APPLICATION OF IATTICE ALGEBRA TO LOOP OPTIMIZATION ${ }^{\dagger}$

```
Amelia Fong, John Kam and Jeffrey Ullman
    Department of Electrical Engineering
        Princeton University
        Princeton, N.J. 08540
```


I. Introduction

Kildall [l] has recently developed lattice theoretic techniques for solving many data flow analysis problems. It is the purpose of this paper to demonstrate that many of the loop optimizations such as 'code motion' and induction variables detection can be done efficiently and in great generality by essentially the same lattice theoretic techniques.

We shall use the usual model for a program being subjected to code improvement, the flow graph $G=\left(N, E, n_{0}\right)$, where N is a set of nodes, E is a set of edges and $n_{0} \in N$ is the initial node. There is a path from n_{0} to each node in N. The nodes represent straight line blocks of code. There is an edge from n_{1} to n_{2} if n_{2} can immediately follow n_{1} in a possible execution of the program.

The notion of a loop in a flow graph may be modeled by a region $R=\left(N_{1}, E_{1}, n_{1}\right)$ which is a set of nodes N_{1}, and edges E_{1} with a header node n_{1} having the property that every path from the initial node to a node in R passes through n_{1}. Various loop optimization techniques such as "code motion" or induction variables (see [2,3,7], e.g.) make use of functions relating infor-

+ Work supported by NSF grant GJ-l052.
mation at the entry of a region to the information at the nodes of the region. This idea can be generalized to lattices as developed by Kildall.

We shall use the following formulation of Kildall's ideas.

Definition: A data flow analysis framework is a pair $D=(L, F)$ where
(i) L is a semilattice with meet Λ and zero element 0 , satisfying the boundedness condition
(Vx L) (Hk) $\left(\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots<\mathrm{x}_{\mathrm{n}}=\mathrm{x}\right.$ implies $\left.\mathrm{n} \leq \mathrm{k}\right)$
where $y \leq z$ is shorthand for $y \wedge z=y$ and $y<z$ means $y \leq z$ and $y \neq z$.
(ii) F is a set of functions from L to L (morphisms) on L) closed under composition and meet, having an identity (denoted by e) and satisfying the distributivity condition
$(\forall f \in F)(\forall x, y \in L)(f(x \wedge y)=f(x) \wedge f(y))$.
(iii) For each $x \in L$, there exists $f e F$ such that $x=f(\underline{0})$.

Intuitively, the lattice elements . represent information which might be known about data at entrance to some block of a flow graph, and F represents the set of transformations on this information that could be effected by portions of a program (basic blocks in particular) as control passes through it. In the case of loop optimization, we shall be interested in functions relating information at the entry of a region to that at each node of the
region. These functions may be defined as follows. For each region R and each node n in R, define the function $f_{R, n}$ such that for all x in L

$$
\mathrm{f}_{\mathrm{R}, \mathrm{n}}(\mathrm{x})=\underset{\mathrm{P}}{\Lambda} \mathrm{f}_{\mathrm{P}}(\mathrm{x})
$$

where the meet is taken over all paths P in R from the header of R to the exit of n. The function f_{p} associated with a path P is the composition of the functions which reflect the actions of the nodes on the path.

In certain cases an efficient algorithm can be obtained to compute the functions associated with various regions as a flowgraph is parsed [4] or interval analyzed [5]. The issues which we must consider to demonstrate the practicality of our approach are:

1) How can morphisms be represented so that their important operations composition and meet ($f \wedge g$ is defined by [f^g] $(x)=f(x) \wedge g(x))$ can be performed efficiently?
2) Under what conditions are the functions associated with regions efficiently computable?
3) Are there frameworks that meet the requirements of (1) and (2) and have practical applications?

We shall turn to each of these issues in the following sections.

In Section II, we shall discuss examples of representations of functions. In Section III, we shall give the outline of an efficient algorithm to compute these functions and discuss the conditions under which the techniques in the algorithm may be applied. Section IV concludes the paper by giving some practical applications of this approach.

II. Representing Functions

For the kinds of lattices L and sets of mỏrphisms E on L considered most frequently, representation of the functions appears to be feasible. In fact the representation of the morphisms in each case bears a resemblance to the representation of a pair of elements of L, but we cannot prove a general result of this nature.

