
Conference Record of the Fifth Annual ACM Symposium on Principles of Programming LZUg.EKJeS

COMPLEXITY OF EXPRESSIONS ALLOWING CONCURRENCY

W. F. Ogdenl

Case Western Reserve University

W. E. Riddlez
University of Colorado

W. C. Rounds3

University of Michigan

o SUMMARY—“

We study some consequences of the formal lan-

guage approach to modelling software system behav-

ior for the case of asynchronous, concurrent sub-

systems. We use the formal language shuffle opera-

tion to give an “algebraic” definition of seman-

tics for a simple (structured) concurrent program-

ming language and prove that the use of this opera-

tion is necessary. Having established this neces-

sity, we investigate other types of behavioral ex-

pressions which use the operation and show that

the analysis problem for these expressions is

either undecidable or intractable, The results

provide some limitations, for example, on thee

expression method of system behavior analysis.

Our lower bound proofs involve the use of syn-

chronization symbols, which seem to be a formal

Ianguage analogue of semaphores.

~. INTRODUCTION

The parbegin - parend and fork-join control

structures express concurrent program behavior.

They implicitly contain the idea of interleaving

or shu.fflinq streams of operations from component

processes. This interleaving is also implicit in

the path expression formalisms (Campbell and

Habermann [2]) and event expressions (Riddle [14])

and, of course, the various Petri net schemes

(Peterson [11]). This paper is concerned with

algebraic expressions which explicitly use the

shuffle operation [4, p. 108] to express con-

.

currency. We give an example of this use by pro-

viding a language-theoretic semantics for simple

structured parallel programs. We then study the

recognition problem for languages defined by such

expressions. Our conclusion is, in brief, that

shuffling is complex.

This paper has two main sections. The first

part, after preliminary definitions, illustrates

the use of shuffling in giving semantics for con-

current programs. Many authors, of course, have

given such semantics: among them are Horning and

Randell [7], Owicki [10], and Lipton [8], for

example. Our approach differs from these authors’

by using algebraic expressions with explicit con-

currency. We separate control from data in the

manner of program schemata, so that a program ex-

pression defines a certain set of abstract execu-

tion sequences. These sequences of operations are

then interpreted over a state space. The (I-O)

behavior of such a program is given by choosing an

interpretation and picking off pairs of states

associated with the beginnings and ends of all le-

gitimate execution sequences, thus obtaining a

binary relation on the state space. In contrast,

Pratt [12] views a program as being defined by

such a relation. We show, that for expressing

concurrency, the execution sequence approach is

somehow necessary, because the I-O behavior of the

resuIt of shuffling two programs cannot be defined

from the I-O behavior of the components using the

‘Department of Computer G Information Science, Case Western Reserve University, Cleveland, Ohio 44106

2
Department of Computer Science, University of Colorado, Boulder, .Colorado 80309

3
Department of Computer G Communication Sciences, University of Michigan, Ann Arbor, Michigan 48109

185

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1978 ACM 0-12345-678-9…$5.00

http://crossmark.crossref.org/dialog/?doi=10.1145%2F512760.512780&domain=pdf&date_stamp=1978-01-01

standard relational operators (Codd [3]). Our

result uses a theorem of Banci.lhon [1] on rela-

tional definability which is itself a form of

Beth’s definability theorem [15, page 81].

The second part of this paper deals with the

complexity of the recognition problem for lan-

guages defined by expressions with concurrency.

Riddle [14] defines event expressions, which de-

note behavior of programs written in a software

description language. Similarly, Campbell and

Habermann [2] use @ expressions as definitions

of desired program behavior. Riddle’s scheme is

intended for off-line analysis of global system

behavior, while the path expressions are to be

compiled into code which checks allowable activity

during execution. In both cases, however, it is

natural to ask whether or not a string of symbols

is in the set denoted by the expression. We prove

that event expressions in their full generality

can denote any recursively enumerable set, and

thus are not amenable to algorithmic analysis. We

then show that extensions of path expressions to

the context-free case (standard path expressions

denote regular sets) will have to be defined with

some care, because there exist (deterministic) con-

text-free languages whose shuffle is NP-complete.

