus, A r.

From this ob~errvagion we can establish a translation
T from terms and contexts of A n go terme and type
expree~sions of A'~ ~ u m i n g that A r ~lows an infinite
number d ground types.

L e m m a Io r ~n a:~::r iff ~" rMr:rMr, ~ d

Hence A n may be regarded as a notational variant of
At,, Prom this it follows ghag A N has a confluent system

of reduction rule% is strongly normi i~ lng , and eonse=
quengly decidable°

Theorem l . It is decidable whether a raw sgage=
merit is ,l:oprovable.

g~ N o n o n o r m a l i a a b i l i t y a n d u n d e e i d a b i l i W

By assuming tha t t y p e ' is a types we obtain from A n a
~ystem eeeengiai1y eqwivaleng go Mactin~Lgf% 1971 the=
o f t of ~ypeso

The proof system for the k~%ealculus is just the A n
proof system, angmep~ed with g;he axiom

(rr))2o >'~ r:r.

(We t h a in pr+enco of (, d , (r-v0
iota and the (?-<x) rule ace become redundeaugo)

Anad~is .of the properties of Art hinges on replaa:ing

the equaglonal pales of 7C* by directed rewrite pales {reo
ducgions). Namely, leg ~ > b be a new" kNd d sentence
called a red~c~o~. We modKy the A +r proof oysters
go prove reduction sg . Rules for reductions are
obtained from g/he pales of I g by replacing M1 equations
a = b by reductions a ~ 5 and deleting the reflexive and
~cym.me~rie rules (r), (s), The key gechnicM fae~ aboug
reduction is th~ ig :~ conguent: two terms axe provably

equM in some context iff they have a common reducg
that contexts

As indicated in the introduction, we can establish a
translation ~ from germs and contexts of A a go those
d I r" by replacing ~Av' and ~Pv' by 'Av:r' and ' tIv:r ' ,
respectively° Under this t ranslat ion ig is easy go see that
A r reductions can simulate 1 a reductions+ Given ghag
Ar%reducgiou is confluent, ig is not }lard go verify that

the simulation is faigMul:

It follows that the da t a types and operations definable
in the polymorphic k:cMcutus ace available in Afro In
pacticulac, using

as the type of the polymorphic Church numeral% we
conclude tha* the prlmkive recursive (and many more)
functions on the integers are nnmerMwise representable

by ~erms of M'*" {12].
So for any primitive recur~ive function f with one

integer e~rgumen% choose a term af such that Fo F rr

af:(N~+JY) and af numeralwise represents f, It is well=

known to be undeeidable whether f(n) = 0 for some

integer no Let g to be the p&~ial recunsive function of

one integer gumeng such ghag = 0 = 0
for some n 7~ m and ~ undefined otherwise; hence it is
undecidable whether g(O) = O~

With a fixed=polnt operator Y N : ((N - + N) ~-+ N), it
is easy *o construct from af a germ ag in A r~ which
nnmeratwise repr~en~s 9. (The confluence of reduction
and the .fact tha t numeraI~ ace normal forms make ig
easy go chow gha~ if g(O) = 0 then F0 ~r~ (%0} = 0

where O:N is the nnmeral for O, Showing the conver~e

requh~es more detailed information about the behavior
of YN under reduction.} In fa+A, when g{0) is unde~

fined, the gea~n (% O) does not have a normal (or even
he~=normal) form. These to prove ~he undecidabiligy
of X ~¢ i~ is su~eieng go construct a fixed~poing combi~
nagor YN,

Analysis of Giracd% proof enables us go construct

a combinagor Y satizfying ~he poTymorphic f i x e d ~ p o ~

rule:
r > f:(e s)

r+vsf=ftY /)'
Moreover~ this is essentially ~he only pale needed go de~
rive ell the A** =provab:e ~g~emengs about Y~ Now Yar

292

simply (Y N). Time ~raitat~ons prevent u~ from ~n~
chding the con~tructlen of Y and a prec~e ana]ys~ of
its behavior under reduction.