The most common case considered in the literature on global flow analysis $[2,3,4,6]$ is the use of bit vectors. Here

L is the set of bit vectors of some fixed length, \wedge is bitwise "and," and the elements of F are functions which deal with the components of bit vectors uniformly and independently. In this case each f in F can be represented as a pair of bit vectors a and b, where $f(x)=(a \wedge x) \vee(b \wedge \neg x)$. Examples where this approach has been used are the GEN and KILL representation of [3,4], or the "dual assumptions" approach of [2].

For a second example, in [1], the "structured partition" lattice is described for common subexpression detection. A relatively efficient representation of structured partitions in terms of "value numbers" [7] was given in [1]. The representation is equivalent to the "dag" introduced in [8]. We shall show that the dag provides a natural generalization to representation of morphisms on structured partitions.

Definition:

Let A be a finite set of variables
$A=\left\{X_{1}, \ldots, X_{k}\right\}$.
Let $\bar{A}=\left\{\bar{X}_{i} \mid X_{i}=a\right\}$.
Let C be an infinite set of constants.
Let O be a finite set of binary operators.
A structured partition DAG $G=$ (V, E, LABEL $_{G}, O P_{G}$) with respect to (A, C, O) is a finite directed acyclic graph with a set of nodes V, a set of edges E, together with two functions

$$
\begin{aligned}
& \text { LABEL }_{G}: V \rightarrow \begin{array}{l}
\text { set of finite subsets of } \\
\\
(A \cup \bar{A} \cup C)
\end{array} \\
& O P_{G}: V-B \rightarrow O \quad \begin{array}{l}
\text { where } B \text { is the set } \\
\text { of base nodes }
\end{array}
\end{aligned}
$$

satisfying the following conditions

1) No symbol or constant is in the two sets labelling two nodes of the dag.
2) Each $\bar{X}_{i} \in \bar{A}$ appears in the label of exactly one base node.
3)

If v is a base node, $\operatorname{LABEL}_{G}(v)$ contains either one $\bar{X}_{i} \in \bar{A}$ or one constant
$c \varepsilon c$ but not both. (It may contain any number of symbols in A)

Intuitively, if the dag represents a function f_{p}, barred symbols represent initial values on entry to region R and unbarred symbols represent final values on exiting node n. For example the function associated with the block:

$$
\begin{aligned}
& A \leftarrow B+C \\
& B \leftarrow A * D \\
& A \leftarrow C+1
\end{aligned}
$$

would be represented by the DAG of Fig. 1 .

It is clear from the above example that structured partition dags (SPDAG) representing functions associated with straight line blocks can be obtained in a routine fashion. Composition of functions can also be performed on these dags in the following manner.

Let f_{1} and f_{2} be the functions associated with the paths p_{1} and p_{2} respectively. Let G_{1} and G_{2} be the corresponding SPDAG's. $\mathrm{f}_{2} \circ \mathrm{f}_{1}$ is the function associated with the path consisting of p_{1} followed by p_{2}. Hence final values of G_{1} should become initial values of G_{2} in the composite SPDAG G_{3} representing $f_{2} \circ f_{1}$. To create G_{3} from G_{1} and G_{2}, nodes of G_{1} are linked with base nodes of G_{2} by identifying each unbarred symbol X of G_{1} with the corresponding barred symbol $\overline{\mathrm{X}}$ of G_{2}. The two nodes are collapsed into one node and the symbols X and \bar{X} are deleted from the label of the resulting node, since the X of G_{2} is now the final value and the \bar{X} of G_{1} is now the initial value for f_{2} o f_{1}. An example will illustrate the operation. G_{1} and G_{2},
together with the required node mergers are shown in Fig. 2(a), while Fig. 2(b) shows the resulting DAG G_{3}.
G_{2}

- $\{\overline{\mathrm{D}}, \mathrm{C}\}$

(a)

(c \}

(b)

Fig. 2

A binary operation on the SPDAG's must be defined to reflect the meet operation on functions.

