
APPLICATION OF LATTICE ALGEBRA TO LOOP OPTIMIZATION*

Amelia Fong, John Kam and Jeffrey Unman

Department of Electrical Engineering

Princeton University

Princeton,

1. Introduction

Kildall [1] has recently developed

lattice theoretic techniques for solving

many data flow analysis problems. It is

the purpose of this paper to demonstrate

that many of the loop optimization such

as ‘code motion’ and induction variables

detection can be done efficiently and in

great generality by essentially the same

lattice theoretic techniques.

We shall use the usual model for a

program being subjected to code improve-

ment, the flow graph G = (N,E, no) , where

N is a set of nodes, E is a set of edqes

and no c N is the initial ~. There

is a path from n ~ to each node in N. The

nodes represent straight line blocks of

code. There is an edge from nl to n2 if

‘2
can immediately follow n

1
in a possible

execution of the program.

The notion of a loop in a flow graph

may be modeled by a reqion R = (N1,E1,nl)

which is a set of nodes N , and edges E
1 1

with a header node nl having the property

that every path from the initial node to a

node in R passes through nl. Various loop

optimization techniques such as “code

motion” or induction variables (see [2,3,7]

e.g.) make use of functions relating ififor-

+ work supported by NSF grant GJ-1052.

N.J. U834U

mation at the entry of a region to the

information at the nodes of the region.

This idea can be generalized to lattices

as developed by Kildall.
.

We shall use the following formulation

of Kildall’s ideas.

Definition: A data flow analysis frame-——
work is a pair D = (L,F) where

(i) L is a semilattice with meet A and

zero element Q, satisfying the bounded-

ness condition

(Vx8L)(Hk) (xl <x2<... <x =x implies n<k)
n

where y<z is shorthand for yA z = y

and y<z means y~z and y#z.

(ii) F is a set of functions from L to L

(morphisms) on L) closed under compo-

sition and meet, having an identity

(denoted by e) and satisfying the

distributivity condition

(Vf CF)(Vx,ye L)(f(x Ay) = f(X) A f(y)).

(iii) For each xc L, there exists f E F

such that x = f(~) .

Intuitively, the lattice elements .,.

represent information which might be known

about data at entrance to some block of a

flow graph, and F represents the set of

transformations on this information that

could be effected by portions of a program

(basic blocks in particular) as control

passes through it. In the case of loop

optimization, we shall be interested in

functions relating information at the entry

of a region to that at each node of the

1

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1975 ACM 0-12345-678-9…$5.00

http://crossmark.crossref.org/dialog/?doi=10.1145%2F512976.512977&domain=pdf&date_stamp=1975-01-01

region. These functions may be defined as

follows. For each region R and each node n

in R, define the function f such that

for all x in L
R,n

f Rn(X) = Afp(x)
>

P

where the meet is taken over all paths P in

R from the header of R to the exit of n.

The function f associated with a path p
–P

is the composition of the functions which

reflect the actions of the nodes on the

path.

In certain cases an efficient algori-

thm can be obtained to compute the functions

associated with various regions as a flow-

graph is parsed [4] or interval analyzed [5].

The issues which we must consider to demon-

strate the practicality of our approach are:

1) How can morphisms be represented so

that their important operations -

composition and meet (f A g is defined

by [f Ag](x) = f(x) Ag(x)) can be

performed efficiently?

2) Under what conditions are the functions

associated with regions efficiently

computable?

3) Are there frameworks that meet the re-

quirements of (1) and (2) and have

practical applications?

we shall turn to each of these issues

in the following sections.

In Section II, we shall discuss ex-

amples of representations of functions.

In Section III, we shall. give the outline

of an efficient algorithm to compute these

functions and discuss the conditions under

which the techniques in the algorithm may

be applied. Section IV concludes the paper

by giving some practical applications of

this approach.

11. Representing Functions

For the kinds of lattices L and sets

of m~rphisms F on L considered most fre-

quently, representation of the functions

aPPears to be feasible. In fact the repre-

sentation of the morphisms in each case

bears a resemblance to the representation

of a pair of elements of L, but we cannot

prove a general result of this nature.

The most common case considered in

the literature on global flow analysis

[2,3,4,6] is the use of bit vectors. Here

L is the set of bit vectors of some fixed

length, A is bitwise “and,” and the elements

of F are functions which deal with the

components of bit vectors uniformly and in-

dependently. In this case each f in F can

be represented as a pair of bit vectors a

and b, where f(x) = (a\x) V(bA 7x).