This completes the outline of the proof of

Theore~n ~o The equational theory of A ~* is uno
decidable. In fac% it is undecidable whether

re V r~ a = 0

where 0 :~ %x:~o%y:Xoy and a is a raw term.

Coro l l a ry t There m no decidable, confluent,
and normalizing set of reduction rules for the equa~
tlona] theory of ~r~

&o Conuervat i~e e ~ e n ~ i o n

We fihstra~e conservative extension metatheorems with
s~nple example suggested by Gordon Plotkln [26].
Consider an algebraic structure ~ containing distinct

elements 0 and 1, a quaternary operator cond (condi-
tional equa],ity)~ and a unary operator s~c (successor)

~at~fying the pair of equational axioms (A):

~ o ~ d x x y z = y

codex {~uc z) y z = z .

It ~ eazy to find such ~tructure~, and since I = 0 ls not
true in them, it cannot be derived from (A) by sound

inference rules.
Any algebr~c structure can be chosen as the base

type of a %* mode] using the cla~slc~ interpretation

of function types s -* ~ a~ all functions from s to *.
Since the rules of %~ are sound in any such model, it
fo~ow~ that all equations between algebraic terms over
the signature of ~ (Le., ordinary fire.order terms with
free variables of type ~) provable in A ~ (A) are valid in
all models of (A)o Substitutiug equals for equals is a
derived rule of A ~, and the rule of substituting equals

for equals is welloknown to be sufficient for proving all

the logical consequences of ~ny set of equation~ ax-
ioms, Hence, the equations between algebraic terms
over the signature of ~ provable in A ~ (A) coincide with
those provable by substitutL~g equa l for equ~ls~whieh
are~ in turns exactly the equations v~id in ~]I models of
(A)° In ~um, the provable equations between ~gebr~c

° * e ~errns do not change when we ~w~tch to A ru]e~, .g.
° ~ A Th~ ~ what ~ meant l=Oisnotprowble~A {), i i]

Men of the [fix~ordex) equational theory of (A}. More

generally~

Theo rem ~o A ~ (~) yields a conservative exteno
slon of the equatlonM theory of (~) for any set
(~) of algebraic equations°

Now let (Ar~ / be the set of statements

re V ~:r,

r0 V cored u u v w = %

re ~ ~ o ~ d u (s u e u) v w = w .

The correspondence between I* and I n in Lemma 1
easily seen to continue to hold in the presence of aL

gebraic a~dom~, ~o ~n(An), ~ike ~(A), a le yisld~ a
conservative extension of the equational theory of (A).

(We remark that we expect to prove in the full paper
that a similar conservative extension theorem holds for
AA(EA)o Since it is not known whether an arbitrary
algebraic structure can be fully and faithfully embedded
~n some model of %A the proof of conservative extension
cannot proceed along the mode]otheoretic lines of the
argument used above fox' %¢. ~nsteac~ we use a proof°
theoretic argument based on the confluence and strong

normalisabfiity of A~.)
On the other hand, in A*~ IA~I, the polymorph~c

comb~nator Y supples ~ closed term a of type ~ such
that a = (~c a) ~ provable, namely a ~ Y ~ ~uco But

now, from (A) we have

co~dgg~ ¢3tY ~ D

and

and since a = {sac a), we conclude ~ = w° Hence aH
equations between terms of the same type are provable
in A ¢~ (An). In particular, 1 = 0 ls not true i n , but is
provable in A~ (A n) even though * satisfies the set of

adorn8 (An)~

T h e o r e m 5. ~** {A n) does not yield a conserv~
rive extension o f the equation~ theory of the set
IA n } o f algebraic equational statements above.

This faJ~ure o f conservative extension in A¢~ is actually
a fam~iar one. In a theory of computation on the inter
gers, say, one expects to have dlvergent eomputation~
of integer type. In the ~ u a l appro~h of denotational
semantics, ~UCh divergent computations are sam to come
pure a speci~ divergent integer valu% &~ Now £ scrv~

2fl8

a~ a fixed point of ~he ~:cce~or functions Although
the theory of integere with _L may not seers any harder
than the s tandard the.o<y, the technical complications
in proofs about integer computations caused by 2_ has
prompted recent eJ~%rts to find better theories [25, 26].