Definition:

Let $G=\left(V, E, \operatorname{LABEL}_{G}, O P_{G}\right)$ be an SPDAG with respect to (A, C, O). $G^{\prime}=\left(V^{\prime}, E^{\prime}\right.$, $\operatorname{LABEL}_{\mathrm{G}},, \mathrm{OP}_{\mathrm{G}}$,) is a sub-SPDAG of G if

$$
\begin{aligned}
V^{\prime} \subseteq V \text { and } V^{\prime} & \text { includes all base } \\
& \text { nodes of } G, \\
E^{\prime}= & E \cap V^{\prime} \times V^{\prime}
\end{aligned}
$$

and for all $v^{\prime} \varepsilon v^{\prime}$

$$
\begin{aligned}
\operatorname{LABEL}_{G^{\prime}}\left(v^{\prime}\right) & \subseteq \operatorname{LABEL}_{G}\left(v^{\prime}\right) \\
O P_{G^{\prime}}\left(v^{\prime}\right) & =O P_{G}\left(v^{\prime}\right)
\end{aligned}
$$

For example, in Fig. 3, G^{\prime} is a sub-SPDAG of G.

Fig. 3

Definition

Let G_{1}, G_{2} be two SPDAG 's with respect to ($A, C, 0$). G_{1} is isomorphic to G_{2} if there is a $1-1$ correspondence 2 between the nodes V of G_{1} and the nodes W of G_{2} such that for all $v \in V$, if $g(v)=w \in W$ then

1) V is a base node iff w is a base node and $\operatorname{LABEL}_{G_{1}}(v)=\operatorname{LABEL}_{G_{2}}(w)$, and
2) if v, w are not base nodes, then $O P_{G_{1}}(v)=O P_{G_{2}}(w)$ and the left and
right sons of v are in correspondence with the left and right sons of w.

Let G_{1} and G_{2} be two SPDAG's representing f_{1} and f_{2}, then $f_{1} \wedge f_{2}$ is represented by the maximal SPDAG G_{3} which is isomorphic to a sub-SPDAG of G_{1} and a subSPDAG of G_{2}. The definition of isomorphism can easily be executed to take into accout the commutativity of certain operators, but we do not do so here.

It should be clear that the meet of SPDAG's is effectively computable. The following algorithm constructs the meet G_{3} of two SPDAG's G_{1} and G_{2} w.r.t. (A, C,O) in an efficient manner.

First, we need the definition of the rank of a SPDAG.

Definition: The rank of a base node is 0 .
The rank of an interior node is the maximum rank among its sons plus 1 .

The rank of an SPDAG G denoted RANK (G), is the maximum rank of its nodes.

Algorithm

Let V and W be the set of nodes of SPDAG's G_{1} and G_{2} whose meet we want to compute.

Initialization - consider base nodes.

Assign integers to operators in O such that for each operator $o \in O$, there is a unique integer associated with it.

$$
\text { Let } A=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}
$$

There are k base nodes on G_{1} and on G_{2} each has label containing one \bar{X}_{i} while the remaining base nodes have labels containing constants. Let $C^{\prime} \subset C$ be the finite set of constants which appear in the labels of G_{1} and G_{2}.

Define a linear order $<\cdot$ on $\bar{A} \cup C^{\prime}$ such that $\bar{X}_{i}<\cdot \bar{X}_{j}$ for all $i<j, 1 \leq i, j \leq k$

$$
\begin{aligned}
& \overline{\mathrm{X}}_{i}<\cdot \mathrm{c} \text { for all } i, l \leq i \leq k \\
& \text { for all } c \in c^{\prime} \\
& \mathrm{C}_{1}<\cdot \mathrm{C}_{2} \text { if } \mathrm{C}_{1} \text { is less than }{ }^{+} \mathrm{C}_{2} \\
& \text { for all } \mathrm{C}_{1}, \mathrm{C}_{2} \in \mathrm{C}^{\prime}
\end{aligned}
$$

Represent each base node in G by the barred variable or constant contained in its label. Sort the base nodes on this representation according to the linear order $<\cdot$. Sort the base nodes of G_{2} in the same manner. Merge the two sorted lists, obtaining the pairs of base nodes $\left(v_{i}, w_{i}\right)$, $v_{i} \varepsilon V, W_{i} \in W$ which have the same representation.

Let the total number of these pairs be m_{0}.

$$
\text { Construct } \mathrm{m}_{0} \text { base nodes }\left\{u_{1}, u_{2}, \ldots, u_{m_{0}}\right\}
$$

for G_{3} such that if $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right) \ldots$, $\left(v_{m_{0}}, w_{m_{0}}\right)$ are the pairs obtained from the merge, then for all $1 \leq i \leq m_{0}$
$\operatorname{LABEL}_{G_{3}}\left(u_{i}\right)=\operatorname{LABEL}_{G_{1}}\left(v_{i}\right) \cap \operatorname{LABEL}_{G_{2}}\left(w_{i}\right)$.

