
COIIference Record of the Fifth Annual ACM Symposium on Principles of Programming Languages

SYNTACTIC CONTROL OF INTERFERENCE

John C. Reynolds
School of Computer and Information Science

Syracuse University

ABSTRACT In programming languages which permit both assignment and procedures, distinct identifiers
can represent data structures which share storage or procedures with interfering side effects. In
addition to being a direct source of programming errors, this phenomenon , which we call interference
can impact type structure and parallelism. We show how to eliminate these difficulties by imposing
syntactic restrictions, without prohibiting the kind of constructive interference which occurs with
higher-order procedures or SIMULA classes. The basic idea is to prohibit interference between
identifiers, but to permit interference among components of collections named by single identifiers.

The Problem

It has long been known that a variety of
anomalies can arise when a programming language
combines assignment with a sufficiently powerful
procedure mechanism. The simplest and best-
understood case is aliasing or sharing between
variables, but there are also subtler phenomena of
the kind known vaguely as “interfering side
effects”.

In this paper we will show that these anomalies
are instances of a general phenomenon which we call
interference. We will argue that it is vital to
constrain a language so that interference is
syntactically detectable, and we will suggest
principles for this constraint.

Between simple variables, the only form of
interference is ~ or sharing. Consider, for
example, the factorial-computing program:

procedure fact(n, f); integer n, f;

!?%& integer k;

k:=O; f:=l;

while k # n do—

l?_!%@k :=k+l; f:=kxfend

end .—

Suppose n and f are called by name as in Algo’1, or
by reference as in FORTRAN, and consider the effect
of a call such as fact(z, z), in which both actual

parameters are the same. Then the formal parameters
n and f will be aliases, i.e., they will interfere
in the sense that assigning to either one will
affect the value of the other. As a consequence,
the assignment f := 1 will obliterate the value of
n so that fact(z, z) will not behave correctly.

In this case the problem can be solved by
changing n to a local variable which is initialized
to the value of the input parameter; this is

Work supported by National Science Foundation Grant
MCS 75-22002, and by the Science Research Council
of Great Britain.

tantamount to calling n by value. But while this
solution is adequate for simple variables, it can
become impractical for arrays. For example, the
procedure

procedure transpose(X, Y); real array X, Y;

for i := 1 until 50 do— .

for j := 1 until 50 do— —

Y(i, j) := X(j, i)

will malfunction for a call such as transpose(Z, Z)
which causes X and Y to be aliases. But changing
X to a local variable only solves this problem at
the expense of gross inefficiency in both time and
space. Certainly, this inefficiency should not be
imposed upon calls which do not produce interfer-
ence, On the other hand, in-place transposition is
best done by a completely different algorithm.
This suggests that it is reasonable to permit
procedures such as transpose, but to prohibit calls
of such procedures with interfering parameters.

Although these difficulties date back to Algol
and FORTRAN, more recent languages have introduced
new features which exacerbate the problem of
interference. One such feature is the union of
data types. Suppose x is a variable whose value
can range over the union of the disjoint data types
integer and character. Then the language must
provide some construct for branching on whether
the current value of x is an integer or a charac-
ter, and thereafter treating x as one type or the
other. For example, one might write

unioncase x of (integer S; character: S’) ,—

where x may be used as an identifier of type
integer in S and as an identifier of type character
in S’. However, consider

unioncase x of—

(integer: (y := “A”; n := X+ 1);

character: noaction) .

39

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.© 1978 ACM 0-12345-678-9…$5.00

http://crossmark.crossref.org/dialog/?doi=10.1145%2F512760.512766&domain=pdf&date_stamp=1978-01-01

It is evident that aliasing between x and y can

cause a type error in the expression x + 1. Thus ,

in the presence of a union mechanism, interference
can destroy type security. This problem occurs

with variant records in PASCAL [1], and is only
avoided in Algol 68 [2] at the expense of copying
union values.