Our intractability results use the technique

of Syn chronization symbols, introduced by Riddle

in event expressions. These symbols are a formal

language analogue of semaphores. We use them to

force concurrent systems to simulate Turing ma-

chine behavior. The technique is reminiscent of

one used by Lipton [9] to show an exponential space

lower bound on the vector addition reachability

problem and, for the NP result, an extension of the

methods used by Greibach [6] to exhibit NP-complete

quasi-realtime languages. There appear to be many

different ways to use these symbols in such proofs.

2 SHUFFLING—“ —

Let L1 and L2 be subsets of Z’. Then

LlLL2={X1Y1...XnYn lXXn C.Xn C L1; yl...YL2}2}

where the xi’s or yi’s can be null. (An early ref-

erence to this operation is Ginsburg and Spanier

[5].) It is easy to show that regular sets are

closed under shuffle and

regular set and a CFL is

that the shuffle of a

a CFL. The CFL’S are not

closed under shuffle. (Theorem 3 shows how bad

things can get.)

We also consider the unary dagger operation on

languages. Dagger is the Kleene closure of shuffle:

Lt= ~ L(n)

n>G

whe??e L(n) =LfiA1...AL (ntimes). The regular

sets are not closed under dagger.

Structured parallel programs

We give an application of shuffling to program-

ming language semantics. We consider a language

for which expressions with shuffling form a concise

way of defining meanings. Figure O is an example.

sem:=l;

result:=null;

parbegin

writer: repeat-indefinitely

if sem=O then—

if result # null then—

begin

buffer:=resul t;

write (buffer) ;

sem:=l

end

end writer;

read G

if—

process: repeat-indefinitely

sem=l then

begin

read(buffer) ;

sem:=O;

<code to compute result>

end

end read 6 process

-

Fig. O——

This code represents overlapped execution of

printing with processing, using a shared buffer,

with a semaphore to enforce mutual exclusion of

reading and writing. We are not concerned with

efficiency or even correctness here, however; only

with giving a meaning to the statements,

The atomic operations in this program are the

assignments, reads, and writes; the atomic tests

are the conditions mentioned in the if-then

186

statements. We assign to each atomic operation

a unique symbol from an alphabet z and each test

a symbol from an alphabet B (these alphabets need

not be finite). The control structures (if-then,

sequencing, repeat, etc.) are then regarded as

operators on sets of strings of symbols and so

give rise ‘to program expressions. A program ex.

pression thus denotes a certain language (set of

strings of operation and test symbols). By inter-

preting each symbol, and hence string, as a real

operator or test, we then get the meaning of the

program. This is of course the method of program

schemata for a class of programs involving con-

currency.

Formally, the class of program expressions

over z and B is given by a recursive definition:

(i) each element of z is a program
expression;

(ii) if T1 and r2 are program expressions,

and b s B, then the following are

program expressions:

Tl; ~2
if b then n— —1

if b then T
—1

else 7— 2
while b do T

—1

‘1 ~T2

repeat-indefinitely (Tl)

~arbegin r ~; 72 j?arend

To illustrate, let us give the tree structure of

our example program regarded as a program expres-

sion (Fig. 1), This tree emphasizes the role of

control structures as operators (on the results

of subtrees) .

The first stage in computing the meaning of

a program expression is to define its associated

language; the second is to interpret this lan-

guage over a data space. Thus the language

of an expression T is defined, following the

recursive definition of w.

(i) ifrcEthenL(r) =n;

(ii) if L(T1), L(m2) are defined, ~d b s B, then

L(W1;T2) = L(T1).L(T2);

L(~bthenrl) =b”L(r2)u{~);

L(if b =Tl else n2) ..

t$cL(ml) tio~*L(w2);

L(while b~nl) = (b.L(nl))*.~;

L(T; ~r2) = L(nl) UL(n2);

L(~eat-indefinitely(nl)) = L(T1)*;

L(parb~in m1jn2parend = L(nl) A L(IT2).

>

/
sem:=l

\

;

/
res :=A

\
parbegin-parend

/\
rpt-indef rpt-indef

I I
if-then

/
s em=O

1’

if-then

II
res#A

,’

/\
buff:=res

>

/
write(buf)

if-then

/’
s em=1

;

/

\

read(buf)

\

sem:

sem:=l

;

/
=0 I

code

Fig. 1—.

