
An Integrated Environment for Testing Mobile Ad-Hoc
Networks ∗

Yongguang Zhang
†

HRL Laboratories, LLC
Malibu, California

ygz@hrl.com

Wei Li
Department of Computer Sciences
The University of Texas at Austin

liwei@cs.utexas.edu

ABSTRACT
Mobile Ad-Hoc Network (MANET) has become an increas-
ingly active research area with a plethora of work in ad-hoc
routing, media access, and protocols, etc. However, much
of the effort so far has been in simulation with only a few
systems that have ever been implemented and none that
we know have been tried in a scale beyond a dozen nodes.
One reason is the high complexity involved in implementing
and testing actual ad-hoc networks, and the lack of soft-
ware tools for doing so. We have thus built an inexpensive
and flexible environment to support such tasks and to facil-
itate network research. The core component is a mobility
emulator to test an ad-hoc network of virtually any scale
and with any mobility scenario without actually moving the
nodes physically.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—wireless communication; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols—routing protocols; D.4.4 [Operating Systems]:
Communications Management—network communication; I.6
[Computing Methodologies]: Simulation and Modeling

General Terms
Design, Experimentation

Keywords
Mobile ad hoc networks, MANET, multi-hop routing, emu-
lation, testbed, packet filter

∗Updates and other information about this software are
available from http://www.wins.hrl.com/projects/adhoc
†Dr. Zhang is also an Adjunct Assistant Professor in the
Department of Computer Sciences, the University of Texas
at Austin

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MOBIHOC’02, June 9-11, 2002, EPFL Lausanne, Switzerland.
Copyright 2002 ACM 1-58113-501-7/02/0006 ...$5.00.

1. INTRODUCTION
A wireless mobile ad-hoc network (MANET) consists of a

collection of “peer” mobile nodes that are capable of com-
municating with each other without help from a fixed in-
frastructure. The interconnections between nodes are capa-
ble of changing on a continual and arbitrary basis. Nodes
within each other’s radio range communicate directly via
wireless links, while those that are far apart use other nodes
as relays. Nodes usually share the same physical media;
they transmit and acquire signals at the same frequency
band, and follow the same hopping sequence or spread-
ing code. The data-link-layer function manages the wire-
less link resources and coordinates medium access among
neighboring nodes. The network-layer function maintains
the multi-hop communication paths across the network; all
nodes must function as routers that discover and maintain
routes to other nodes in the network. Mobility and volatil-
ity are hidden from the applications so that any node can
communicate with any other node as if everyone were in a
fixed wired network. Applications of ad-hoc networks range
from military tactical operations to civil rapid deployment
such as emergency search-and-rescue missions, data collec-
tion/sensor networks, and instantaneous classroom/meeting
room applications. All these suggest that MANET is a very
complex system that involves significant interactions across
layers and with the environment.

Testing and evaluating MANET algorithms in real sys-
tems are necessary for their success in real world use. How-
ever, running MANET systems in a non-trivial size is costly
due to high complexity, required hardware resources, and in-
ability to test them under a wide range of mobility scenarios.
While there has been a plethora of work on MANET such
as routing protocols DSR [13], AODV [15], and DSDV [16]
to name a few, much of this effort so far has been in simu-
lation only. Only a few systems have been implemented so
far, and none we know has been tried in a scale beyond a
dozen nodes. One reason for this lack-of-practice is the high
complexity involved in implementing and testing any actual
ad-hoc network. Not only that the implementation will in-
volve sophisticated system-level programming, but also that
a thorough test requires deployment of large-scale test-bed
in various mobility patterns. Without comprehensive tools
and test bed support, implementing a MANET can be a
very daunting task [11].

In this research, we have developed a flexible environment
for developing and testing mobile ad-hoc networks. It in-
cludes a mobility emulator called MobiEmu to test an ad-
hoc network of virtually any scale and with any mobility sce-

104



nario without actually moving the ad-hoc nodes physically.
It emulates the physical node movement and the network
topology changes, with real implementation on everything
above the data-link layer.