The introduction of parallelism also causes
serious difficulties. Hoare [3,4] and Brinch-
Hansen [5] have argued convincingly that intelli-
gible programming requires all interactions
between parallel processes to be mediated by some
mechanism such as a critical region or monitor.
As a consequence, in the absence of any critical
regions or monitor calls, the arallel execution
of two statements, written S 71 s can only be
permitted when S1 and S2 do &ot in?~rfere with one
another. For example,

x := X+l]/ y :=y x 2

would not be permissible when x and y were aliases.
In this paper, we will not consider interacting

parallel processes, but we will permit the parallel
construct S

1
II S2 when it is syntactically evident

that S1 and S2 do not interfere. Although this kind
of determinate parallelism is inadequate for practi–
cal concurrent programming, iH ia sufficient to make
the consequences of interference especially vivid.
For example, when x and y are aliases, the above
statement becomes equivalent to

whose meaning, if any, is indeterminate, machine-
dependent, and useless.

These examples demonstrate the desirability of
constraining a language so that variable aliasing
is syntactically detectable, Indeed, several
authors have suggested constraints which would
eliminate aliasing completely [6,7].

However, aliasing is only the simplest case of
the more general phenomenon of interference, which
can occur between a variety of program phrases. We
have already spoken of two statements interfering
when one can perform any action which affects the
other. Similarly, two procedures interfere when
one can perform a global action which has a global
effect upon the other.

Interference raises the same problems as
variable aliasing. For example, P(3) II Q(4) is
only meaningful if the procedures P and Q do not
interfere. Thus the case for syntactic detection
extends from aliasing to interference in general.
However, the complete prohibition of interference
would be untenably restrictive since, unlike
variables, interfering expressions, statements, and
procedures can have usefully different meanings.

Both the usefulness and the dangers of inter-
ference between procedures arise when procedures
are used to encapsulate data representations. As
an example, consider a finite directed graph whose
nodes are labelled by small integers. Such a graph
might be represented by giving, for each node n, a
linked list of its immediate successors nl,. . ., nk:

nodelist item link

B
‘1

‘2

‘k

This representation is used by the procedure

procedure itersucc(n,p) ; integer n; procedure

begin integer k;

k := novelist;

while k # O do.

!2!?&?lP(item(k)); k ‘= link(k) @

end

P;

whic”n causes the procedure p to be applied to each
immediate successor of the node n.

If the graph is ever to change, then something
– probably a procedure such as “addedge” or
“deleteedge” - must interfere with itersucc by
assigning to the global arrays nodelist, item, and
link. On the other hand, the correct operation of
itersucc requires that the procedure parameter p
must not assign to these arrays, i.e. , that p must
not interfere with itersucc. Indeed, if itersucc
involved parallelism, e.g. if the body of the while
statement were

m integer m;

m := item(k);

Q5@JlF’(m) II

~>

k := link(k) end—

then noninterference between p and itersucc would
be required for meaningfulness rather than just
correctness .

Of course, the need for interfering procedures
would vanish if the graph representation were a
parameter to the procedures which use it. But this

would preclude an important style of programming
- epitomized by SIMULA 67 [8] - in which data
abstraction is realized by using collections of
procedures which interfere via hidden global
variables.

In summary, these examples motivate the basic
goal of this paper: to design a programming lan-
guage in which interference is possible yet

syntactically detectable. To the author’s know-

ledge, the only current language which tries to

meet this goal is Euclid [7]. The approach used

in Euclid is quite different than that given here,

and apparently precludes procedural parameters and

call-by-name.

40

The Basic Approach

Before proceeding further, we must delineate

the idea of interference more precisely. By a

ewe mean a variab~ey expression, statement,
or procedure denotation. In the first three cases,

we speak of exercising the phrase P, meaning:

either assigning or evaluating P if it is a

variable, evaluating P if it is an expression, or

executing P if it is a statement.

For phrases F’ and Q, we write P # Q to

indicate that it is syntactically detectable that

P and Q do not interfere. More precisely, # is a

syntactically decidable symmetric relation between

phrases such that:

(1) If neither P nor Q denotes a procedure,

then P # Q inplies that, for all ways of

exercising P and Q, the exercise of P will

have no effect on the exercise of Q (and

vice-versa) . Thus the meaning of exercising

P and Q in parallel is well-defined and

determinate.