Examples where this approach has been used

are the GEN and KILL representation of

r3,4], or the “dual assumptions” approach

of [2].

For a second example, in [11 , the
“structured partition” lattice is described

for common subexpression detection. A

relatively efficient representation of

structured partitions in terms of “value

numbers” [7] was given in [1]. The repre-

sentation is equivalent to the “dag” intro-

duced in [8]. we shall show that the dag

provides a natural generalization to repre-

sentation of morphisms on structured

partitions.

Definition:

Let A be a finite set of variables

A= (Xl,Xk].

Let ~ = {~il X. @a).
1

Let C be an infinite set of constants.

Let O be a finite set of binary operators.

A structured partition DAG G =

(V,E,LABELG,OPG) with respect to (A,c,o)

is a finite directed acyclic graph with a

set of nodes V, a set of edges E, together

with two functions

LABEL : v ~ set of finite subsets of
G

(AU~UC)

o PG : V–B + O where B is the set

of base nodes

satisfying the following conditions

1.) No symbol or constant is in the two

sets labelling two nodes of the dag.

2) Each ;i c ~ appears in the label of

exactly one base node.

3) If v is a base node, LABELG(v) contains

either one ~. e E or one constant
1

C ~ C but not both. (It may contain

any number of symbols in A)

2

Intuitively, if the dag represents a

barred symbols represent

‘Unc:’on ‘Yn’Inltlal va &es on entry to region R and

unbarred symbols represent final values on

exiting node n. For example the function

associated with the block:

A+B+C

B+-,A*D

A+c+l

together with the required node mergers

are shown in Fig. 2(a) , while Fig. 2(b)

shows the resulting DAG G3.

‘2
(A)

A

*

{~) (~,D

would be represented by the DAG of Fig. 1.

‘1
{A,B)

A

+

(51 (E,c

(A)

Fig. 1

It is clear from the above example

that structured partition dags (SPDAG)

representing functions associated with

straight line blocks can be obtained in a

routine fashion. Composition of functions

can also be performed on these dags in
the following manner.

Let fl and f ~ be the functions associ-

ated with the paths PI and p2 respectively.

Let G1 and G2 be the corresponding SPDAG’S.

f20f
1

is the function associated with the

path consisting of p

A

followed by p2. Hence

final values of Gl s ould become inxtial

values of G
2

in the composite SPDAG G
3

representing f20 fl. To create G from G1
3

and G2, nodes of G
1

are linked with base

nodes of G2 by identifying each unbarred

symbol X of G, with the corresponding

barred symbol’? of G2. The two nodes are

collapsed into one node and the symbols X

and ~ are deleted from the label of the

resulting node, since the X of G
2

is now

the final value and the ~ of G1 is now the

initial value for f2 o f
1“

An example will

illustrate the operation.
‘1

and G ,
2

{B)

A+z) 11 “{5,CI

(a)

(B]

(D)

A+E) 51

‘3#LAA[i] (;) {E) @]

(b)

Fig. 2

A binary operation on

be defined to reflect the

on functions.

Definition:

Let G = (V,E

with respect to

LABEL GI,OPG,) is

v’gVandV

(1)

the SPDAG’s must

meet operation

LABELG,OPG) be an SPDAG

A,C,O). G’ = (V’,E’,

a sub-SPDAG of G if

includes all base

nodes of G,

E’ = Efl V’XV’

and for all v’ CV’

LABEL, ~ LABELG(v’)

OPG, (V’) =OPG (V’)

For example, in Fig. 3, G’ is a sub-SpDAG

of G.

3

G

G’

Definition

{B) {C). .

M+ *

Fig. 3

Let G1,G2 be two SPDAG’S with respect

to (A,C,O).
‘1.

is isomorphic to G if
2

there is a 1-1. correspondence 2 between

the nodes V of G1 and the nodes W of G2

such that for all vc v, if g(v) = w~wthen

1.) v is a base node iff w is a base node

and LABEL (v) = LABEL (w), and

G 1. ‘2

2) if v, w are not base nodes, then

OPG (v) = OP (w) and the left and

1 ‘2

right sons of v are in correspondence

with the left and right sons of w.

