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Abstract. A function has a dependent type when the
type of its result depends upon the value of its argu-
ment. Dependent types originated in the type theory
of intuitionistic mathematics and have reappearsd in-
dependently in programming languages such as CLU,
Pebble, and Russell. Some of these langnages make the
assumption that there exists a type-of-all-types which
is its own type as well as the type of all other types.
Girard proved that this approach is inconsistent from
the perspective of intuitionistic logic. We apply Gi-
rard’s bechniques to establish that the type-of-all-types
assumption creates sericus pathologies from a programe-
ming perspective: a system using this assumption is
inherently not normalizing, term equality is undecid-
able, and the resulting theory fails to be a conservative
extension of the theory of the underlying base types.
The failure of conservative extension means that clas-
sical reasoning about programs in such a system is not
sound,

1. Introduction

Dependent types. A function has a dependent type when
the type of its result depends upon the value of its ar-
gument,

A simple example of a function which has a depen-
dent type is the unary function zero.vector which when
applied to an integer n returns an n-vector of zeroes.
No particularly appropriate type presents itself for the
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range of zero_vector, and hence zero_vector ibself is bypi-
cally not assigned a simple functional type. For this rea-
son, a parameterized type constructor like vector(n},
which denotes the type of integer vectors of length n, is
a built-in feature of many programming languages. In
programming languages with richer type systems, e.g.,
CLU [18], a type comstrucior {or parameterized clus-
ter in CLU terminology) such as An:int.vector(n) can
even be user-defined. In any case, the type of the valune
zerovector (n) can be described as vector{n).

The function An:int.vector{n) defines the type of
the value of »ero_vector ab its argument n and thus is
a good candidate for specifying the dependent type of
zevo.vector. However, to maintain s useful disiinciion
between An:int.wector{n) in its role as a function and
in it8 role as a type, we use I in place of X a8 a syntactic
mavker for type expressions. That is, we write

zero.vector:{{In:int.vector{n}),

where ‘2 is read as ‘has type’.

Ordinary function types can be regarded as a special
case of dependent types. That is, the type {s — ¢t} of
functions from arguments of type s to values of type ¢
is simply (IIz:s.2) where z is chosen to be some fresh
identifier.

A more provocative example involves finding a type

for the function
= {Az:intif {z = 0) then 4 else true).

That is, f{0) = 4, and f{n} = true for any integer
n s 0. Typically, f would be considered untypable {or
perhaps would be assigned some loophole type such as
int — any), but we can easily assign an informative
dependent type to 1, na,meiy,

, f.(ﬂm‘mt,xf {z = 0} then int else bool).

Of course; allowing such a type for f may undermine the
utility of the type system. The difficulty is that the type
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involves the test [z = 0) which may require the compn-
tation of an arbitrary integer expression. If that is the
case, then consbructive typechecking becomes unlikely,
since the distinction between type computation and ar-
bitrary computation disappears. Mevertheless, under
saitable restrictions it is possible to define rich systems
of dependent types, in which Tunctions such as f above
are tyvpable, while retaining effective typechecking.
Polymorphic types. A particularly rich effectively-typed
caleulus is A? | the polymorphic (or sscond-order) A-
calculus {15, 29]. The polymorphic A-calculus allows
variables ranging over the class of all types (second-
order variables), reflecting facilities available in Ada (1],
CLU, Russell [4, 11], and other programming languages.
Wariables ranging over objects of some particular type
are called first-order variables. {Note that a variable of
type int — int ranging over functions would be called
first-order in this context.) In A%, the first-order bind-
ing operators A and I are paralleled by the correspond-
ing operators 4 and A, for second-order variables. For
exainple, the polymorphic identity function [ can be
written {Az.Ay:z.y}. This means that I can be applied
to any argument ¢ which is a type, and returns as its
value the identity function on ¢, e.g., [{int) is the iden-
tity funciion on integers which when in turn applied to
any integer n yields n. Since the type of I{t) is § — ¢,
we assign [ itself the polymorphic type (Az.z — z).