(2) If P denotes a procedure, A , . . . , An

tare syntactically appropriate ac ual para-

meters, P # Q, andA1 # Q, . . . , ~ # Q,

then P(Al, . . . , A) # Q. (Thus P # Q

captures the idea ?hat P cannot interfere

with Q via global variables.)

It should be emphasized that these rules have a

fail-safe character: P # Q implies that P and Q

cannot interfere, but not the converse. Indeed,

the rules are vacuously satisfied by defining #

to be universally false, and there is a prubablyy

endless sequence of satisfactory definitions which

come ever closer to the semantic relation of non–
interference at the expense of increasing complexity.
Where to stop is ultimately a question of taste:
P {) Q should mean that P and Q obviously do not
interfere.

Our own approach is based upon three
principles:

(I) If I # J for all identifiers I occur-

ring free in P and J occurring free in Q,

then P # Q.

In effect, all “channels” of interference must be

named by identifiers. For the language discussed in

this paper, this principle is trivial, since the

only such channels are variables. In a richer

language, the principle would imply, for example,

that all 1/0 devices must be named by identifiers.

(II) If I and J are distinct identifiers,

then I # J.

This is the most controversial of our principles,

since it enforces a particular convention for

distinguishing between interfering and noninter-

fering phrases. Interfering procedures (and other

entities) are still permissible, but they must

occur within a collection which is named by a

single identifier. (An example of such a

collection is a typical element in a SIMULA [8]

class. Indeed, the idea of using such collections

was suggested by the SIMULA class mechanism,

although we will permit collections which do not
belong Co any cla5.s.)

(III) Certain types of phrases, such as
expressions, and procedures which do not
assign to global variables, are said to be
passive. When P and Q are both passive,

P # Q.

Passive phrases perform no assignments or other

actions which could cause interference. Thus they

cannot interfere with one another or even with

themselves, although an active phrase and a passive

phrase can interfere.

An Illustrative Language

To illustrate the above principles we will

first introduce an Algol-based language which,

although it satisfies Principle (I), permits

uncontrolled interference. We will then impose
Principle (11) to make interference syntactically

detectable. Finally, we will explore the

consequences of Principle (111).

Unlike Algol, the illustrative language is

completely typed, so that reduction (i.e. appli–

cation of the copy rule) cannot introduce syntax

errors. It provides lambda expressions and fixed-

point operators for all program types, and a named

Cartesian product, which is needed for the

collections discussed under Principle II. Procedure

declarations, multiple-parameter procedures, and

classes are treated as syntactic sugar, i.e. , as

abbreviations which are defined in terms of more

basic linguistic constructs.

Arrays, call-by-valuey jumps and labelsy
unions of types, references, input–output, and

critical regions are not considered.

We distinguish between data types, which are

the types of values of simple variables, and

program types, which are the types which can be

declared for identifiers and specified for

parameters. The only data types are integer, real,

and Boolean, as in Algol, but there are an infinite

number of program types. Specifically, the set of

program types is the smallest set such that:

(Tl) If 6 is a data type, then 6 var

(meaning variable) and 6 exp (meaning

expression) are program types.

(T2) sta (meaning statement) is a program

type.

(T3) If u and u’ are program types, then
~+~f is a program type.

(T4) If ~ is a function from a finite~et of

identifiers into program types, then II(o) is

a program type.

A formal parameter specified to have type

6 var can be used on either side of assignment

statements, while a formal parameter specified to

have type 6 exp can only be used as an expression.

The program type u + m’ describes procedures whose

single parameter has type w and whose call has type

u’. For example, the Algol procedures

yrocedure pi(n); integer n; n := 3;

real procedure p2(x); real x; p2 := x X x;

would have types integer var + sta and real exp +

real exp respectively.