Let Gl and G2 be two SPDAG’S repre-

senting f] and f2, then fl A f2 is repre-

sented by the maximal SPDAG G3 which is

isomorphic to a sub-SPDAG of G1 and a sub-

SPDAG Of G2. The definition of isomorphism

can easily be executed to take into accout

the commutativity of certain operators, but

we do not do so here.

It should be clear that the meet of

SPDAG’S is effectively computable. The

following algorithm constructs the meet

‘3
of two SPDAG’S Gl and G2 w.r.t. (A,C,O)

in an efficient manner.

First, we need the definition of the

rank of a SPDAG.

Definition: The rank of a base node is O.

The rank of an interior node is the

maximum rank among its sons plus 1.

The rank of an SPDAG G denoted RANK(G),

is the maximum rank of its nodes.

Alqorithm

Let V and w be the set of nodes of

SPDAG’S Gl and G2 whose meet we want to

compute.

Initialization - consider base nodes.— —

Assign integers to operators in O such

that for each operator o c O, there is a

unique integer associated with it.

Let A = {X ~,x2,xk}

There are k base nodes on Gl and on G2

each has label containing one ~. while the
1

remaining base nodes have labels containing

constants. Let C’ c c be the finite set of

constants which appear in the labels of

‘1
ad G

2“

Define a linear order <. on ~U C’

such that %i <“~.
1

2 <-c
i

c1 ‘“C2

for all i<j, l~i, j<k

for all i, l<i<k,

for all ceC’

+
if C

1
is less than C2,

for all Cl, C2cC’

Represent each base node in G1 by the

barred variable or constant contained in

its label. Sort the base nodes on this

representation according to the linear

order <. . Sort the base nodes of G2 in the

same manner. Merge the two sorted lists,

obtaining the pairs of base nodes (Vi,Wi) ,

v. Cv> Wi c W which have the same representa-
1

tion.

Let the total number of these pairs be

m.
o

Construct mo base nodes (ul,u2,. ..,um)

o

for G3 such that if (Vl,Wl) , (V2,W2) . . . ,

(Vmo,wmo) are the pairs obtained from the

merge, then for all l<i~mo

LABEL (Ui) = LABELGl(Vi) ~LABEL (wi) .

‘3 ‘2

+ we assume C has an ordering defined on

it. This will

constants that

surely be the case for any

are computer representable.

4

If V. = (V1,V2S. ..,V) {w1,w2,. ..,wm)
‘o o

and (U ,U
1 2’”” ”’”mo

] are the sorted lists

nodes are the same.

of nodes described above, define NUM ~ (vi) =
,

i, NUMG (wi) = i and NUM (ui) = i. 1

2 ‘3

Induction ~

We now present the algorithm which con-

siders nodes in order of increasing rank,

constructing the SPDAG G3 as it goes.

1) Initialize

2) Increment rank

3) Consider nodes of rank r.

Let Vr be the set of nodes of Gl of

rank r. Define Wr similarly.

if either V =@orW = @ then stop
-- r r ----

4) Assume Vr # @ and Wr # o. For each

node v in Vr, form the 3 component key

(k,nl,n2) where k, n],, n z are all inte-

gers. k is the integer associated with

OP (v), nl = NUMG (VI), n2 = NUMG (V2)

‘1 1 1

where v ,v
12

are the left and right sons of

v respectively.

Similarly, for each node w in Wr, form

the three component key in the same fashion.

Sort Vr and Wr separately on the three com-

ponent key. Merge the two sorted lists,

obtaining the pairs of nodes (Vi,Wi) vi e V
r

Wicw r which have exactly the same key.

Let the number of these pairs be mr.

if m = O then stop
-- r ---- ----

5) Assume m > 0. Let (Vi,Wi) l~i~mr
r

be the pairs obtained from the merge.

Create nodes Ur = (u1,u2,Un) On G3

r

such that the left and right sons of each

u i are the nodes on

left and right sons

the number assigned

‘3
corresponding to the

of v i (also wi) i.e.

to the corresponding

For all 1. < i < m— — r

OP (Ui)

‘3

LABELG (Ui)

3

Let V =
r

w = {wl,w2, .
r

= OP (vi) = OP (Wi)

‘1. ‘2

= LABEL (Vi) nLABEL (Wi)

G 1. ‘2

(vl,,v2,vm),

.,wm] and Urr= (ul,u2,um).

r r

Number the nodes in v Of G
1

such that
r

NUMG (Vi) + total + i, l~i~m Similarly

1
r“

number W and U such that

NUMG (Wi~ + tn*~l + i, NUMG (ui) + total +i,

2 3

1. < i<m.— —

total. + total. + m
r

go to step (2) .