Comments: (1) ~ is a single symbol denoting the

negation of the predicate b; (2) the use of–b in the

definition of if-then reflects the desire to do the

null operation when b is false; (3) we do not employ

infinite sequences of operations - thus Ilrepeat.

indefinitely!! is not the same as ‘ho-forevertr or

‘twhile true do!l.

For the second stage, we define the input-output

187

relations denoted by a program expression. We are

given a set D of states; for each operation s~bol

o in~a relation R(o) ~ D x D; and for each b c B a

subset S(b) of D. Then for each x s (Z UB)* we

define a relation I(x):

I(o) = R(cr) for u s Z;

I(b) = jdD ‘~s(b) forb E B;

I(xy) = I(x) o I(y) otherwise

where o is relational composition, and ~ is

restriction of a relation to a set.

Finally,

I(m) ‘U{ I(X)IXE L(T)).

so that I(r) is a binary relation on D, the I-O

relation of n.

Pratt [12], among obhers, regards this rela-

tion as the definition of a program. He can then

build up compound programs using relational opera-

tors; for example, relational composition for se-

quencing, and relexive transitive closure for in-

definite iteration. Intuitively, however, there is

no fixed combination of standard relational opera-

tors (union, composition, projection, etc.) which

corresponds to shuffling. Our task in the next

section is to prove this.

Undefinability of shuffle—

Let D be a set and Rl ,...,Rm given relations

on D. The arity of these can be arbitrary. A

relation R is definable from R1,. ..Rm if it can be

written as a relational expression over RI,. ..,Rm

using the following operations:

union

complement

projection

expansion

permutation

where the last three operators are defined as follows:

Let RC Dn—

Proji R(dl

3(di;

Expi R(dl,

R(dl,

then

d. ,d ,.. .,dn)”~
““” 1-1 i+l

R(dl,di. dn),dn)

. . . d .,. ..dn) ~–~:~

. . . d~-l,di+l,. ..,dn)

Perma R(dl,dn)~=..~R(d d
u(l)’”””’ u(n))

where u is a permutation of {1,n~.

Theorem ~. There exist two programs nl and r2 and

an interpretation I such that I(IT1Am2) is not

definable from I(nl), I(T2) and the identity rela-

tion.

Proof. Let Z = a,b,c,d and,consider the pro-

grams lT1 = a;b and n = c;d. The interpretation I

is defined over D= {:,1]. We set

I(a)= /(0,0), (1,0)}

I(b)= {(1,1)}

I(c)= {(0,1), (1,1)~

I(d)= {(0,1)~

Clearly I(a;b) = I(c;d) = @. and it is easy to check

that I(a;b c;d) is the constant function K= {(0,1),

(1,1)}. Our problem is to show that K is not de-

finable from fl and id, the identity relation on

{0,1}. Weadopt anapproach from logic. Let

‘1
,...,Rm be given relations on D, and let

~(Rl,. . . ,Rm) be the set of bisections of D leaving

these relations invariant; i.e., f:D +D is in r

iff for each Ri

d)~Ri(f(dl) ~.. .~f(dn)).Ri(dl, ..., n

Bancilhon [1] shows that a relation R is definable

from RI,.. .,Rm if and only if each f in I’(R1,RJ

leaves R invariant. (In fact, we need only the

easy direction of his result.] There are only two

bisections of {0,1} and both leave @ and id invari-

ant. But the function f interchanging O and 1 does

not leave K invariant, and so K is not definable.

This proves our theorem.

3. LOWER BOUND RESULTS— — —

We turn to the analysis of expressions involv-

ing shuffle. Theorem 2 shows that the class of

event expressions [14] denotes the full CISS of r.e.

sets. Event expressions, introduced in [13] and

there called message transfer expressions, were in-

tended as a behavioral characterization of the sys-

tem description language PPML. That language was

able to define Petri-net types of behavior. Theorem

2, however, shows that event expressions are consid-

erably more general.