A striking feature of the polymorphic caleulus is that
a polymorphic function may be applied to any type, in-
cluding its own: I{Az.z~ z) is the identity function on
identity functions. This turns out to give the system
enormons expressive power while retaining easy type-
checking of a very informative kind [12]. {This kind of
indirect circularity, reminiscent of the directly circular
self-application possible in the untyped A-calculus, rules
oub any naive set-theoretic explanation of the semansics
of terms or types [5, 28].)

In particular, A\® retains five surprising and valuable
properiies possessed by the morve familiar Gnitely-typed
J-caleulus {2, Appendix Aj:

{1} Provable equality is characterized by a set of di-
rected rewrite rules (reduction) satisfying the con-
fluence {Church-Rosser] property.

{2) Reduction is strongly normalizing {terminating),
ie., every way of applying reductions fo a term
sventually leads to 2 term in normal form which
cannob be further reduced.

{3) The equational theory of terms is decidable,

{4) The theory of type assertions a:t is decidable.

{5) The polymorphic theory of any algebraic structure
is a conservative extension of the ordinary (ie.,
first-order in the usual sense} equational theory of
the structure; in other words, the equations be-
tween terms of the algebra provable using A® are
just those in the original theory.

Several other rich calculi with first- and second-order
dependent types have been developed which refain these
properties while allowing type constructors like those in
the examples above [19, 21, 10, 3, 23, 24, 7).

The type-of-all-iypes sssumption. The application of a
polymorphic function to a type argument is evaluated
by substitution {B-reduction) exactly as for an ordinary
A-expression; e.g., {Az.a)s can be reduced by substi-
tuting s for all free occurrences of the variable z in a.
Because of the distinction between the first- and second-
order binding operators A and A (likewise IT and A}, a
duplicate set of computation rules is generally needed
for first- and second-order terms. The system would be
simpler if we could use A- and M-binding for second-
order variables.

One comprehensive way to do this is to introduce a
type-of-all-types, 7, such that riv. Then, for example,
the polymorphic identity function can be rewritten as
{Az:r. Ay:z.y) and its type as {{Iz:7.z — z). Furiher,
(Iz:r.z — z) has in turn type 7 since it i3 a type ex-
pression. Thus the combination of first-order dependent
types and the tvpe-of-all-types assumption subsumes
A2 cfr [3]. Moreover, the vector type constructor used
above can now easily be typed 28 Int — 7, and the i
then-else construct within the type expression

{Mz:int.if (z = 0} then int else bool)

has type (bool X 7 x 7} — 7,

In short, the ri7 assumption extends and apparently
sirnplifies systems of first- and second-order dependent
types.

We will be concerned below with four distinct A-
calculi, namely:

A" the finitely typed {Brst-order) A-calculus,
A% the polymorphic (second-order) A-calculus,
AT the typed A-calculus with Tl-types, and
A" A" extended by the 7:7 assumption.

The new system, A™, defined in Section 2, is designed
to be one of the simplest systems with Srst-order de-
pendent types. Indeed, without the addition of further



axioms, A will be shown to be a notational variant of
the finitely-typed A-caleulus, A", In other words, de-
pendent types appear only in degenerate form in AT,
Choosing such a system strengthens our {negative) re-
sults, since the pathologies we exhibit when A is ex-
tended with the type-of-all-types assumption will surely
apply to any less degenerate system.

Penalties of the type-of-all-types assumption. Program-
ming languages such as Pebble [6] and A-calculi such
a8 Martin-Lof’s theory of types [20] with type systems
incorporating a type-of-all-types seem capable of satis-
fying two principal goals of a type system:

(8) Freedom from runtime $ype-errors.

{7) Representation independence of abstract data
types [30, 11, 22].

Our objective in the rest of this paper is to demonstrate
that other valuable properties, namely (2)-(5} above,
fail even for the minimal type-of-all-types system A77.