2. OVERALL ARCHITECTURE
MobiEmu is a software platform for testing and analyz-

ing “live” ad-hoc network protocols and applications (test
subject). It uses a fixed network of n linux machines to em-
ulate a mobile ad-hoc network of n nodes. In a real ad-hoc
network, the connectivity topology among nodes is dynamic
since nodes frequently move in and out of the communica-
tion ranges of one another. MobiEmu mimics this real-world
situation on the testbed network by dynamically installing
or removing packet filters. The goal is to create the same
network dynamics for the test subject, so that testing and
analyzing ad-hoc networks can be easily done in a laboratory
setting.

It is not a new idea to emulate complex network realis-
tically in a laboratory setting. Several such systems have
been developed and used for fixed networks, for example,
NIST Net1, the Ohio Network Emulator (ONE)2, and dum-
mynet3. They are mainly designed to emulate wide area
networks with different bandwidths and delays, but not for
mobile ad-hoc networks. Concept-wise, the packet filtering
technique used in MobiEmu is the same as CMU’s macfil-
ter tool [11]. However, MobiEmu goes beyond macfilter to
be an integrated environment. Section 7 has more detailed
comparisons.

MobiEmu control software runs on every testbed machine.
The emulation is scenario-driven, where the input is a his-
tory of locations and movements of every node. MobiEmu
also has a user interface component, where the user can pre-
view, control, and visualize the ad-hoc network in action.

To test an ad-hoc network implementation with MobiEmu,
the user can run “live” ad-hoc network software (i.e., the test
subject) on the testbed machines and treat them as if they
were in a real ad-hoc network. Alternatively, the user can
implement the ad-hoc network (the test subject) in a set
of mobile computers. He/she can then load the MobiEmu
control software on each computer to set up a convenient
testing environment. Either way, the MobiEmu software
ensures that the test subject would not sense the difference
and operate the way it would on a real ad-hoc network.

Fig. 1 illustrates the architecture for the MobiEmu ad-hoc
network testbed. Each testbed host is a computer emulating
a mobile node of the ad-hoc network. It connects to all other
nodes with a dedicated network (the testbed network). The
testbed network can be any type of local networks, such as
fast Ethernet or 802.11 wireless LAN. Although physically
the testbed network is well connected, the MobiEmu system
will enforce a partially connected topology at the data-link
layer.

The MobiEmu system operates in a master/slave architec-
ture. The master controller runs on a dedicated host outside
the testbed network; a slave controller runs at each testbed
host. The master controller controls all slaves and synchro-
nizes their actions: the master dictates when the connec-
tivity topology should change and the slaves enforce such

1http://www.antd.nist.gov/itg/nistnet/
2http://irg.cs.ohiou.edu/one/
3http://info.iet.unipi.it/~luigi/ip dummynet/

testbed
host

testbed network

master
ctrlr

control channel

testbed
host

testbed
host

testbed
host

testbed
host

testbed
host

net dev net dev net dev net dev net dev net dev

test subject: ad-hoc network 
implementation (system and/or 
application software) running on …

…

Figure 1: Architecture of the MobiEmu testbed

changes. The master/slave communication is on a control
channel. The control channel should be separated from the
testbed network (e.g., a second Ethernet network) to avoid
interfering the ad-hoc network operations. Fig. 2 illustrates
the internal structure for MobiEmu system. The details are
explained in the following sections.

control
channel

scenario file scenario file

topology control

timestamp
topology enforcement

scenario file

GUI

master controller

slave
controller

user

emulation clock
Netfilter/iptables user-mode-linuxsocket library

test subject
feedback

Extension 1 Extension 2

(optional) 

scenario

testbed host

best-case
routing
option

topology control

Figure 2: MobiEmu system structure

3. MASTER CONTROLLER AND GUI
The master controller is the brain of the MobiEmu testbed.

It contains a graphical user interface (GUI) for controlling
the testbed (see Fig. 3).

3.1 Scenario Definition
Before starting the emulation, the user need to load a sce-

nario file through the GUI. The scenario file is a list of times-
tamped location and movement definitions for all nodes.
Currently, MobiEmu accepts two types of format: the native
ns2 format, and a simplified format. The first format is the
same mobility scenario file format as used in the ns2 net-
work simulator [1] with CMU wireless extension [2]. That
is, any files generated by CMU’s setdest tool (and used in
simulations) can be used as is to drive the emulation. A sim-
plified format is also provided to do without the ns2-specific
syntax like $ns_ at ... "$node_(..) setdest ...". For
example, a line in a simplified scenario file

M 59.27 7 130.21 237.29 148.08 207.65 1.89

105



Figure 3: A screen shot of the master controller GUI

means that at 59.27 seconds node 7 is at location (130.21,
237.29) and is moving toward (148.08, 207.65) at the speed
of 1.89 meter/sec.