[^0]If $\mathrm{v}_{0}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{m}_{0}}\right\} \quad\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{m}_{0}}\right\}$ and $\left\{u_{1}, u_{2}, \ldots, u_{m_{0}}\right\}$ are the sorted lists of nodes described above, define $\operatorname{NUM}_{G_{1}}\left(v_{i}\right)=$ $i, \operatorname{NUM}_{G_{2}}\left(w_{i}\right)=i$ and $\operatorname{NUM}_{G_{3}}\left(u_{i}\right)=i$.

Induction Step

We now present the algorithm which considers nodes in order of increasing rank, constructing the SPDAG G_{3} as it goes.

1) Initialize

$$
\begin{aligned}
& \text { total } \leftarrow m_{0} ; \\
& r \leftarrow 0 ;
\end{aligned}
$$

2) Increment rank

$$
r \leftarrow r+1
$$

3) Consider nodes of rank r.

Let V_{r} be the set of nodes of G_{1} of rank r. Define W_{r} similarly.
$\underset{\sim}{\text { if }}$ either $V_{r}=\phi$ or $W_{r}=\phi$ then stop
4) Assume $V_{r} \neq \phi$ and $W_{r} \neq \phi$. For each node v in V_{r}, form the 3 component key $\left(k, n_{1}, n_{2}\right)$ where k, n_{1}, n_{2} are all integers. k is the integer associated with $\mathrm{OP}_{G_{1}}(\mathrm{v}), \mathrm{n}_{1}=\operatorname{NUM}_{G_{1}}\left(\mathrm{v}_{1}\right), \mathrm{n}_{2}=\operatorname{NUM}_{G_{1}}\left(\mathrm{v}_{2}\right)$ where v_{1}, v_{2} are the left and right sons of v respectively.

Similarly, for each node w in W_{r}, form the three component key in the same fashion. Sort V_{r} and W_{r} separately on the three component key. Merge the two sorted lists, obtaining the pairs of nodes $\left(v_{i}, w_{i}\right) v_{i} \varepsilon v_{r}$ $w_{i} \in W_{r}$ which have exactly the same key. Let the number of these pairs be m_{r}.

$$
\underset{\sim}{\text { if }} m_{r}=0 \text { then } \underset{\sim}{\text { stop }}
$$

5) Assume $m_{r}>0$. Let $\left(v_{i}, w_{i}\right) \quad 1 \leq i \leq m_{r}$ be the pairs obtained from the merge. create nodes $U_{r}=\left\{u_{1}, u_{2}, \ldots, u_{n_{r}}\right\}$ on G_{3} such that the left and right sons of each u_{i} are the nodes on G_{3} corresponding to the left and right sons of ${ }_{i}{ }_{i}\left(a l s o w_{i}\right)$ i.e. the number assigned to the corresponding
nodes are the same.

$$
\begin{aligned}
& \text { For all } 1 \leq i \leq m_{r} \\
& \operatorname{OP}_{G_{3}}\left(u_{i}\right)=O P_{G_{1}}\left(v_{i}\right)=O P_{G_{2}}\left(w_{i}\right) \\
& \operatorname{LABEL}_{G_{3}}\left(u_{i}\right)=\operatorname{LABEL}_{G_{1}}\left(v_{i}\right) \cap \operatorname{LABEL}_{G_{2}}\left(w_{i}\right) \\
& \text { Let } v_{r}=\left\{v_{1}, v_{2}, \ldots, v_{r_{r}}\right\}, \\
& W_{r}=\left\{w_{1}, w_{2}, \ldots, w_{m_{r}}\right\} \text { and } U_{r}=\left\{u_{1}, u_{2}, \ldots, u_{m_{r}}\right\} .
\end{aligned}
$$

Number the nodes in V_{r} of G_{1} such that $\operatorname{NUM}_{G_{1}}\left(v_{i}\right) \leftarrow$ total $+i, l \leq i \leq m_{r} . \quad$ Similarly number W_{r} and U_{r} such that

$$
\begin{gathered}
\operatorname{NUM}_{G_{2}}\left(w_{i}\right) \leftarrow \operatorname{tot} 21+i, \operatorname{NUM}_{G_{3}}\left(u_{i}\right) \leftarrow \text { total }+i \\
\qquad 1 \leq i \leq m \\
\text { total } \leftarrow \text { total }+m_{r} \\
\text { go to step }(2)
\end{gathered}
$$

By using a bucket sort [12], the meet of two SPDAG's may be obtained in time proportional to the total number of nodes in the two SPDAG's. The algorithm can be easily modified to accommodate a definition of isomorphism taking into account the commutative laws of certain operators.
III. Computing Functions Efficiently

In this section we shall outline an efficient algorithm adapted from [4], to compute functions for progressively larger regions in terms of the functions for the constituent regions, and discuss the conditions under which the techniques in the algorithm is applicable.