Theorem 3 asserts the existence of determin-

istic context-free languages L1 and L2 such that

L1 A L2 is NP-complete. Thus, unless P=NP, there

is no polynomial time algorithm for “decoding”

possible shuffled strings from general CFL’S. This

means that one should be careful when extending path-

expression definitions [2] to cases where component

processes exhibit recursive or stack-like behaviors.

Event expressions

Event expressions denote formal languages in

the manner of regular expressions, except that an

extra denotational process excludes some strings

188

from the language. The idea is to use special

synchronization symbols to control concurrent

combinations. Execution sequences not having

a specified pattern of synchronization symbols

are excluded from the language.

Let A and S be two finite disjoint alpha-

bets (terminal and synchronization alphabets

respectively). We assume S = A ~where A is

a finite set and ~ ={=la c A}, the set of in-

verses of symbols in A. Then the class
,

EXP(Z,S) of event expressions is given by:

Z l_JS~EXP(Z,S);

{~,a} ~ EXp(~,S);

if el, e2 cEXP(Z,S), then

elu e2, el “ e2, e~, el A e2, e;

are all members of EXP(X,S).

Language definition from an EE is a two-phase

process; the first is similar to that for regular

expressions; the second is the intersection pro-

cess mentioned above. l%us we define an intermedi

ate language LO:”

LO(U) =~u~foruc ZU SU{A};

LO(0) = 9

LO(elu e2) = LO(el) U LO(e2);

LO (el “ e2) = LO(el) “ LO(e2);

LO(el*) = LO(el)*;

LO(el A e2) = LO(el) A LO(e2);

LO(elt) = LO(el)*.

For the second phase, define the “cancellation

gramarll G with productions

la=+A,~a-+XlacA\

Then

L(e) = {w c Z* I (y c LO(e))(y

&i!!@?- Let Z ={a,b}, A= {a,(l~.

guage anbn is L(e) where e is the

((aa)* (bB)*) A (~~)t

=+ *W)
G 1
Then the lan-

expression

In this example, the dagger operation intro-

duces ~ and G symbols in equal numbers; the lan-

guage ;n~n ‘- ‘. Shufflingis a subset of (aL3)

(a~)+ into (aa)* (b6)* and canceling in effect

e~iminates all strings except those of the form

anbn. Similarly, the language

ambn$bnam

is generated by the expression

((aix)*(bf3) *#(by)*(a6)*)A (~~)+ A (~~)+.

Notice that the B and y

ing of b’s, while the a

symbols control the match-

and 6 symbols control the

matching of a’s.

h easy fact about cancellation is given by

Lemma 1. Let Ui e Z and Wi c S*. If the string— —

‘l”lwlu2” ””” ’onwn+l
cancels (to u u

1 2’”””
.Un) then each Wi

cancels to 1.

Proof. Observe that the cancellation grammar cannot re-

move symbols in Z; thus cancellation sequences must be

independently applied to each Wi.

Theorem 2. For any r.e. subset L of X*, we can find an.

event expression e such that L=L(e).

Proof. We show that an EE can be constructed in such a

way that the cancellation activity simulates the computa-

tion of a two-counter automaton. We equip the automaton

with output instructions and let the terminal symbols of

the EE correspond to the output symbols of the 2CM; the

only trace of the computation is then the successive out-

put symbols of the machine. Minsky’s theorem states that

for any r.e. set L, there is a 2 CM M such that the out-

put language of M is just L; this gives us the result.

The main difficulty with the proof is ensuring that

every cancellation sequence which occurs represents a

computation of the machine. This is one of the reasons

for Lemma 1: output symbols do not cancel, so the can-

cellations can be localized to the Wi. By itself, however,

Lemma 1 will not suffice because each Wi will be composed

of a string over S* essentially of the form yl,... ,y
P

where each yj is an instantaneous configuration of the

2CM followed by the “inverse” of the next configuration.

Cancellation of these y’s is supposed to represent compu-

tation of the 2CM between output steps, In order to con-

trol cancellation within each string ylyp we intro-

duce auxiliary cancellation symbols “[” and “]”, insert-

ing them into the expression in such

[cancels a], then the whole string

lapse to A and correctly represent a

so ,

The two counters of our machine

a way that if each

yl yp will col-

computation in doing

contain

als and a string of bts respectively; thus a

tion has the form

amq, bn
-1

where qi is a state of the machine. We make

a string of

configura-

up an expres-

sion for each qi so that (if the a,b,q symbols are re-

garded as terminal for the moment) the associated language

would be

where m’ and n“ are the new

ters of the machine, and q.
J

189

contents of the a and b coun-

is the correct new state.