The topology control rules generated from the scenario
file are timestamped connectivity rules like:

59.27 7 2 1
59.27 7 3 0

which means that at 59.27 seconds node 7 can communicate
with node 2 but not with node 3.

As the first step of the emulation, the master will broad-
cast the scenario to all the slaves. Then both the master
and the slaves will generate the topology control rules inde-
pendently. Note that the master will maintain all the rules,
but each slave can maintain only the subset of rules that
apply to that node.

3.2 Emulation Clock and Synchronization
Once the user starts the emulation, the master controller

will start a master clock, called the emulation clock, from
time zero (0). Whenever the emulation clock reaches a
timestamp associated with a topology control rule, the mas-
ter will instruct the slaves to execute this rule. This is done
by the master broadcasting the timestamp and the slaves
enforcing all the rules matching this timestamp. In other
words, the slave does not maintain a clock by itself – it de-
pends on the timestamp messages to trigger the rules.

The emulation clock progresses at real time. However,
the GUI allows the user to slow down, speed up, pause, or
resume the emulation. Nonetheless, this can only change the
emulation clock, which determines when the next topology
control rule will be applied. It has no effect on the pace
of the test subject. For example, pausing the emulation
will freeze the motion of all nodes and fix the connectivity
topology, but whatever is on the testbed machines will keep
on running. This feature can be useful for debugging ad-hoc
routing software.

An alternative approach is to use a globally synchronized
clock at each slave. Instead of the master broadcasting
the timestamp, it can simply broadcast the the clock con-
trol commands (speed factor, pause/resume). The advan-
tage is to save the control channel bandwidth used by the

timestamp messages. However, as we will show you later
(Section 6.1), the bandwidth used by timestamp messages
is rather moderate so such saving may not be necessary.
Therefore, the main reason why we choose the timestamp
approach over the globally synchronized clock approach is
for simplicity and the ease of programming (Section 4.2).

3.3 Ad-Hoc Network Visualization
Once the scenario file is loaded, the GUI will visualize

the ad-hoc network on a canvas board (see Fig. 3). Each
node is represented by a circle with node number at their
current location. If two nodes are within the communication
range (as defined by the scenario), a solid blue line will be
shown between them. Otherwise, they will be linked by a
grey line. During the emulation, all nodes and links will
move according to the scenario. Each link can change color
between blue and grey when the two nodes move in and out
of range. The user can also choose not to show any type of
links in order to save graph refresh time.

Another distinguished feature of MobiEmu is the capabil-
ity of user-defined visualization for the ad-hoc network. This
provides a very useful tool for the user to view the current
state of the test subject (ad-hoc network software). For ex-
ample, some ad-hoc routing algorithms assign different roles
to different nodes, such as selecting nodes to be “cluster
heads” (e.g., ZRP [5]), or marking nodes “green” or “black”
color depending on its internal state (e.g., VDBP [9]). If we
are to test these algorithms, we can instrument the routing
code so that it sends a command to the master controller
whenever the node changes color, and the corresponding
node on the canvas board will change color accordingly.

MobiEmu supports the following user-defined visualiza-
tion:

• Node color. Each testbed machine can send commands
to change the colors of the corresponding node on the
graph. Three types of colors can be changed indepen-
dently on a node: the circle outline, the circle fill, and
the node ID text.

• Node label. Each testbed machine can send a text
string which will be displayed on the canvas board as
a label attached to the corresponding node. This is
useful for feedback information about a node, such as
ad-hoc routing statistics.

• Link color. Each testbed machine can send commands
to change the color of a link between this node and
any other node. For example, some routing algorithms
construct “backbones” (a set of special links) in an
ad-hoc network. A test subject for this algorithm can
show distinct color for the backbone links in the graph.
Another use of link-color visualization is to debug ad-
hoc routing protocols. For example, the route daemon
can set the color of a link to a node base on that node’s
route metrics in the route table (e.g., number of hops).
This way, we can visualize the route table changes and
contrast them with the topology changes.