The idea is to construct a rooted, unordered tree representing each region, each leaf representing a node in the region and with the following properties:
(i) Each interior node has two or three sons, except that a two node tree is permissible.
(ii) All paths from a node to its descendant leaves have the same length.

The edges of the tree will be labelled by a function. It will be arranged so that if the tree represents region R, then $f_{R, n}$ can be computed by following the path from the leaf n to the root and composing the functions labelling the edges of that path, bottommost function first.

A basic manipulation of edge labels is given in the next lemma and exhibited in Fig. 4. We refer to it as stripping of an edge $\left(t_{0}, t_{0}^{\prime}\right)$.

Let t_{0}, t_{0}^{\prime} and t_{1}, \ldots, t_{k} be nodes of a tree with edges and tabels as in Fig. 4(a). If the labels of these edges are changed to those in Fig. $4(b)$ then the same $f_{R, n}$ as before is computed for all the leaves of the tree.

Fig. 4
Note that an edge with label e, the identity function, has no effect on the calculation of $f_{R, n}$ when the path from the loop representing node n to the root is followed.

The algorithm consists of three parts, one for initialization, i.e. the construction of trees for regions consisting of a single basic block, the second for regions constructed by applications of T_{1} and T_{2} where T_{1}, T_{2} are transformations on flow graphs defined in [13]. T_{1} is the deletion of an edge from a node to itself. T_{2} is the merging of n_{1} and n_{2} into a single node, where n_{1} is the unique predecessor of n_{2} and n_{2} is not the initial node. We say n_{2} is consumed by n_{1}.
we assume that the flow graph is reducible (i.e. it can become a single node under the T_{1}, T_{2} transformations [13]) and that a sequence ${ }^{2}$ of reductions by T_{1} and T_{2} are available. It should be emphasized that this algorithm will not work for an arbitrary framework, but only on a restricted class to be defined subsequently.

Algorithm

1) Initialization

For the initial regions consisting of a single node n, construct the tree as shown in Fig. 5.

Fig. 5

2) Application of \underline{T}_{1}

$$
\text { Suppose region } R_{1}=\left(\mathbb{N}, E_{1}, n_{1}\right) \text { is }
$$ created by an application of T_{1} from region $R_{2}=\left(N, E_{2}, n_{1}\right)$. That is, E_{1} consists of E_{2} and those edges of the original flow graph represented by the edge eliminated.

$$
\text { Let } f=\frac{\Lambda}{\left(\ell, n_{1}\right) \varepsilon E_{1}-E_{2}}{ }_{R_{2}}
$$

(i times). Create the tree for region R_{1} by the following steps:

1) Create a new node r whose lone son is the root r^{\prime} of the tree for R_{2}. Label edge (r, r^{\prime}) by f.
2) Strip the edge $\left(r, r^{\prime}\right)$.
3) Delete r and the edge (r, r^{\prime}); r^{\prime} is the root for R_{1}.

3) Application of T_{2}

Let $R=\left(N, E, n_{1}\right)$ be the region formed by T_{2} from regions $\mathrm{R}_{1}=\left(\mathrm{N}_{1}, \mathrm{E}_{1}, \mathrm{n}_{1}\right)$ and $R_{2}=\left(N_{2}, E_{2}, n_{2}\right)$, with R_{1} consuming R_{2}.

Create the tree for region R by the following steps:

1) Create a new node r whose lone son is the root r^{\prime} of the tree for R_{2}. Label the edge (r, r^{\prime}) by f.
2) Strip the edge (r, r^{\prime})
3) Delete r and the edge (r, r^{\prime})
4) Merge the resulting tree with root r^{\prime} and the tree for region R_{I}. The resulting tree is the tree for region R.

The merger algorithm is rather complicated, but is identical in spirit to that of [4]. We omit the details.