By using a bucket sort [12], the meet

of two SPDAG’S may be obtained in time pro-

portional to the total number of nodes in

the two SPDAG’S. The algorithm can be

easily modified to accommodate a definition

of isomorphism taking into account the

commutative laws of certain operators.

III. Computinq Functions Efficiently

In this section we shall outline an

efficient algorithm adapted from [4] , to

compute functions for progressively larger

regions in terms of the functions for the

constituent regions, and discuss the con-

ditions under which the techniques in the

algorithm is applicable.

The idea is to construct a rooted, un-

ordered tree representing each region, each

leaf representing a node in the region and

with the following properties:

(i) Each interior node has two or three

sons, except that a two node tree is

permissible.
-4

(ii) All. paths from a node to its descend-

ant leaves have the same length.

The edges of the tree will be labelled

by a function. It will. be arranged so that

if the tree represents region R, then f
R,n

can be computed by following the path from

the leaf n to the root and composing the

functions labelling the edges of that path,

bottommost function first.

5

A basic manipulation of edge labels

is given in the next lemma and exhibited

in Fig. 4. We refer to it as strippin% of—
an edge (tO,t~).

‘et ‘O’ti
and t tk be nodes of a

tree w~th edqes and +;;ii;asinl?ig. 4(a).

If the l.abel.~ of these edges are changed

to those in Fig. 4(b) then the same fR n
,

as before is computed

the tree.

f
1

(a)

for all. the leaves

2%t’
o

fofl fo.k

‘1 ““ ‘k

of

.C

Fig. 4

Note that an edge with label

b)

e, the

identity function, has no effect on the

calculation of f when the path from the
R,n

loop representing node n to the root is

followed. ,/

The algorithm consists of three parts,

one for initialization, i.e. the construc-

tion of trees for regions consisting of a

single basic block, the second for regions

constructed by applications of T
1

and T
2

where T , T are transformations on flow

graphs ?lefi;ed in [13]. Tl is the dele-

tion of an edge from a node to itself.
‘2

is the merging of n
1

and n
2

into a single

node, where n
1

is the unique predecessor

of n
2

and n
2

is not the initial node.

We say n2 is consumed by n
1“

.We assume that the flow graph is re-

ducible (i.e. it can become a single node

under the T transformations [13]) and
‘2

that a sequ~;ce of reductions by Tl and

‘2
are available. It should be emphasized

that this algorithm will not work for an

arbitrary framework, but only on a re-

stricted class to be defined subsequently.

Algorithm

1) Initialization

For the initial regions consisting of

a single node n, construct the tree as

shown in Fig. 5.

Fig. 5

2) ApP lication of ~1

Suppose region Rl =

fn

(N,El,nl) is

created by an application of T ~ from region

‘2
= (N,E2,n1). That is, El consists of

‘2
and those edges of the original flow

graph represented by the edge eliminated.

Letf= A f

(L,nll C’E1-E2 ‘2,L

(i times). Create the tree for region RI

by the following steps:

1) Create a new node r whose lone son

is the root r’ of the tree for R
2“

Label edge (r,r’) by f.

2) Strip the edge (r,r’).

3) Delete r and the edge (r,r’); r’ is

the root for RI.

3) APP lication ~ !C2

Let R = (N,E,n) be the region formed

by T2 from regions $ = (Nl, El, nl) and

= (N2,E2,n2), with RI consuming R2.
‘2

Let f = A f

(f,,n2) CE–E1-E2 ‘1,1,

Create the tree for region R by the

following steps:

1) Create a new node r whose lone son is

the root r’ of the tree for R

Label the edge (r,r’) byf.
2“

2) Strip the edge (r, r’)

3) Delete r and the edge (r,r’)

4) Merge the resulting tree with root r’

and the tree for region R
1“

The re-

sulting tree is the tree for region R.

The merger algorithm is rather compli-

cated, but is identical in spirit to that

of [4]. We omit the details.