41

The program type II(;) is a Cartesian product

in which components are indexed by identifiers

ra~her than by consecutive integers. Specifically,

II(W) descr~bes collections in which each_i in the

domain of_w indexes a component of type ~(i). The

function u will always be written as a list of pairs

of the form argument:value. Thus, for example,

II(inc: sta, val: integer exp) describes collections

in which inc indexes a statement and val indexes an

integer expression. A typical phrase of this type

might be (inc: n := n + 1; val: n X n).

To simplify the description of syntax we will

ignore aspects of concrete representation such as

parenthezation, and we will adopt the fiction that

each identifier has a fixed program type (except

when used as a component index), when in fact the

program type of an identifier will be specified in

the format I:u when the identifier is bound.

We write <u id> and <(I)> to denote the sets of

identifiers and phrases with program type LO. Then

the syntax of the illustrative language is given by

the following production schemata, in which 6 ranges

over all data types, LO, o’ , WI, . . . Un range over

program types, and il, . . . , in, range over

identifiers:

<integer exp> ::= O

I .integer exp>+<integerexp>

<Boolean exp> ::= true

I ‘integer exp>=<integerexp>

I .Boolean exp>&<Booleanexp>

(and similarly for other constants and

operations on data types)

<sta> ::= <6 var> := <6 exp>

<sta> ::= noaction

I <sta>; <sta>

I while .Boolean exp> ~ <sta>

<sta> : := new <6 var id> in <sta>—

<w> : := <U id>

<W + w’> ::= a <~ id>. <w’>

<~t> ::= <~ + OJ> (<u>)

<II(i :U , . . . , i :On)> ::=
11

(iI:<ml>, ..: , i :<U >)
nn

<wk> ::= <II(i :U
1 1’ ““”

, in:wn)> . i
k

<~> : := if <Boolean exp> then <~> else <~>— — —

<~> ::= Z(<W + 0.)>)

Although a formal semantic specification is

beyond the scope of this paper, the meaning of our

language can be explicated by various reduction

rules. For lambda expressions, we have the usual

rule of beta-reduction:

(XI. P) (Q) - ++Q

where the right side denotes the result of

substituting Q for the free occurrences of I in P,

after changing bound identifiers in P to avoid

conflicts with free identifiers in Q. Note that

this rule implies call by name: If P does not

contain a free occurrence of I then (AI. P)(Q)

reduces to P even if Q is nonterminating or causes

side effects. For collection expressions, we have

(il:P1, . . . ,in:P).ik - Pk .
n

For example,

(i.nc: n := n+l, val: nxn) . inc * n := n+l .

Again, there is a flavor of call–by-name, since the

above reduction would still hold if nxn were

replaced by a nonterminating expression. The

fixed-point operator ~ can also be elucidated by a

reduction rule:

In addition to lambda expressions, the only

other binding mechanism in our language is the

declaration of new variables. The statement

-[1
integer

new I: real in S has the same meaning as the

Boolean —

[- 1
integer

Algol statement begin real I; S end.

Boolean

By themselves, lambda exp~essions and new

variable declarations are an austere vocabulary

for variable binding. But they are sufficient to

permit other binding mechanisms to be defined as

abbreviations. This approach is vital for the

language constraints which will be given below,

since it insures that all binding mechanisms will

be affected uniformly.

Multiple-parameter procedures are treated

following Curry [9]:

P(A1, . . . , An) ; P(A1) . . . (An)

A(I1, In). B E AI1. . . . AI B
n“

and definitional forms, including procedure

declarations are treated following Landin [10]:

let I = Q in P ❑ (ii. P)(Q)—

letrecI=QinP ❑—— (AI. P)(~(AI. Q)) .—

(However, unlike Landin, we are using call-by-name.)

We will omit type specifications from let and

let rec expressions when the type of I is apparent——
from Q.

As shown in the Appendix, classes (in a

slightly more limited sense than in SIMULA) can

also be defined as abbreviations.