• Link label. This is similar to node label.

Finally, the GUI supports a preview mode in which the
user can play the scenario in any speed, without actually
engaging the slaves. This is useful to study how nodes move
in the given scenario.

106



3.4 GUI Implementation Choices
The MobiEmu master controller is written entirely in a

scripting language (Tcl/Tk). The advantages are that it
is portable (currently works in Linux and Windows) and
can be easily customized. For example, MobiEmu has been
used in a DARPA NGI project at HRL to test multi-tier het-
erogeneous ad-hoc networks that involve satellites, vehicles,
and foot soldiers. First, CMU’s setdest tool was modified
to generate heterogeneous nodes and heterogeneous mobil-
ity patterns (the original setdest can have only one type
of nodes and same communication range). Then, the Mo-
biEmu GUI was easily modified to display different icons for
different type of nodes. A canvas dump is given in Fig. 4 to
demonstrate the tool’s visualization power.

Courtesy of HRL Hybrid Satellite and
Mobile Multi-hop Wireless Networks Project

(DARPA contract N00014-99-C-0322)

Figure 4: Another screen shot for the ad-hoc net-
work visualization (background is Kandahar air-
port)

The disadvantage of using Tcl/Tk is the speed. The graph
update can sometimes lag behind emulation time if large
number of nodes and links are displayed. This can be com-
pensated by using a faster computer or by reducing the
“smoothness” value (see Fig. 3) that specifies how frequently
the graph should be refreshed. In addition, there is an op-
tion in MobiEmu to turn off visualization entirely so that
the master controller is dedicated to emulation.

4. SLAVE CONTROLLER AND PACKET
FILTERING

In the MobiEmu system, the slave controllers are respon-
sible for enforcing the topology. If according to the cur-
rent topology node A is out-of-range from node B, the slave
controller running at node B must silently block all pack-
ets coming from A. This should be done below the network
layer so that they are transparent to the test subject (ad-hoc
network protocols and applications).

4.1 Packet Filtering
The basic technique used for selectively dropping network

packets is the same as many Unix packet-filtering firewalls.
Since the MobiEmu slave controller is implemented in Linux,
we use the Netfilter/iptables facility [18]. It sits in-between

the kernel IP stack and network device drivers and ma-
nipulates every packet in or out of this host according to
pre-defined rules. Rules can be set or changed at any time
through a command interface. The MobiEmu slave uses this
interface to set filter rules for the out-of-range nodes.

For example, if node A is out-of-range from node B and
A’s MAC address is 01:23:45:67:89:0a, MobiEmu will set
the following rule at B:

iptables -t mangle -A PREROUTING -m mac \
--mac-source 01:23:45:67:89:0a -j DROP

This rule drops all packets from A’s MAC address, without
regarding to their actual sources or destinations (whether
B is the destination or a hop in the path). Later, once A
moves within range, B can simply remove the above rule
to re-enable communications from A to B. Multicast and
broadcast packets are treated the same way as unicast pack-
ets because only the source address is used in filtering.

Usually, the same type of rules will be set at node A to
block traffic from the other direction, but it is possible to
block one direction and not the other to emulate the effect
of a unidirectional link. The node number to MAC address
mapping is established at the beginning of the emulation
(see the section below).

Using MAC address filtering does have one requirement
that the testbed network consist of a single LAN segment
(one subnet). Otherwise, when a packet crosses a subnet
boundary, the gateway will change the source MAC address.
An alternative that works across LANs is to filter on IP
address instead of MAC address.

Since iptables or similar packet-filtering systems are stan-
dard in Linux kernel, most Linux machines can support Mo-
biEmu without a specially compiled kernel.

4.2 Master/Slave Communications
The master/slave interactions take place over the control

channel, which is a separate network so as not to interfere
with the testbed network. It is often acceptable, however, to
overlay the control channel on the testbed network because
the control traffic is rather light and predictable after the
emulation starts.