The failure of property {2) (strong normalization)
is not by itself surprising, since in » general program-
ming language one expects terms which define diver-
gent computations not to have normal forms. Simi-
larly, the failure of property (3) (undecidability of term
equivalence)} is to be expected, Bu¢ the failure of prop-
erty {4) means that it is not decidable whether a term
has a given type, and more generally whether two types
are equal. This undermines the possibility of effective
“gtatic” typechecking before runtime. Finally, the fail-
ure of property (5}, conservative extension, is also seri-
ous as we indicate in Section 4 below.

The finitely typed A-calculus, A7, is well-known to
satisfy the confluence and decidability properties (1)~
(4), and can be proved trivially to satisfy property (5)
{conservative extension) by an easy model-theoretic ar-
gument given in Section 4. It follows that “pure” AT,
which is a notational variant of A7, also satisfies {1}~(5),
whereas the extension of A™! to A*" by the single axiom
7:7 destroys everything but confluence.

We remark that in order to identify 7:7 as the main
culprit, we plan in our full paper also to argue that
AT is not so near the brink of undecidability that less
forceful jolts than 7:7 will throw it over as well. In par-
ticular, we will show that A can be safely extended in
other ways, for example to subsume A#, while preserv-
ing properties {1)-{5).

Girard’s “paradoz”. There is a purely formal correspon-
dence, known as the formulae-as-types analogy, between
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some A-calculi and intuitionistic logics {8, 16]. Types are
seen as logical propositions, and {closed) A-expressions
are proofs of the propositions which are their tvpes. The
intuitionistically provable propositions are exactly those
types t for which closed terms of type t exist. Intuition-
istic absurdity is the proposition that all propositions
are provable; in a A-calculus this corresponds to the
type (Hzirz}. 8o in A-calculi where the formulae-as-
types analogy holds, there are no closed A-expressions
of type {Ilz:r.z}.

An early formulation of higher-order intuitionistic
logic based upon the type-of-all-types assumption was
laid out by Martin-Lof [20]; the A-calculus correspond-
ing to this logic subsumes A7". Shortly after Martin-
Lof’s proposal, Girard [15] showed that the system was
intuitionistically inconsistent. A closed term of type
{Tlz:7.2) can actually be extracted from Girard’s proof.

Intuitionistic incongistency by no means implies that
the associated A-calculus is trivial; on the contrary, the
theory is so rich that it is undecidable. From a program-
ming perspective, the ability to define a term of type
{TIz:7.2) in a A-calculus is not intrinsically objectionable
and does not appear t0 have the negative consequences
noted above,

However, one technical consequence of intuitionistic
incongistency furns out to be fairly immediate: the cal-
culus ismot strongly normalizing. Indeed, it iz easy to
show that any pure closed term of type (Ilz:7.2) has no
normal form under the nsual rednction rules.

One might hope to restore normalization by intro-
ducing some new notion of reduction. However, the
construction of the term of type (Ilz:7.z) from Girard’s
proof indicates how to construct a fixed-point combina-
tor which can then be used to show that arbitrary par-
tial recursive functions are numeralwise representable in
AT7, This implies that term equality in A"" is undecid-
able, and therefore further implies that no complets set
of effective reduction rules exists which are both confiu-
ent and aormaiiziag [2]. The presence of a fixed-point
operator azlso easily implies that the calculus is not a
conservative extension of algebraic equational theories.

2. A Aucaicuiﬁg with dependent types -

We now formalize A%, the A-calculus with dependent
types sketched in Section 1.

The syntaz of terms. Let V = {x1,%g,...} be a count-
ably infinite set of variables. In what follows a, b, ¢,
f, and g ave metavariables for terms, u, v, and w are



mebavariables for variables, and s and t are metavar-
ables for terms appearing as types. The set of raw un-
typed terms A% is the smallest set defined by the fol-
lowing inductive clauses:

re A%

[every variable is a term),
{*r is a term),
) e A% (application),
e AR {A-abstraction),
{Mv:at) € A"

Let fvfa] denote the set of free variables of a, defined
inductively in the usual way on the structure of terms.

{II-abstraction].