As an example, the declaration of the

procedure fact shown at the beginning of this paper,

along with a statement S in the scope of this

declaration, would be written as:

let fact = l(n :integer exp, f: integer var).

new k: integer in

(k :=0; f := 1;
while k # n do (k := k+l; f := kxf))—

inS.—

After eliminating abbreviations, this becomes

(Afact: integer exp + (integer var+ sta). S)

(In: integer exp. Af: integer var.

new k: integer in

(k := O; f :=1;

while k # n do (k := k+l; f := kxf))) .—

42

Controlling Interference

The illustrative language already satisfies

Principle I. If we can constrain it to satisfy

Principle II as well, then P # Q will hold when P

and Q have no free identifiers in common. By

assuming the most pessimistic definition of #

compatible with this result (and postponing the

consequences of Principle III until the next

section), we get

P # Q iffF(P) ~F(Q) = {},

where F(P) denotes the set of identifiers which

occur free in P.

To establish Principle II, we must consider

each way of binding an identifier. A new variable

declaration causes no problems, since new variables

are guaranteed to be independent of all previously

declared entities. But a lambda expression can

cause trouble, since its formal parameter will

interfere with its global identifiers if it is ever

applied to an actual parameter which interferes
with the global identifiers, or equivalently, with
the procedure itself. To avoid this interference,
we will restrict the call P(A) of a procedure by
imposing the requirement P # A.

The following informal argument shows why this
restriction works. Consider a beta-reduction
(AI. P)(Q) +PII@. Within P there may be a pair of

identifiers which are syntactically required to

satisfy the #-relationship, and therefore must be

distinct. If so, it is essential that the subs-

titution I + Q preserve the.{1-relationship. No

problem occurs if neither identifier is the formal

parameter I. On the other hand, if one identifier

is I, then the other distinct identifier must be

global. Thus the #-relation will be preserved if

K # Q holds for all global identifiers K, i.e.,

for all identifiers occurring free in AI. P. This

is equivalent to (AI. P) # Q.

More formally, one can show that, with the

restriction on procedure calls:

syntactic correctness is preserved by beta
reduction (and also by reduction of collection
expressions), and continues to be preserved when
other productions restricted by # are added, e.g.,

<Sta> : := <sta > l! <sta > when <sta > # <sta2> .
1 2 1

The restriction P # A on P(A) also affects the

language constructs which are defined as abb~evia-

tions. For let I = Q in P z (AI. P)(Q), and for
let rec I = Q in P = (n. P)(Y(AI. Q)), we see that,.— —
except for I, no free identif~er of Q can occur
free in P. Thus , although one can declare a
procedure or a collection of procedures which use
global identifiers (the free identifiers of Q),
these globals are masked from occurring in the
scope P of the declaration, where they would
interfere with the identifier I.

For multi-parameter procedures, P(A1, ,.. , An)
= P(A1) . . . (An) implies the restrictions P # Al,
p(A1) # A2, . . . , P(A1) . . . (~-1) # ~, which are

equivalent to requiring P # Ai for each parameher

and Ai # Aj for each pair of distinct parameters.

For example, consider the following procedure

for a “repeat” statement:

let repeat = A(s: sta, b: Boolean exp).—

(s; whilelb do s) .—.

In any useful call repeat(A1, A2), the statement Al

will interfere with the Boolean expression A2.

Although this is permitted in the unconstrained

illustrative language, as in Algol, it is prohibited

by the restriction A1 #A2. Instead, one must group

the interfering parameters into a collection:

let repeat = Ax: II(s: sta, b: Boolean exp).

(x.s; whilel x.b do X.S) ,—

and use calls of the form repeat((S:A1, b:A2)).

This example is characteristic of Principle II.

Although interfering parameters are permitted, they

require a somewhat cumbersome notation. In compen-

sation, it is immediately clear to the reader of a

procedure body when interference between parameters

is possible.

Passive Phrases

In making interference syntactically detect-

able, we have been unnecessarily restrictive. For

example, we have forbidden parallel constructs such

as

x:=nlly:=n

or

let twice = As: sta. (s; s) in— —

(twice(x := x+1) II twice(y := yx2)) .