We implement the control channel as a multicast UDP ad-
dress. To send to the control channel, the master and slaves
simply send a well-formatted UDP message to the multicast
address. To receive from the control channel, they simply
listen to that address. The control channel implements the
following interactions:

• Scenario. Before each emulation, the master controller
informs all slaves the scenario selected for this run.

• Ping. The master controller queries all slaves on their
status (whether they are alive and ready).

• Ping Reply. A slave responds to ping with a reply mes-
sage. If the slave has finished processing the scenario
and is ready for emulation, it includes its IP and MAC
addresses in the reply message. This is how each slave
will learn every other slave’s node number and corre-
sponding network addresses.

• Timestamp. The master controller multicasts the em-
ulation clock value to trigger slaves into action (sec-
tion 3.2).

107



• Feedback. This message is for a slave to feedback in-
formation to the master, such as for user-defined visu-
alization purpose (section 3.3).

The first three types of messages are handshakes between
master and slave to prepare the emulation. An emulation
run is ready only if the master has received positive replies
from all slaves. If there is a message loss, the handshakes will
be repeated until all slaves are ready. Once the user starts
the emulation, the control channel carries only timestamp
and feedback messages. Timestamp messages are sent only
when the topology changes. To ensure reliability, a times-
tamp message will be repeated three times in a 10msec in-
terval. Duplicated timestamps will be ignored by the slaves;
a lost timestamp message may set back the topology change
in that host by 10msec. This lagging is temporary because
it will catch up when the next timestamp arrives on time.

As we explained earlier, alternatively we could use glob-
ally synchronized clock at each slave and send clock control
commands (speed factor, suspend/resume) instead of times-
tamp messages. Doing so would require each slave to main-
tain an accurate clock and to set up a chain of timer wake-up
events. However, due to the nature of an interpreted lan-
guage, clocks in Tcl/Tk could easily drift if not programmed
carefully, so maintaining a synchronized clock might not be
easy. Further, mixing timer events with message-driven logic
could make the programming task complicated and error-
prone. In contrast, the slave controller is currently imple-
mented with a simple message-driven loop.

4.3 Best-case Ad-hoc Routing
One optional feature of MobiEmu is its built-in routing-

layer support for testing higher layer network protocols or
applications. Normally, to test any application one must
also choose an ad-hoc routing system to run. Obviously,
without a functioning ad-hoc routing layer there will be no
functioning ad-hoc network. However, some application de-
velopers may be interested only in the ad-hoc network en-
vironment but not the ad-hoc routing itself. Since a robust
and proven ad-hoc routing implementation is not yet widely
available, these users should be allowed to test their applica-
tions without worrying the routing layer. Examples of such
studies may include studying TCP over an ad-hoc network
or studying multi-party games in a MANET environment.
The “best-case” ad-hoc routing option in MobiEmu sup-
ports these applications with a functional ad-hoc network
environment without running a routing protocol.

The “best-case” routing works as follows. Whenever a
MobiEmu slave controller receives a timestamp messages
(i.e., when there is topology change), it computes the short-
est path (Dijkstra’s algorithm) to all other nodes under the
current topology. For each node that is not a direct neigh-
bor, it adds a host-specific route into the system route table
(using system command route add). Before, packets des-
tined to an out-of-range node would be sent directly and be
dropped upon arrival by the packet filtering rules. Now with
this route table entry, these packets will be forwarded to the
proper next-hop neighbor instead. Later, this entry will be
deleted if the corresponding node moves within range. Or, if
the route has changed to use a different next-hop neighbor,
the route entry will be modified.

Since MobiEmu computes the route from the entire con-
nectivity topology, this is really the best case scenario and
no deterministic protocol can produce better route. Even

though this is unimplementable in real life, doing so in an
emulation environment can provide a base line study. For
example, if we have measured the performance of an appli-
cation using best-case ad-hoc routing, we can expect that to
be the upper bound.

For obvious reason, if the test subject is an ad-hoc routing
protocol implementation, this routing support option should
not be activated.

5. EMULATION WITHOUT A DEDICATED
TESTBED

In general, the emulation of an ad-hoc network should
take place in a test network. However, in certain circum-
stance, such a dedicated testbed may not be conveniently
available. It is therefore desirable to have MobiEmu emu-
lation environment in general-purpose computer networks,
such as the educational computer networks in many schools.
However, MobiEmu requires root privilege to set and delete
packet filter rules, which is not always allowable in many de-
partmental computers. To overcome this obstacle, we have
developed two MobiEmu extensions for unprivileged users
to study certain ad-hoc network applications.