We expect that the introduction of fixed points is

not the only source of fa lhre of conservative extension.
Hence "we raise the following open problem:

(:) Let (E) be a set of alga'orals (d 0ical flAt-.order)
typing and equational statements, and let (fix) be

r0 :" = 4.(Y v).

I~ An((iix), E) conservatively extended by

A-((fix),

We alas mention that we do no~ know whether the r:r
~zdom, in ~he absence of any o~he~r axioms, violutes cons
~exvative extensions namely,

a eonee .ativo exton0:on of

In generals conservative extension theorems offer the
oppo~unity to c~z~%" claesicM mathematics into a come

v~tat ional se~h:g without change. The need ~o reason
about divergent v a l u ~ and more generally about the
ordering and topological prope~iee typiczdly euperimo
posed on discrete structea:es iu compntationM settings
would be avoided. Ig remMns to be seen how much como
patation theory we can fully develop while weserving
c~a~ical reasoning.

t~eferenee~

[1 t Reference mannM k~r ~he Ads programming language.
G.PoO. (X)8~000,~0085~8, 1980o

[2] Ho P0 Barendre~o The Lambda C~Je~: I~ S~f¢e and
Seman~is~o Vohme 103 of ~ugie~ in Logic ~nd Phe F~u~
deai~m 4Ma~hem~ic% North-l{olland, Amsterdam, second
ediglon, !984o

[3] He JR Barendregt and A, P~suso Semanlics for clae~ical
AUTOMATH and related ~ys~eme. rE*errant{on and Cordrot,
59:197--147, 1983.

[4] He Boehm~ Ao Demer~ and J. Donahueo An In/ermM
De,¢riptien 4 R~sefL TechMeM Beport TP~(~4~, Corne11
UMve~i~y, Compu*er Science Depar~men% t980.

[~] H. B. Brace and A. ire Meyer. The eeman%ics of ~econd
order polymorpMc l~rabda calculus~ In Go 1Kahn, D~ Be ~ -
Qu~n~ a~d G. Plo~km, edito~, Sem~nf:ic~ 4 Data Type%
page 131-144, $pinger;gelqag, Berlin, June 1984.

[6]]gL Bu~tall and Be We La~mpeono A kernet lang~aage %r
ab~rac~ da~a types amd mod~l~o In Go Nab.u, Do B. M~ac-
Qu~n, and Go Pt~kha, edi~o~, $em~is~ e /D~a Types,
p~g~ 1-50~ gg~inger~N%rla& BerI~n~ June t98~.

[7] T. Coquand and G. Hnet. Cons~ruc~fom: A Higher Of
der Pros/System for M~ehanfzing Ai~a~hema~ic~. }{apport de
Recherche 401~ INRIA~ DomMne de Vblucez% 78150 Roc-
que:acour~, Prance, M~y 1985. Presented at EUROCAL 85~
Linz~ Aue%rb.

[8] H. B. Curry and Ro Fey~. Csmbina~ory Logic° ~V~lume 1,
North-Holland, Amsterdam, 1958.

[9] N. G0 de Bruijn. Lambd~cMcuhs notation with nameless
dummies, tndago Math., 34(5);381-392, 1972.

[10] N. Go de Bruijno A survey of the project AUTOMATH.
In J. P. Seldin and Be Hindley, edbore, To If., B~ Curry: E~-
~ay8 in Combinafory Logics Larnbda C~Jculu~, and FormMi~m,
pages 579-606, Academic Press, New York, 1980.

[11] J. Donahue and A. Demerso Data ~ype~ are values.
ACA4 Tran.sacfion~ on Programming Languages and Sy~emz~
7(3);42~-445, July 1985o

[12] S. l!~rtune, Do Leivan% and Ms O'DonnelL The expree~
siveness of simple and second-order type ~trne~uree. Journd
of the ACNf, 30(t):151-185, January 1983o

[13] G. Gentzen. Investigations into logical deduction, h
Ms E. Ssab% editor, The Collected Papers o/ Gerhard Genfzer~
North-Holland, Amsterdam, 1969.