The necessary and sufficient condition for the above algorithm to work is for the meet of the functions associated with all paths in R^{\prime} from its header to a node n in R to be equal to the meet of the functions associated with a particular restricted set of paths. This restricted set consists of those paths which include at most one back latch. This condition is equivalent to:
1)

$$
(\forall f, g, h \in F)(h f g \geq h f \wedge h g \wedge h)
$$

In turn, we can easily show the equivalence of (1) to the simpler condition
2)

$$
(\forall \pm \& F)(f f \geq f \wedge e)
$$

Condition (2), in its turn is implied by:
3) $(\forall f, g \in F)(\forall x \in L)(f g(\underline{0}) \geq f(x) \wedge g(\underline{0}) \wedge x)$
which is the condition shown in [9] to be necessary and sufficient for the depth first search technique of [10] to be applicable to a data flow analysis framework. (2) does not imply (3), however [9].

The reader may easily check that the structured partition dag of section II does satisfy condition (2).

We can also show that the generalization of (3):

$$
\left([\mathrm{Gk})(\forall f \in \mathrm{~F})\left(\mathrm{f}^{k} \geq \Lambda_{i=0} f^{i}\right)\right.
$$

is sufficient for a straightforward generalization of the algorithm described above to work. This algorithm requires $0(n \log n)$ composition and meet operations on an n node flow graph, as does the algorithm above.

It should be noted that Kildall's conditions are not sufficient by themselves to guarantee that any algorithm for computing morphisms will converge. The problem
is that boundedness must be replaced by a "uniform boundedness" condition, else there would be no limit on the number of passes around a loop needed for a function to attain its final value for every value of its argument.

IV. Some Applications

A. Loop invariant computations. An assignment $A \leftarrow B \theta C$ is loop invariant if neither B nor C change inside the loop. In terms of regions, each path inside the region from the header to the assignment must leave B and C unchanged. If the region happens to have some back latches, then it is efficient to move the computation $A \leftarrow B \theta C$ to just before the header.

One easy way to detect many loop invariant computations is to use a lattice of bit vectors with one position for each variable. The bit for a variable is to be 1 at a point if and only if no path in the region from the header to the point sets the variable. Meet is logical "and," and the funrtion associated with $A \leftarrow B \theta C$ sets the bit for A to 0 and leaves others unchanged.

A more sophisticated approach is to use the structured partition representation described in Section II. This approach enables us to compute $f_{R, n}(\underline{O})$ for each region R and node n in R : If $f_{R, n}(\underline{O})$ is a dag including a structure such as the one in Fig. 6 we could detect that B is

Fig. 6
invariant at the entry to n, although the bit vector approach would not do so.
B. Induction variables. Intuitively, an induction variable X at a node n in region R is one for which every path in R from the header to the exit of n adds the same loop invariant quantity (increment) to X. Alternatively, successive values of X at n form an arithmetic progression as long as we stay within the region R. If for all nodes n in R which are predecessors of the header (tails of back latches) X is an induction
variable at n with the same increment, then x is an induction variable of R. It is these variables we wish to identify, but the more general search for induction variables at individual nodes n seems to be the most efficient route to our goal.

We can again use the structured partition lattice to compute a dag representing $f_{R, \eta}(\underline{0})$ for each R and n. We may then identify induction variables at n by a variety of rules, depending on how much algebraic manipulation we are willing to perform. The basic strategy is to look for variables X such that $f_{R, n}(\underline{0})$ indicates that X is incremented by a constant each time through n. An example is Fig. 7(a), where $\mathrm{X}=\overline{\mathrm{X}}+2$. For a more subtle example, consider Fig. 7(b). Suppose Y is an induction variable of the region R. (We can only tell this by considering y at all the latching nodes of R.) Then, since X has a value which is a linear function of an induction variable, namely $2 \mathrm{Y}-1$, it can be shown to assume an arithmetic progression at n .

Fig. 7

C Type Discovery-Self Dependency.