The necessary and sufficient condi-

tion for the above algorithm to work is

for the meet of the functions associated

with all paths in R’ from its header to a

node n in R to be equal to the meet of the

functions associated with a particular re-

stricted set of paths. This restricted

set consists of those paths which include

at most one back latch. This condition is

equivalent to:

1) (Vf,g,he F) (hfg~hf AhgAh)

In turn, we can easily show the equiv-

alence of (1) to the simpler condition

2) (iffc F)(ff~fAe)

Condition (2), in its turn is implied

by:

3) (Vf,g~F) (Vxe L)(fg(0) >f(x) ~g(~) Ax)——

which is the condition shown in [9] to be

necessary and sufficient for the depth

first search technique of [10] to be appli-

cable to a data flow analysis framework. (2)

does not imply (3), however [9],

The reader may easily check that the

structured partition dag of Section II does

satisfy condition (2).

We can also show that the generaliza-

tion of (3):

k-l

4) (3k)(t7fc F)(fk ~ A fi)
i=o

is sufficient for a straightforward general-

ization of the algorithm described above

to work. This algorithm requires O(nlogn)

composition and meet operations on an n

node flow graph, as does the algorithm above.

It should be noted that Kildall’s con-

ditions are not sufficient by themselves

to guarantee that any algorithm for comput-

ing morphisms will converge. The problem

is that boundedness must be replaced by a

“uniform boundedness” condition, else there

would be no limit on the number of passes

around a loop needed for a function to

attain its final value for every value of

its argument.

Iv. Some App lications

A. ~ invariant computations. An assign-

ment A + B 8 C is ~ invariant if neither

B nor c change inside the loop. In terms

of regions, each path inside the region

from the header to the assignment must leave

B and C unchanged. If the region happens

to have some back latches, then it is

efficient to move the computation A + B 9 C

to just before the header.

One easy way to detect many loop in-

variant computations is to use a lattice of

bit vectors with one position for each

variable. The bit for a variable is to be 1

at a point if and only if no path in the

region from the header to the point sets

the variable. Meet is logical “and,” and

the fun~tion associated with A @ B e C sets

the bit for A to O and leaves others

unchanged.

A more sophisticated approach is to

use the structured partition representation

described in Section II. This approach

enables us to compute fR-n(Q) for each

region R and node n in R~--

dag including a structure

in Fig. 6 we could detect

B

5 1

Fig. 6

invariant at the entry to

bit vector approach would

such as the

that B is

n, although

not do so.

is a

one

the

B. Induction variables.

induction variable X at a node n in region.— .— _
R is one for which every path in R from the

Intuitively, an

header to the exit of n adds the same loop

invariant quantity (increment) to X. Alter-

natively, successive values of X at n form

an arithmetic progression as long as we

stay within the region R. If for all nodes

n in R which are predecessors of the header

(tails of back latches) x is an induction

7

variable at n with the same increment, then

x is an induction variable of R. It is—.
these variables we wish to identify, but

the more general search for induction vari-

ables at individual nodes n seems to be

the most efficient route to our goal.

we can again use the structured par-

tition lattice to compute a dag represent-

ing fR,q(~) for each R and n. We may then

identifY induction variables at n by a

variety of rules, depending on how much

algebraic manipulation we are willing to

perform. The basic strategy is to look

for variables X such that f ~ n(Q) indicates

that X is incremented by a c;nstant each

time through n. An example is Fig. 7(a),

where X =~+2. For a more subtle example,

consider Fig. 7(b). Suppose Y is an in-

duction variable of the region R. (We can

only tell this by considering Y at all the

latching nodes ofR.) Then, since X has a

value which is a linear function of an

induction variable, namely 2Y-1, it can be

shown to assume an arithmetic progression

at n.

f
+

i

(a)

(b)

Fig. 7

C TYP e Discover y-Self Dependency.

Another interesting application of these

techniques is to detect the self dependency

of a variable. We shall discuss one situa–

tion where this idea is useful. Tennenbaum

[11] has used lattice techniques to discover

identifier types in SETL (Ill . Here the

lattice elements are sets of types which

variables could assume. Meet is union of

sets of types, and the functions associated

with blocks reflect certain inferences re-

garding types which may be made from the

syntactic rules of SETL. Unfortunately,

the lattice of all sets of types is not

bounded. For example, the piece of flow-

chart in Fig. 8 gi;es x the infinite

of types “integer or set of integers

of set of set of integers, or . . . “

set

or set

t
X=1

I

Fig. 8

The approach taken in [11] is to limit

the depth of nesting of “set of” or “tuple

of” to three. Anything more complex is

“don’t know,” i.e. , the lattice ~. We can

avoid any a priori bound on the depth of

nesting of type descriptors if we detect

those variables whose type depends non-

trivially on itself around a loop (by non-

trivially, we mean that a set ortuple form–

ing operation is involved in the formula

that relates the type after traversing

the loop to the type before the loop). If

we detect only these variables - and we can

do so using a variety of techniques - then

we can give each of these variables the

type ~ around the loop before applying

global propagation techniques as [11] does.