[14] Go Gen~eno lnveetigation~ into logical deductiom ~Ma~h-
ema~i~ehe Zeit~chrifl, 39;176-210 and 405-431, 1934. See [13]
for an English. tranAation.

[15] J. Girard. InferprAation fenefieneHe e~ glimina~ion des
coupure~ dares UarithmgHque d'erdre ~upgrleure. Ph.D. J;heei%
Unlver~it6 Parle VII, 1972.

[16] We A. Howard° The formulae-asqzype~ notion of con-
strnc$ion. 1969o Recently peM:shed ae [17 b

[17] W. A. Howard. The %rmnlae-a~½°pes notion of con-
s~aractlon. In J. P. Seldin and R. Hlndley, editor% To H. B.
Curry: .E~ay~ in Csmbina~ory Logic, Lembda CMcutu~, and
Fsrmali~m~ pages 479-490, Academic Pre~, New York, 1980.

[18] Be Li~kov, R. Atkinson, T. Bloom~ E. Moses J. C, Schaf-
fe~, Re Scheifler, and A. Snyder. CLU Jge/erencc Manual.
Volume 114 of Lecture Notes in Compact Science, Springer-
Veflag~ Berlin, 1981o

[19] P. M.~in-LSfo An intuitionie~ic theory of ~fpee: pred-
icative pur l In Fo t,~ose and J., Sheperdson, ed i to~ Logic
Colloquium Firs pages 78-118~ No~hoHolland, #ansterdam,
July 1973.

[20] P. ~/aa~in-L@f A Theory of Types. t.~.epo~ 71-8, Depart-
merit of ~ h e m a t i c s , Univerei V of StoekhNm, February
1971~

[21] No J. McCrackem An N~e~fi#a~ion 4 a Programming
Language ~ei~h a Peomerphic Type S~ruc~ure~ Ph.D. thesi%
Syracuee Univerelty, Syracuse, New York~ June 1979.

[2~] A, ire Meyer and Jo C~ Mitchell Second-order logical
relations {exSendM ab~trae¢)o In R. Parikh, editor, Legic~
a/Programs, pages 225-296, Springe>Verlag,]~erl~n~ June
1985:

[~3] Jo C./N~¢helL Lambda CMe~4~ Mode& ~/ ~psd P~o.
~rammi~g ;ga~gua~es. Ph.D, ~he~i~,..Maa, achuse~ Iae~l~ugs
of Technlogy; Cambridge, ~ c h u s e ~ t % Anffae~ 1984.

294

I24] J° C° IVfitche]~ and G. D. Plotkin. Abstract types have
eydstentia.l type. :Lu Princip&8 of Programming Languages,
pages 3%51, ACM, New York, January 1985.

125] Lo Paulson° Deriving structure/ induction in LCF° In
G° K~:b.n, D. Be MacQueen, and G. Plotkln, editors, Seman,
~ics of DaYa ~pes, pages 197-214, Sprlnger-Vertag, Berlin,
June 1984o
[26] C° D° Plotkln° Persona] communication, March 1985.
t27] D. Prawitzo Na~ur~ Deduc~ien: A Proof° Thesretica~ SYudy.
Volume 3 of Stockholm Studies in Philosophy, Almqvist and
Wiksell~ Stockholm, 1965.
[28] J° C° Ibeynolds. Polymorphism is not set-theoretic. In
G. Kahn~ D° B. M~cQueen, and G. D. Plotkln, editors,
Semantics of Data Types, pages 145-156, Springer-Verlag,
Berlin, June 1984.
I29] J. C. Reynolds. Towards a theory of type structure. In
Be Robinet, editor, Programming Symposlura~ pages 408-425,
$prlnger-Verlag, Berlin, 1974.

[30] J. C. Reynolds° Types, abstraction, and parametric poly-
n~orphism. In R. E. A. Mason, editor, Information Processin~
83, pages 513-523, North-Holland, 1983.

[31] A. Re~us. Abytrac$ AUTOMATH. Mathema~ical Centre
Tract 160, Muthematisch Centrum, Amsterdam, 1983.

295