Moreover, the right side of the reduction rule

Y(f) * f(~(f)) violates the requirement f # Y(f),

~iving a clear sign that there is a problem ~ith

recursion.

In the first two cases, we have failed to take

into account that the expression n and the procedure

twice are passive: They do no assignment (to global

variables in the case of procedures), and therefore

do not interfere with themselves. Similarly, when

f is passive, f # ~(f) holds, and the reduction

rule for ~(f) becomes valid. This legitimizes the

recursive definition of procedures which do not

assign to global variables.

(Recursive procedures which assign to global

variables are a more difficult problem. Within the

body of such a procedure, the global variables and

the procedure itself are interfering entities, and

must therefore be represented by components of a

collection named by a single identifier. This

situation probably doesn’t pose any fundamental

difficulties, but we have not pursued it.)

The following treatment of passivity is more

tentative than the previous development.

Expressions in our language are always passive,

since they never cause assignment to free variables.

Procedures may be active or passive, independently

of their argument and result types. Thus we must

distinguish the program type u +P U’ describing

passive procedures from the program type m * u’

describing (possibly) active procedures.

43

More formally, we augment the definition of

program types with

(T5) If o and u’ are program types, then
~+~t

P is a program type.

and we define passive program types to be the

smallest set of program types such that

(PI) 6 exp is passive.

(P2) w~ u’ is passive.

(P3) If fi(i) is passive for all i in the

domain of =, then II@) is passive.

Next, for any phrase r, we define A(r) to be

the set of identifiers which have at least one free

occurrence in r which is outside of any subphrase

of passive type. Note that, since identifier

occurrences are themselves subphrases, A(r) never

contains identifiers of passive type, and since r
is a subphrase of itself, A(r) is empty when r has

passive type.

Then we relax the definition of P // Q to permit

P and Q to contain free occurrences of the same

identifier, providing every such occurrence is

within a passive subphrase. We define:

P # Q zA(P) nF(Q) = {}&F(P) nA(Q) = {} .

Finally, we modify the abstract syntax. We

define a passive procedure to be one in which no

global identifier has an active occurrence:

<~ +
P

~q> ::= i <U id>. <ut>

when A(<u’>) - {<u id>} = {} .

Passive procedures can occur in any context which

permits active procedures:

<~ + ~t> ::=<~+
P

Uf> ,

but only passive procedures can be operands of the

fixed-point operator:

<u> ::= Y(<u +P 0>) .

Some Unresolved Questions

Our abstract syntax is ambiguous, in the sense

that specifying the type of a phrase does not

always specify a unique type for each subphrase.

For example, in the original illustrative language,

the subphrase if p then x else y might be either— .
a variable or ~ expression in contexts such as

z := if p then x else y— — .

(a: if p then x else y, b: 3) .b——

Similarly, the introduction of passive procedures

permits the subphrase As: sta. (s; s) to have

either type sta +-ata or eta +
P

sta in the context

(As: sta. (s; S))(X := X+l) .

Although these ambiguities could probably be

eliminated, our intuition is to retain them, while

insisting that they must not lead to ambiguous

meanings. Indeed, it may be fruitful to extend

this attitude to a wider variety of implicit

conversions.

In normal usage, a procedure call will be

active if and only if either the procedure itself

or its parameter are active. Although other cases

are syntactically permissible they seem to have

only trivial instances. Thus it might be desirable

to limit the program types of procedures to the

cases:

O+pe’ ~+pa’ e+a a+af

where EI and 0’ are passive types and a and a’ are

nonpassive types.

The most serious problem with our treatment of

passivity is our inability to retain the basic

property that beta-reduction preserves syntactic

correctness. Consider, for example, the reduction

(Ap: mixed. (x :=p.a II y :=p.a))

((a:n+l, b:n:= O))

* x:= (a: n+l, b:n:=O}.a

Ily:= (a:n+l, b:n:=O). a

* x:=n+llly:=n+l

where !Imixedl! stands for the program type

II(a: integer exp, b: sta). Although the first and

last lines are perfectly reasonable, the inter-

mediate line is rather dubious, since it contains

assignments to the same variable n within two

statements to be executed in parallel. Neverthe–

less, our definition of # still permits the inter-

mediate line, on the grounds that assignments

within passive phrases cannot be executed.