This expression can easily be constructed using the

idea in the example preceding Lemma 1. We then union

together expressions for each qi and star the result,

thus obtaining our expression for the whole language.

We now give the construction process in some

detail. First we describe two-counter machines, then

give the associated EE’s, and finally show language

equality.

Two-counter machines

The 2CM is a finite set M of instructions having

one of the following forms:

counter-A _
qi: if -Ogo

counter-B

qi : write (6); go to q.
J

counter-A+count er-A
qi : counter-&counter-B

qi: HALT

One instruction, say qo,

instruction; the machine

to qj else go to qk

*1; go to qj

is designated as the start

may start with counter-A

= p, counter-B = r for any natural numbers p and r,

A configuration of a 2CM is just a triple

(k,L,qi) where k and !.L are natural numbers and qi

is a state (output is ignored here). In the usual

way we define a computation sequence of m to be a

sequence of configurations each correctly follow-

ing from its predecessor according to machine in-

structions, starting with (p,r,qo) for some p and

r, and ending with some (k,t,q) where q is a HALT

instruction. The output string W(Z) is the string

of symbols obtained by concatenating left to right

all oztput symbols produced during the sequence,

and then

L(M)={w(~) Igis a computation sequence of M. \

For technical reasons, we will modify M’s

finite control as follows: the state set is

partitioned into two disjoint subsets Q(odd) and

Q(even); and transitions always go from odd to

even or from even to odd states. MY 2CM can be

modified this way without changing the language

generated.

Construction of an EE from a 2CM.— —— .—

We let z be the output alphabet of M; then z

is also the terminal alphabet of e(M). We now give

the auxiliary alphabet S. The “positive part” A

of S has several components:

G(even) = {ae,f3e,Ye,0e}

G(odd) = {ae,13e,Ye,ue }

j q, ,...,c$} (the state set of M)

have

G(even) UG(odd) wTUQuP

AU ~ where ~ consists of all inverses of

in A. We write the inverse of “[” as “]”.

T={a,b}

Q.

P=

Then we

A=

and S =

symbols

Corresponding to each state of M we give an

EE . Our understanding is that any Greek letter

auxiliary symbols in the EE are taken from G(even)

or G(odd) depending on whether the state is in

Q(even) or Q(odd). We will thus drop subscripts on

Greek auxiliaries,

Case 1.— —

qi : cA+cA+l; gotoq.
J

e i: (~o)*. ~i(~f3) *.[. (by)* .qj. a.(a6)* A (6y)tA (a&)+

To understand this expression, momentarily regard

all symbols except the Greek letters as terminal

symbols . The dagger introduces ~ and ~ in equal

numbers, and ~ and ~ in equal numbers. These barred

symbols migrate to the left and cancel their in-

verses, thus imposing a correspondence between a’s

and ~ts, and between b’s and ~ts. After canceling

Greek symbols we are left with strings of the form

~m~i~n. [. bnqj am+l

configurations of the 2CM

an expression for each

which represent successive

Now similarly we have

state of the 2CM.

Case 2.——

qi : CA + CA -1; go to qj

e i: (=a)*~~i (~6)*. [.(by)*qj (ad)* A (~~)+A(&~)+

Case 3.——

qi : WRITE(u); go to qj

ei: (=a)*~i(~@)**] *.u. (by)*qj (ad)* A (E~)+A(;6)t

Case 4.— —

qi : if C
A

= A go to qj else qk

ei: ((qi(bf3) *”[0(by)*qj) A (~;)

u (=a)*=qi(~!3)*. [.(by)*qk(a6*) *a)

A (E~)+A(@+

Similar expressions are constructed for the instruc-

tions involving counter-B.

190

Define

START = b’qoa”

HALT = =*qhb* .]* , where h is the HALT state.