In raw abstractions it is possible $o have occurrences
of v free in 3; for definiteness we adopt the convention
thal such oceurrences are in the scope of Ay or IV,
but in fact our typing rules will forbid such occurrences.
The function-space expression s — ¢ stands for [Hv:is.t)
where v does not occur free in s or £. We follow the usunal
convention that when ~ appears as » binary connective,
it associates to the right, so that s— 5’ — 3" abbreviates
s~ {s" — 5"}, Application associates to the left so that
fab abbreviates {f a}b.

We adopt the following variable convention: if a set
of terms occurs together, for example, in a definition,
then all bound wariables in these terms are distinct
from each other and from the free variables [2]. We
also identify terms modulo the uniform renaming of
bound variables {o-conversion}; in combination with
the variable convention this allows us to work with rep-
resentatives of the a-equivalence classes of terms rather
than termsz themselves.® Henceforth ‘=’ denotes syn-
tactic berm egualilty modulo c-conversion. The substi-
tution operator [a/v| denoting the replacement of all
free occurrences of v with o i3 defined recursively in the
usual way,

Tyved A-caleuls as proof systems. We formulate our var-
ious typed A-calculi, 3% for o one of 7, &, I, or 77, as
proof systems for staternents about terms {3]. A state-
mient 18 a palr consisting of a context, ', and » sentence,
w, and i written ' I . Thers are two kinds of sen-
bences, namely eguations of the form a = b and typings
of the form a.

Since sentences may have free variables, contexts T
are nesded bo speciy the types of the free variables.
Raw contexts are defined to be partial functions from
V to raw terms. The empty context is writien 'y, and

*In the full peper we simplify the handling of bound varinbles by
uging » varisnt of de Brulin's nemeless terme [9

I'v:t] denotes the context T' modified or extended so
that T'{v) = £. {Contexts do not record their history;
T[v:is][v:t] equals T'v:t].])

In the most general situation, well-formed contexts,
equations, and typings must be mutually recursively
defined. This is because well-formed equations are con-
strained to be between typable terms {of the same type),
so the inference rules for equations typically have an-
tecedents which are typings. The inference rules for
typings must in surn allow for equations between types,
s0 these rules may have equational auntecedents. Fi-
nally, the range of a context is intended to contain only
7 or terms ¢ which are type expressions, Le,, terms such
that the typing ¢:7 is provable {in an appropriate con-
text}, so the definition of well-formed context depends
on provability of typings,

We write I' F® o when the statement T' - @ 18 A%

provable. If {A) is a set of statements, then A*{A]} de-
notes the extended system obtained by adding (4) to
the axioms of A®. In particular, A7" will be defined to
be AT {To + 7i7).
The A .calculus. The axioms and inference rules of the
A-calculus are presented in a form similar to Gentsen’s
caleulus of sequents [14, 27, 21]. Each rule consisis of
a set of statements (which have already been defined
uging the usual notation, -, for sequents) called the an-
tecedents and a statement called the consequent, graph-
ically separated by a horisontal line. In the case of an
axiom or axiom scheme, there are no antecedents and no
horizontal line is drawn. The consequent of an inference
rule iz provable if each antecedent is itaelf provable.

Al M.proofs begin with an instance of the type vari-
able introduction {r-vi) axiom scheme since it is the
only axiom in the system. The pair of statementa T + ezt
and '+ £:7 and is abbreviated ' F a:itir.

Rules for typings.
{r-vi} r-variable introduction
Tolweri b wir
{vi} variable introduction

Tt wir, v dom(l)
Tzt b vit

{111} IT-introduction
Tk a7, Tloss] b tar
' {Mws.t)r

(A} A-introduction
'k g, Tlus] k- e:tir
DF {Avis.e):{TTves.t)




{Ile) M-elimination
Tt as, I'F fi{llust)r
' {fa):tla/v]
{rc) type conversion

I'hFas Phs=t
Thoat

Rulea for eguations.