However, if we accept

x:= (a: n+l, b:n:=O).a

y := (a: n+l, b:n:=O).a,

then it is hard to deny

is: sta. x := {a: n+l, b: (n:= O\ls)).a

y := (a: n+l, b:n:=O).a .

But this permits the reduction

(1s: sta. x := (a: n+l, b: (n:=Oll s)). a)

*

*

Here

(y:= (a: n+l, b:n:=O). a)

x := (a: n+l, b:

(n:= Oily:= (a: n+l, b:n:=O).a)

) .a)

x := n+l

the intermediate step, in which the under-

lined statement is clearly illegal, is prohibited

by our syntax.
This kind of problem is compounded by the

possibility of collection-returning procedures.

For instance, in the above examples, one might have

silly(n+l, n := O), where silly has type

integer exp + (sta + mixed), in place of the

collection (a: n+l, b: n := O) .

A possible though unesthetic solution to these

problems might be to permit illegal phrases in

contexts where passivity guarantees nonexecution.

A more hopeful possibility would be to alter the

definition of substitution to avoid the creation

of illegal phrases in such contexts.

44

Directions for Further Work

Beyond dealing with the above questions, it is

obviously essential to extend these ideas to other

language mechanisms, particularly arrays,

In addition, the interaction between these

ideas and the axiomatization of program correctness

needs to be explored. We suspect that many rules

of inference might be simplified by using a logic

which imposes #-preservation upon substitutions.

A somewhat tangential aspect of this work is

the distinction between data and program types,

which obviously has implications for user-defined

types. (Note the absence of this distinction in

Algol 68 [2].) In less Algol-like languages, data

types might have as much structure as program

types, and user definitions might be needed for

both “types” of type. Indeed, there may be grounds

for introducing more than two “types” of type.

Finally, these ideas may have implications for

the optimization of call-by-name, perhaps to an

extent which will overcome the aura of hopeless

inefficiency which surrounds this concept. For

example, when an expression is a single parameter

to a procedure, as opposed to a component of a

collection which is a parameter, then its repeated

evaluation within the procedure must yield the same

value (although nontermination is still possible).

This suggests a possible application of the idea of

“lazy evaluation” [11, 12].

APPENDIX

Classes as Syntactic Sugar

In a previous paper, we have argued that

classes are a less powerful data abstraction

mechanism than either higher-order procedures or

user-defined types [14]. The greater generality of

higher-order procedures permits the definition of

classes (in the reference-free sense of Hoare [13]

rather than SIMULA itself) as abbreviationa in our

illustrative language. In fact, the basic idea

works in Algol 60, although the absence there of

lambda expressions and named collections of

procedures makes its application cumbersome.

We consider a class declaration with scope S

of the form:

class C(DECL; INIT; I1:P1, . . . , In:Pn) ~ S (1)

which defines C to be a class with component names

I Here DECL is a list of declarations

o$’v~~~~b;% and procedures which will be private

to a class element, INIT is an initialization

statement to be executed when each class element is

created, and each Pk is the procedure named by Ik,

in which the private variables may occur as globals.

Within the scope S, one may declare X to be a

new element of class C by writing the statement

newelement X: C in S’ .— (2)

Then within the statement S’ one may write X.Ik to

denote the component pk of the class element X.

To express these notations in terms of

procedures, suppose P , . . . , Pn have types UJl,

tin respectively. The+ we define (1) to be an

abbreviation for:

let C = Ab: II(I1:u1, . . . , In:on) + sta,

(DECL; INIT; b((I1:P1, . . . , In:Pn)))

inS,—

where b is an identifier not occurring in the

original class declaration, and where DECL must be

expressed in terms of new and let declarations.

Then we define (2) to ~an ab~viation for:

C(AX: II(I1:w1, . . . , In:wn). S’) .