In this way, the lattice of types will

still not obey Kildall’s boundedness condi-

tion, but there willbe a bound for every flow

graph. Thus Kildall’s technique canbe made

to work even though his condition is, strictly

speaking, not satisfied.

we can represent functions on types by

a notation similar to the dag representation

discussed in Section II. The symbols ~ and

X represent the set of possible types for X

at entrance to the region and “currently.”

The constants are a-priori defined types

such as integer or character string. The

operators, if it is SETL we are talking

about, are (] (set former) , < > (tuple

former), and I (alternation or union of

types) . For example the dag in Fig. 9 says

that the type of X “currently” is either

x

Fig. 9

8

1) a set of whatever types of elements ~

could represent at entrance to the

region, or

2) a set of elements which are each

either of whatever type Y could be

initially or 2-tuples consisting of

an integer and an object of whatever

type Z was initially.

The meet operation in this lattice is

alternation: the reader can easily con-

struct an algorithm to perform the meet

operation on dags by splicing them together

with new nodes labeled I . The effect of

basic blocks on types of variables is as

described in [11]. It may be easily checked

that condition (4) of Section III is satis-

fied if k is the number of variables.

In order to determine all and only

those variables which could assume an in-

finite set of types when the program was

run, we would have to concern ourselves

with actual values assumed by variables,

rather than their types alone. However,

we can, using the dag representation defined

above, find a superset of all such varaiblee.

Namely, if R is a region with header n ,
0

then say x is self dependent if in the dag

representing f there is a path from
R,no’

~ to X which contains a node labeled by

the () or < > operator.

References

[1]

[2]

[3]

[4]

[5]

G.A. Kildall, “A Unified Approach to

Global Program Optimization,” Proc.

ACM Symposium on Principles of Pro-——
gramming Langu~es, pp 194-206,

October 1973.

M. Schaefer, fi Mathematical Theory

of Global Proqram Optimization,.—
Prentice Hall, 1973.

A.V. Aho and J.D. Unman, The Theory

of Parsin g, Translation an~ompiling

G1 . II, Prentice Hall, =3.

J.D. Ul~man, “Fast Algorithms for

the Elimination of common ,subexpres-

sions,” Acts ~., 2, Pp 191-213,

January 1974.

F.E. Allen, “Control Flow Analysis,”

SIGPLAN Notices, 5:7, pp 1-19,

July 1970.

[6] J. Cocke, “Global common Subexpres-

sion Elimination,” ibid. pp 20-24,

[7] J. Cocke and J. Schwartz, Proqramminq

Languages and Their Compilers, Courant——
Inst., N.Y.U., New York, 1970.

[8] A.V. Aho and J.D. Unman, “Optimization

of Straight Line Programs,” SIAM J.— —
Computinq, 1:1, pp 1-19, March 1972.

[9] J. Kam and J.D. Ul~man, “Global Opti-

mization Problems and Iterative Al-

gorithms,” TR 146, Computer Science

Lab., Dept. of Electrical Eng’g,

Princeton University, N.J. , January

1974.

[10] M.S. Hecht and J.D. Unman, “Ana~ysis

of a Simple Algorithm for Global Flow

Problems,” Proc. ACM Symp osium on— — —
Principles of Programming Languages,

pp 207-217, ~ctober 1973.

[11] A. Tennenbaum, Type Determination in

Very High Level Languages,” NSO-3,

Courant Inst., N.Y.U., New York, 1974.

[12] A.V. Aho, J.E. Hopcroft and J.D. Ul.l-

man, The Design and Analysis of Com-——

a Alqorithms~ddison Wesley,
Reading, Mass. , 1974.

[13] M.S. Hecht and J.D. Unman, “F1ow

Graph Reducibility,” SIAM J. Computinq——
1:2, pp 188-202, June 1972.

[14] J.T. Schwartz, On Programming Vo~s I

and II, Courant~nstitute, New york,

1973.

9