{r) reflexivity

I'bat
Thra=a
(8) symmetry
Pra=1%
TPhrb=a

{t) transitivity

Threa=b Trbi=c
Tlra=c¢

{cl} left congruence
I'tas, TF fi{llusit)er, Ok f= f
PH(fa)=(f"a)
{cr) right congruence
I'tas, 't fi{llust)r, T Fa=d'
PE{fa)=(fd)
{AB) B-conversion of A-terms
T'tas, TF (Avis.e):(Mvist)r
Tt ({Av:s.e)a) = ela/v]
{A€) weak extensionality for A-terms
P+ s, T{v:s] b ester, Dlvis] e = ¢
Tk (Avia.e) = (Auvis.e')
{11¢) weak extensionality for II-terms
Tk s, Tlws) & tir, T{uis] -t = ¢
I+ (Tvs.t) = (v:s.t')
{An) n-conversion of A-terms
Tt s:r, T+ fi{llwzs.t)ir, v ¢ dom(T)

' {vs(fo) =1
{M-rc) binding type conversion in A-terms
TFkar, Tuslrenr, Ths=4
LH Dus.e) = [Qus'.e)
(Tl-7¢c) binding type conversion in Il-terms
IrFar, Dusl-tir, TFs=4
T+ (To:s.t) = (Tuv:s’.t)
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Rules for content extension.
{ex) context extension

T, T'tEr, vé dom(l)
Tlut]

{r-cx) r-conbext extension

't e, védom(T)
Twrl ko
The rules may seem cumbersome a$ first, but most of
them are formulations, nsing dependent types, of famil-
iar rules of the A"-calculus.

We do not have time here to explain in detail the
several design choices embodied in the rules. However,
the context extension rules, {cx) and (r-cx), are worth
noting, These rules assert that what is provable in a
context may also be concluded when that contexs is ex-
tended by assigning a type to a fresh variable. Such
rules are generally not necessary in gystems which pro-
vide a context projection rule

) =1

Phaot °
However, including context projection seems to force
complications in other rules in order to preserve the in-
tended behavior of the system. Thus, in systems with
context §>rojectiom {e.g., various formulations of AU~
TOMATH (3, 31]}, the notion of context well-formedness
is explicitly introduced into the proof system as a third
kind of sentence. Inference rules which extend contexts
must assert that the extended comtext is well-formed,
and rules which project contexts must check that their
antecedent contexts are well-formed.

A key aspect of well-formed contexts is that circular
type assignments in which the type of a variable de-
pends on the value of the variable do not occur. For
esxample, a circular assignment such as '

T{z) = (if (= = 0) then int else bool)

can lead to undesirable J-abstractions such as

Az:(if (z = 0} then int else bool).s

which  are not typable in the system. It is helpful to
réalize in reading the axioms and rules of A™ that they
are formulated so that if T b wvis, I b (Av:s.a)it, or
I'k {Tu:s.t):r, then I will not be circular and v ¢ fvis].

Equsvalence of A" and pure A™. The pure AT system is
designed to provide the basic facilities for a rich depen-
dent type system through its introduction and elimina-
tion riles for manipulating these types. However, thiese



facilities have no real opportunity $o come into play in
the pure system because the only axioms are those for
type variable introduction. So until we add more an-
ioms as in the next section, the system is very limited,

More precisely, we can prove by (4 surprisingly in-
tricate but ultimately routine) induction on the length
of A.proofs that if T' I~ (TIv:s.2):7, then in fact v does
not occur free in 2 or ¢; consequently this typing state-
ment may be abbreviated as I' b (s — ¢):r. It follows
that the only variables v which can appear free in a
type expression s, i.e., an 2 such that I' - si7, arve free
type variables, vis,, I’ F wr. Buch free type variables
behave essentially as the ground types of the fimitely
typed A-calenlus, AT,

From this observation we can establish a translation
T from terms and contexts of AT to terms and type
expressions of A7, assuming that 2™ allows an infinite
number of ground types,

Lemma 1. I F ater i +° Tla]I: T[T, and
TH a=biff F* T{a]T = T[]

Hence A" may be regarded as a notational variant of
A", From this it follows that A™ has a confluent system
of reduckion rules, iz strongly normalizing, and conse-
guently decidable,

Theorem L. It is decidable whether a raw staie-
ment is A-provable.