For the program M define

e(M) = START o (Ue~* HALT
1 i+h

We would like to show L(e(M) = L(M), The diffi-

cult part of this result is showing that

L(e(M))~ L(M). In the expression e(M) there are

many ways to shuffle strings and therefore many

possibilities for cancellation. We must show that

every cancellation to terminals corresponds to a

correct computation of the machine. The brackets

control the order of cancellations, as do the re-

strictions on M and the fact that no cancellations

can “cross” terminal symbols.

The function of the brackets is given pre-

cisely by the next lemma.

Lemma 2. Given a string of the form—.

w = UZ1. [.Z2. [Z3..., . [. ZP]P+T

where o and T are in Z, Zi s (Au ~)* all bracket-

free; if w cancels (to IJT) then each Zi cancels to

i.

The proof is by induction on p, and is omitted.

Assertion. L(e(M)) = L(M).

We will show only that L(e(M)) cL(M), as—

explained above. Consider a string in Lo(e(r)

which cancels to terminals. From the form of e(M)

this string will have an internal structure

. . . Xx. ..x...
01 P

where X. and x are strings introduced by expres-
P

sions e and e representing two consecutive
o P

!Iwrite!! statements, and x >. . . >x
1

come from ex-
p-1

pressions representing non-writing statements.

l%us X. has the form

Xok]juxor;

each xi has the form

xii. [.xir

and x has the form
P

Xpl
“]k. T.Xpr

where u,T E E, and

E (~a)*~(@)* A ~,~ *
‘ik

x.
lr

c (by)*Q(a6)* A ~,~ * .

We can write the string

‘Xo ‘1!
“[*x1 rx21...

‘x(p-l)rpL
X]kT

in the form

UZ1[Z2. . . [Zp]kT .

By Lemma 1, this string must cancel to UT and so

by Lemma 2 each Zi must cancel. But, Zi = x. x
lr (i+l)$

which thus must cancel for each i, and so computa-

tions can be simulated for more than one step.

As an example, suppose that xi is

an expression representing instruction

qi : CA+ CA +1; go to q.
3

and x. is generated by an expression
1+1

qk : CA+- CA-l; go to q! .

Then (ignoring the ;,~,~,~ symbols)

x.
1

= (;a)m~i(~c)n [(by) s”qj- (ad

,+1= (&&’:k(b13)nx. :[.(b)s’. qL(a

The string

z. =
1 (b) ‘qj (aa) t o(iia.)m-Qk(G6)n’

.

generated by

representing

t

)t>.

.
must cancel. Hence q.

J
= qk, s.n , and t = m .

Also, there must be exactly s ~ symbols in Zi

t 6 symbols, s & symbols, and t ~ symbols. ~ and

~ symbols in Zi must have been inserted in the ex-

pression for qi, and any ~ and F symbols in Zi by

the expression for q. since qi and qj have differ-
-J

ent ‘tparityff. The a and F bymbols introduced for

qi must thus cancel the a and @ symbols in the left

part of xi and the ~ and ~ symbols introduced for

qj must cancel they and & symbols in the right half

of x. Thusm+l=t, n=s”,m’ =t”+l,
1+1”

n’ = s“ , and the computation is advanced two steps.

By induction, the strings xl,. ..,x thus represent
P

a correct computation of the machine between two

output steps, and again inductively, the whole

string represents a correct computation of the

machine. The example just above represents a typi-

cal inductive step of the proof.

Theorem 2 follows because the trace left upon

making all cancellations is just the sequence of

output symbols produced by the machine.

We remark that without the daggering opera-

tion, Theorem 2 does not hold; only regular sets

can be generated [14]. The dagger thus introduces

all the ‘Counting!! ability into our expressions.

191

The complexity of pure shuffle—

Our final theorem shows that even when re-

stricted to the class of context-free languages,

shuffling is a complex operation. We find deter-

ministic CFL’S L1 and L2 such that L A L2 is1
NP-complete. This means that a general efficient

algorithm which recognizes scrambled message

sequences from parallel sources with context-free

behavior will probably not exist (unless P = NP).