Another interesting application of these techniques is to detect the self dependency of a variable. We shall discuss one situation where this idea is useful. Tennenbaum [11] has used lattice techniques to discover identifier types in SETL [11]. Here the lattice elements are sets of types which variables could assume. Meet is union of sets of types, and the functions associated with blocks reflect certain inferences regarding types which may be made from the syntactic rules of SETL. Unfortunately, the lattice of all sets of types is not bounded. For example, the piece of flowchart in Fig. 8 gives X the infinite set of types "integer or set of integers or set of set of set of integers, or ... "

Fig. 8
The approach taken in [11] is to limit the depth of nesting of "set of" or "tuple of" to three. Anything more complex is "don't know," i.e., the lattice $\underline{0}$. We can avoid any a priori bound on the depth of nesting of type descriptors if we detect those variables whose type depends nontrivially on itself around a loop (by nontrivially, we mean that a set or tuple forming operation is involved in the formula that relates the type after traversing the loop to the type before the loop). If we detect only these variables - and we can do so using a variety of techniques - then we can give each of these variables the type 0 around the loop before applying global propagation techniques as [11] does.

In this way, the lattice of types will still not obey Kildall's boundedness condition, but there will be a bound for every flow graph. Thus Kildall's technique can be made to work even though his condition is, strictly speaking, not satisfied.

We can represent functions on types by a notation similar to the dag representation discussed in Section II. The symbols \bar{X} and X represent the set of possible types for X at entrance to the region and "currently." The constants are a-priori defined types such as integer or character string. The operators, if it is SETL we are talking about, are \{ \} (set former), $\langle>$ (tuple former), and | (alternation or union of types). For example the dag in Fig. 9 says that the type of X "currently" is either

Fig. 9

1) a set of whatever types of elements $\overline{\mathrm{X}}$ could represent at entrance to the region, or
2) a set of elements which are each either of whatever type Y could be initially or 2 -tuples consisting of an integer and an object of whatever type \bar{z} was initially.

The meet operation in this lattice is alternation; the reader can easily construct an algorithm to perform the meet operation on dags by splicing them together with new nodes labeled |. The effect of basic blocks on types of variables is as described in [11]. It may be easily checked that condition (4) of Section III is satisfied if k is the number of variables.

In order to determine all and only those variables which could assume an infinite set of types when the program was run, we would have to concern ourselves with actual values assumed by variables, rather than their types alone. However, we can, using the dag representation defined above, find a superset of all such varaibles. Namely, if R is a region with header n_{0}, then say X is self dependent if in the dag representing $f_{R, n_{0}}$, there is a path from $\overline{\mathrm{x}}$ to X which contains a node labeled by the \{ \} or $<>$ operator.

References

[l] G.A. Kildall, "A Unified Approach to Global program optimization," Proc. ACM Symposium on Principles of Programming Languages, pp 194-206, October 1973.
[2] M. Schaefer, A Mathematical Theory of Global Program Optimization, Prentice Hall, 1973.
[3] A.V. Aho and J.D. Ullman, the Theory of parsing, Translation and Compiling Vol. II, Prentice Hall, 1973.
[4] J.D. Ullman, "Fast Algorithms for the Elimination of common Subexpressions," Acta Inf., 2, pp 191-2l.3, January 1974.
[5] F.E. Allen, "Control Flow Analysis," SIGPLAN Notices, 5:7, pp l-19, July 1970.
[6] J. Cocke, "Global Common Subexpression Elimination," ibid. pp 20-24.
[7] J. Cocke and J. Schwartz, Programming Languages and Their Compilers, Courant Inst., N.Y.U., New York, 1970.
[8] A.V. Aho and J.D. Ullman, "Optimization of Straight Line Programs," SIAM J. Computing, 1:1, pp 1-19, March 1972.
[9] J. Kam and J.D. Ullman, "Global optimization Problems and Iterative Algorithms," TR 146, Computer Science Lab., Dept. of Electrical Eng'g, princeton University, N.J., January 1974.
[10] M.S. Hecht and J.D. Ullman, "Analysis of a Simple Algorithm for Global Flow problems," Proc. ACM Symposium on Principles of Programming Languages, pp 207-217, October 1973.
[11] A. Tennenbaum, Type Determination in Very High Level Languages," NSO-3, Courant Inst., N.Y.U., New York, 1974.
[12] A.V. Aho, J.E. Hopcroft and J.D. Ul.1man, The Design and Analysis of Computer Algorithms, Addison Wesley, Reading, Mass., 1974.
[13] M.S. Hecht and J.D. Ullman, "Flow Graph Reducibility," SIAM J. Computing 1:2, pp 188-202, June 1972.
[14] J.T. Schwartz, On Programming Vols I and II, Courant Institute, New York, 1973.

[^0]: \$ We assume C has an ordering defined on it. This will surely be the case for any constants that are computer representable.