8. Mop-normalizabilily and undecidability

By assuming that *type’ is a type, we obtain from A" a
system essentially equivalent to Martin-Léfs 1971 the-
ory of types,

The proof system for the X" -calculus is just the A
procf system angmented with the axiom

{77} To V"7 ror

{We remark that in the presence of {r7), the {r-vi) ax-
iom and the {r-cx} rule are become redundant.)
Analysis of the properties of ™™ hinges on replacing
the equational rules of A7" by directed rewrite rules {re~
ductions). Namely, let 4 » b be a new kind of sentence
called 2 reduction. We modify the A" proof system
Lo prove reduction statements. Bules for reductions are
obtained from the rules of A7 by replacing all equations
a = b by reductions ¢ b b and deleting the reflexive and
symmetric rules {r}, {8]. The key technical fact about
reduction iz that it s confluent: two terme are provably
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equal in some context iff they have a common reduct in
that context.

As indicated in the introduction, we cap establish a
translation I/ from terms and contexts of A® to those
of A™" by replacing *Av’ and ‘T'v’ by ‘Avir’ and ‘Hur’,
respectively. Under this translation it is easy to see that
A" reductions can simulate A® reductions. Given that
AT".reduction is confiluent, it is not hard to verify that
the simulation is faithful:

Theorem 2. T +4 a:tiff YT+ Ula]:lU]t]:r, and
I'H4 a=bif UT 7" Ufa] = U]b].

It follows that the data types and operations definable
in the polymorphic A-calculug are available in A77. In
particular, using

N = Hzrf{z — z) — {z— 3)))

as the type of the polymorphic Church numerals, we
conclude that the primitive recursive (and many more)
functions on the integers are numeralwise representable
by terms of A77 [12].

Bo for any primitive recursive function f with one
integer argument, choose a term oy such that Iy F77
ap:{N— N} and ay numeralwise represents f. It is well-
known to be undecidable whether f{n} = 0 for some
integer n. Let g to be the partial recursive function of
one integer argument such that g(m) = 0if f(n) = 0
for some n > m and is undefined otherwise; hence it is
undecidable whether g{0) = 0.

With a fixed-point operator ¥y :{{N — N} — N}, it
is easy to construct from a; a term ay in A" which
nameralwise represents g. {The confluence of reduction
and the fact that numerals are normal forms make it
easy to show that if g(0) = O then I'oc F™" [a,0) = 0
where 1/ i8 the numeral for 0. Showing the converse
requires more detailed information about the behavior
of ¥y under reduction.) In fact, when ¢{0) is unde-
fined, the term (ag 0} does not have a normal {or even
head-normal) form. Thus, to prove the undecidability
of A™" it is sufficient to comstruct a fixed-point combi-
nator ¥ .

Analysis of Girard’s proof enables us S0 construct
a combinator ¥ satisfying the polymorphic fixed-point
rule:

T'F f:ls—8)
Pr¥sf=f{Yasf)

Moreover, this js essentially the only rule needed 4o de-
rive all the A" .provable statements ahout W, Now Yy




is simply {¥ ). Time limitations prevent us from in-
cluding the constraction of ¥ and a precise analysis of
its behavior under reduction.

This completes the outline of the proof of

Theorem 3. The equational theory of A™ iz un-
decidable. In fact, it is undecidable whether

I‘a }“’ﬂ’ o=
where 0 = Az:ir.Ay:z.y and o i a raw term.

Corollary 1. There is no decidable, confluent,
and normalizing set of reduction rules for the equa-
tional theory of A77,

4. Conservative extension

We illustrate conservative extension metatheorems with
 simple example suggested by Gordon Plotkin [28].

Consider an algebraic structure ¢ containing distinct
elements O and 1, a quaternary operator cond {condi-
tional equality), and a unary operator suc {successor)
satisfying the pair of equational axioms (4):

condzzyz

i

condz (sucz)yz

It is easy to find such structures, and since 1 =0 is not
rue in them, it cannot be derived from {A) by sound
inference rules.