As an example, where for simplicity PI and P2

are parameterless procedures:

is

class counter(integer n; n := O;

inc: n := n+l, val: n) in—

. . . newelement k: counter in—

. . . (k.inc; x := k.val)

an abbreviation for

let counter =—

Ab: II(inc: sta, val: integer exp) + sta.

new n: integer in—

(n := O; b((inc: n := n+l, val: n)))

&

.,. counter(ik: II(inc: sta, val: integer exp).

. . . (k.inc; x := k.val)) ,

which eventually reduces to

new n: integer ~ (n := O;

. . . (n:= n+l; x :=n)) .

In the process of reduction, identifiers will be

renamed to protect the privacy of n.

The only effect of our interference-controlling

constraints is that C must be a passive procedure,

i.e., INIT and PI, . . . , Pn cannot assign to any
variables which are more global than those declared
by DECL. This insures that distinct class elements
will not interfere with one another. Otherwise,

if C is not passive, then S’ in the definition of
(2) cannot contain calls of C, so that multiple
class elements cannot coexist.

ACXNOWLEDGEMENTS

Most of this research was done during a delightful

and stimulating sabbatical at the University of

Edinburgh. Special thanks are due to Rod Burstall

and Robin Milner for their encouragement and

helpful suggestions, and to the members of IFIP

working group 2.3, especially Tony Hoare, for

establishing the viewpoint about programming which

underlies this work.

45

REFERENCES

[1] Wirth, N. The Programming Language PASCAL.

Acts Informatica~, (1971), pp. 35-63.

[2] van Wijngaarden, A. (cd.), Mailloux, B. J.,

Peck, J. E. L,, and Koster, C. H. A. Report

on the Algorithmic Language ALGOL 68. MR 101,

Mathematisch Centrum, Amsterdam, February

1969.

[3] Hoare, C. A. R. Towards a Theory of Parallel

Programming. In Operating Systems Techniques,

Academic Press, New York, 1972.

[4] Hoare, C. A. R. Monitors: An Operating System

Structuring Concept. Comm. ACM 17 (October

1974), pp. 549-557.
—

[5] Brinch-Hansen, P, Structured Multiprogramming,

Comm. ACM~ (July 1972), pp. 574-577.

[6] Hoare, C. A. R. Procedures and Parameters:

An Axiomatic Approach. In Symposium on the
Semantics of Algorithmic Languages (cd. E.
Engeler). Springer, Berlin-Heidelberg-New
York, 1971,

[7] Popek, G. J., Horning, J. J., Lampson, B. W.,

Mitchell, J. G., and London, R. L. Notes on

the Design of Euclid. In Proceedings of an

ACM Conference on Language Design for

Reliable Software, SIGPLAN Notices ~, no. 3

(March 1977)2 pp. 11-18.

[8] Dahl, O. -J. Hierarchical Program Structures.

In Structured Programming, Academic Press,

New York 1972.

[9] Curry, H. B., and Feys, R. Combinatory Logic,

Volume I. North-Holland, Amsterdam 1958.

[10] Landin, P. J. A Correspondence Between ALGOL
60 and ChurchFs Lambda Notation. comm ACM ~

(February and March 1965), pp. 89-101 and

158-165.

[11] Henderson, P., and Morris, J. H., Jr. A Lazy

Evaluator. Third ACM Symposium on Principles

of Progranuning Languages (1976), pp. 95-103.

[12] Friedman, D. P., and Wise, D. S. CONS Should

Not Evaluate its Arguments. Third Int’1

Colloquium on Automata, Languages, and

Programming, Edinburgh University Press 1976,

pp. 257-284.

[13] Hoare, C. A. R. Proof of Correctness of Data

Representations. Acts Informatica ~, pp.

271-281 (1972).

[14] Reynolds, J. C. User–Defined Types and

Procedural Data Structures as Complementary

Approaches to Data Abstraction. In New

Directions in Algorithmic Languages 1975, ed.

S. A. Schuman, I.R.I.A. 1975, pp. 157-168.

46