It is possible, however, to design such an algo-

rithm in case the message sources give finite-

state behavior. Thus an interleaved sequence of

messages coming from sources whose behavior satis-

fies a regular path expression will be recognizable

efficiently, because regular sets are closed under

shuffling. The intended use of path expressions

does not even raise this issue; each process simply

checks whether the subsequence of the shuffled mess-

age stream consisting only of the letters mentioned

in its path expression in fact is in.the language

denoted by the expression. Our result implies only

that in extending path-expression analysis to sys-

tems with non-regular behavior, some care should be

taken with semantics of the expressions.

A language L~ Z* is in NP iff there is a non-

deterministic TM accepting L within p(n) time, where

p is a polynomial. L is NP-complete iff L E NP and

for each L’ E NP, L’ ~L; i.e. there is a polyno-

mial-time computable function8: Z* + 2* such that

for all x, x c L“ iff~(x) s L.

Theorem 3. There exist deterministic context-free

languages L1 and L2 such that L1 A L2 is NP-complete.

Proof. We show that for all L c NP, Ihere exist

L1 and L2 (depending on L) such that LqL1 A L2.

By choosing L to be a known NP-complete language,

we get a specific L1 AL2 which is NP-complete.

(Note: trivially L1 A L2 E NP.)

Our proof is another Turing machine simulation

argument. Let L E NP and let M be a Turing machine

accepting L within p(n) time. We may assume that

M has a single tape and that the input head of M has

a predictable head motion (consisting of, for

example, successive sweeps across the entire tape),

A configuration of M is a string in E*QI* where Q

s the state set and z is the tape alphabet of M,

(we will take Z = tO,l} for convenience.) In the

usual way, if x and x’ are configurations of M,

we write x+ x’ to indicate that x’ follows from x

by means of Mts program. Define the following

languages:

K1 ‘{X$(X’)R$ I X+X’}

R
where (z) is the reversal of z, and $ is a new

symbol .

L1 = gl(K1*)

where gl is a string homomorphism that replaces

each O by [0 and each 1 by [1, leaving any other

symbols unchanged.

K2 ‘{ IZIZR I Z

L2 = g2(K2*)

where g2 is a string

and 1 by 1]. Ll and

E (zuQ)*}

homomorphism replacing O by O]

L2 are deterministic CFL’S; we

claim that L1 A L2 is the required language.

To show that this is the case, we introduce

some temporary notation. Let Q = {qo, ,,.,~}be

the state set of M. For a string xi E X*QE*, de-

fine the.complement C(xi) to be the homorphic image

of xi given by

Let

be a

be a

c(o) = 1;

c(1) = o;

C(qi) = qoql. ..qlqi+l+~. ..~.

..XRXw = x1$(x#$x2$(x;)R$. R ~R$

string in Kl, and let

R R R

v = ‘zl$zl*z24z2” ””$zk$zk

string in K2. We say that v is the shifted

complement of w just in case
R

= C(x;)p’, zl
R

‘1
= c(x2),zk = C(x{) .

Notice that if w s K1 has a shifted complement

in K2 then w represents a complete computational

history of m starting from the configuration xl,

because X2 = xi, X3 = xi, etc. Our idea is to

shuffle together gl(w) with g2(v) to produce a very

uniform-looking string and to use this form as the

definition of the reducing function @which shows

that L~L1 A L2. The brackets and markers are

used to show that if $(x) c LIA L2, then the only

way to unshuffle @(x) will be to have $:(x)E gl(w)

A g2(v) where w and v are shifted complements, and

w represents an accepting computation of x.

It is useful to regard all configurations as

having the same length, so if x e x*, 1x1 =n, let

I(x) be x followed by p(n) - n zeros. All computa-

192

tions last for p(n) steps, and an accepting con-

figuration consists of tape entirely zero and head

at the end of the tape, in state q
f“

Let h(t) be

the position of the head at step t of the computa-

tion, By our assumption h can be calculated very

easily.

Set
2p(n)

p(n) ~
(x) = gl(qo I(x)) ot~l y(t) “ $+g2(l qf

where y(t) = $+[Ol]h(t) .Q(t). [Ol]p(n)-h(t)

. ..~t even
Q(t) = {qo

~... qo t odd.