Any algebraic structure can be chosen as the base
type of a A" model using the classical interpretation
of function types s — ¢ as all functions from ¢ to .
Since the rules of AT are sound in any such model, it
follows that all equations between algebraic terms over
the signature of ¢ {i.e., ordinary first-order {erms with
free variables of type 1) provable in A7(4) are valid in
all models of {A). Substituting equals for equals is a
derived rule of A7, and the rule of substituting equals
for equals is well-known %o be sufficient for proving all
the logical consequences of any set of equational ax-
joms. Hence, the equations between algebraic terms
over the signature of ¢ provable in A" {A) coincide with
those provable by substituting equals for equals———which
are, in turn, exactly the equations valid in all mpde}s‘ of
(A). In sum, the provable equations between algebraic
terms do not change when we switch to A” rules, e.g.,
1 = 0 is not provable in A7 (A). This is what is meant
by the assertion that AT{A) yields a congservative exten-
sion of the (first-order) equational sheory of {A). More

generally,

Theorem 4. A"(E) yields a conservative exten-
sion of the equational theory of (E) for any set
{E) of algebraic equations.

Now let {A™) be the set of statements
To & wim,
To b cond:(s — 1 —> o — 1 —1),
T'o b sucie— ¢,
Tob conduvvw = v,

To - condu {sucu)vw = w.

The correspondence betwesn A" and AT in Lemma 1
is easily seen $o continue to hold in the presence of al-
gebraic axioms, so AT{A"), like AT(A), also yields a
conservative extension of the equational theory of (4).

(We remark that we expect to prove in the full paper
that a similar conservative extension theorem holds for
A2 {E#). Since it is not known whether an arbitrary
algebraic structure can be fully and faithfully embedded
in some model of A2, the proof of conservative extension
cannot proceed along the model-theoretic lines of the
argument used above for A”. Instead we use a proof-
theoretic argument based on the confluence and strong
normalizability of A%.)

On the other hand, in A7"{A"), the polymorphic
combinator Y supplies a closed term a of type ¢ such
that o = (suca) is provable, namely a = ¥ ¢ suc. Bub
now, from (4) we have

condaavw =9

and
conda (suca)vw = w,

and since ¢ = (suca), we conclude v = w. Hence all
equations between terms of the same type are provable
in A77(AT). In particular, 1 = O is not true in ¢ but is

‘provable in A7 (A™) even though ¢ satisfies the set of

axioms {A")!

Theorem 5. AT7{A™) does not yield a conserva-
tive extension of the equational theory of the sei
(A™) of algebraic equational statements above.

This failure of conservative extension in A™" is actually

a familiar one. In a theory of computation on the inte-
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gers, say, one expects to have divergent computations

of integer type. In the usual approach of denotational

semantics, such divergent computations are said to com-
pute a special divergent integer value, L. Now [ serves



as a fixed point of the successor function. Although
the theory of integers with L may not seem any harder
than the standard theory, the technical complications
in proofs about integer computations cavsed by 1 has
prompted recent efforts to find better theories [25, 26].

We expect that the imtroduction of fixed points is
not the only source of failure of conservative extension.
Hence we raise the following open problem:

{1} Let {E) be a set of algebraic (classical first-order)
typing and equational statements, and let (fix} be

To b ¥ = dofe—o).{Y o).

Is AT {{fix), E) conservatively extended by
ATT{{fix}, E)?

We also mention that we do not know whether the rir
axiom, in the absence of any other axioms, violates cone
servative extension, namely,

{2) Is A77{) a conservative extension of AT {2)?

in general, conservative extengion theorems offer the
opportunity to carry classical mathematics into a com-
putational setting without change. The need to reason
about divergent values and more generally about the
ordering and topological properties typically superim-
posed on discrete structures in computational settings
would be avoided. It remains $o be seen how much com-
putation theory we can fully develop while preserving
classical reasoning.
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