Thus @is an encoding of the initial configu-

ration, followed by a large number of strings of

the form

$$[oll[oll . ..[ol]q~[ol][ol][[ol].. [ol]

all of which have the same length, and then the

final string which is the complement of the final

configuration.

Observe that if $ is a shuffle of strings

from L1 and L2, then each portion of @ between any

$4...$4 markers must consist of a contribution from

L1 shuffled with a complementary contribution from

because left brackets occur in L
‘2 ‘

~ (right

brackets occur in L2) before (after) each O or 1.

The position of the $ and + markers in + guarantee

that the first L2 configuration matches the second

L1 and so forth. We thus have the fact that @ (x)

s ql(w) A g2(v), and v is the shifted complement

of w. But by our remarks above, and the fact that

w starts with an initial configuration and ends

with a final one, this means that w represents an

accepting computation on x. Hence x E L+==++(x)

c L1 A L2, proving theorem 3.

4 CONCLUSION—“

The results above represent a small venture

into possible methods for expressing concurrent be-

havior. By appropriately restricting allowable

synchronization patterns, it seems that many types

of synchronized concurrent behavior are definable,

Various forms of Petri-net languages can be des-

cribed by introducing symbols representing the opera.

tions of adding 1 and subtracting 1 from a given

place, and insisting that in any string the number

of “add 1“ symbols up to any point exceeds the

number of “subtract 1“ symbols.

We have not dealt with the class of expressions

formed by adding shuffle and dagger to ordinary

regular expressions. Adding just shuffle does not

increase denotational power, although the

generalized membership problem: “given e and X, is

x E L(e)?!! becomes NP-hard. (This can be proved by

a reduction from the exact cover problem.) Finally,

we have no results on the possible complexity of

the languages formed from regular languages by

closing under the dagger operation,

[1]

2]

3]

14]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

Bancilhon, F., !!Data Structures: Specifica-
tion and Realization”, Ph.D. Thesis, Univer-
sity of Michigan, 1976.

Campbell, R. A,, and Habermann, N., “The
Specifications of Process Synchronization
by Path Expressions”, Lecture Notes in
Computer Science Vol. 16, Springer-Verlag,
1974.

Codd, E. F., “A Relational Model for Large
Shared Data Banks”, CACM 13, #6 pp. 377-387,
1970.

Ginsburg, S., ~ Mathematical Theory of

Context-Free Languages, McGraw Hill, N=
York, 1966.

Ginsburg, S., and Spanier, E. H., “Mappings
of Languages by Two-Tape Devicestr, m, 12
pp. 423-434, 1965.

Greibach, S., I!The Hardest Context-Free

Language”, SIAM J. Compt. 2, pp 304-310,
1973.

Horning, J. J., and Randell, B., “Process
Structuring”, Computing Surveys, 5 #l pp.
5-30, 1975.

Lipton, R. J., “Reduction: A Method of
Proving Properties of Parallel Prozramstt,
CACM, i8, $i2 pp. 717-721, 1975. -

Lipton, R. J., “The Reachability Problem
Requires Exponential Space”, Tech. Report,
Department of Comvuter Science. Yale Univer-.
sity, 197.5, to appear in Theoretical Computer
Science.

Owicki, S. IIA Consistent & Complete Deduc-

tive System for the Verification of Parallel
Programs”, Proceedings of 8th Annual ACM
Symp osium on Theory of ~m~ing, May, 1976),—
pp. 73-86,

Peterson, J., “Petri Nets”, Computing Surveys
9, #3, pp 223-252, 1977.

Pratt, V. R., I!Semantical Consideration on

Floyd-Hoare LogicTT, Proceedings of the 17th

~ on Foundations of Comp~e~c~e,
(;ctober, 1=6), pp. 109-lfi.

193

[13] Riddle, W. E., l!Model ling and .baly.sis of

Supervisory Systems”, Ph.D. Thesis,
Stanford University, 1972.

[14] Riddle, W. E., I?Software System Modelling

and Analysis”, RSSM/25, Tech. Report,
Department of Computer and Communication
Sciences, University of Michigan, July 1976.

[15] Shoenfield, J. R., Mathematical Logic,
Addison-Wesley, Reading, Mass,, 1967.

194