5.1 MobiEmu Socket Library
The first extension is to link a test subject ad-hoc net-

work program with a library that does the packet filtering
function at user-space. The emulation setup remains the
same: we still use a network of computers as the testbed
and run slave controller on every computer (as an unprivi-
leged user). Instead of setting rules with iptables, the slave
controller uses a temporary file to control whether packets
from other nodes should be accepted or not. If a node is out-
of-range, the slave controller will create an empty file under
the directory /tmp/MobiEmu-$USER with the node’s IP ad-
dress as filename. If the node later moves within range, the
slave controller will delete this file.

The MobiEmu socket library place a guarding layer above
the Unix socket system calls to check /tmp/MobiEmu-$USER

before or after making the system call. If a file correspond-
ing to the communicating peer exists, it may not execute the
system call or return with a different value. For UDP sock-
ets, this is relatively easy to achieve by guarding recvfrom()

and sendto(). For example, the following pseudo code il-
lustrate a guarding function for recvfrom():

int recvfrom_MobiEmu(s, ., ., ., ., .)
{

recvfrom(s, ., ., ., &from, .);
ip = inet_ntoa(from.sin_addr);
if exist /tmp/MobiEmu-$USER/$ip {

// drop this packet
if s is nonblocking,

return -1 and set errno to EAGAIN
otherwise restart this function

}
}

TCP sockets, on the other hand, is much harder to deal
with. When two nodes move out of range, all packet flows
between them should stop, including acks and retransmis-
sions. Since these are not possible to control from user-
space, we can only approximate that with an error return in
the guarding functions for send() and recv().

There are many tricks one can play in Unix to replace
the system calls with their guarding functions. For exam-

108



ple, one can link a program to a different library at run-
time by changing the dynamic linking targets. Or, one
can use ptrace() facility to modify system calls on the fly
(particularly useful for statically linked programs). Finally,
if the source code is available, we can insert macro defi-
nitions during compilation (for example, using C compiler
option -Drecvmsg=recvmsg_MobiEmu) and link with the pre-
compiled guarding functions.

This extension is very useful in situations like teaching
ad-hoc routing. In a class taught by the first author, a
student was asked to implement DSDV [16] as a user-space
daemon. The program used UDP multicast to propagate
routing information. The student used MobiEmu’s socket
library extension for intensive testing and debugging. Later,
the code was recompiled and linked with standard socket
library and it worked on a real ad-hoc network perfectly.
The MobiEmu system had greatly facilitated the project.

5.2 Virtual Ad-hoc Network with User-Mode-
Linux

The second MobiEmu extension enables a virtual ad-hoc
network with User-Mode-Linux. User-Mode-Linux (UML) [3]
is a version of Linux operating system that runs in the user-
space of another Linux operating system (the host OS). It
can be considered as a virtual machine running a full-fledged
Linux OS. It also does “virtual” networking among multiple
UML instances: each virtual machine support any number
of Ethernet devices and Ethernet packets are sent by the
host OS to a multicast address, which effectively emulates a
shared Ethernet segment. UML supports virtually all Linux
system programs and applications. Since it provides full OS
services, most systems will not be aware of the difference.
UML is therefore a promising platform for testing system
services including ad-hoc network implementation. 4

This extension adds UML to MobiEmu so that UML and
its virtual network can be used to test ad-hoc network sys-
tems and applications. Fig. 5 illustrates the architecture for
this extension. We emulate a virtual ad-hoc network of n
mobile nodes with n instance of UML running on n hosts.
The test subject runs inside an UML, and each host also runs
a MobiEmu slave controller. We modify the UML code to
allow the slave controller to set packet filtering rules so that
inter-UML packets can be selectively dropped. As usual,
the slave controller receive topology control rules from the
master and set the filter rules accordingly. This way, the
UML network environment will behave like the ad-hoc net-
work we are emulating, and the test subject can be tested
under this ad-hoc network dynamics.

Since UML runs entirely in the user space, any unprivi-
leged user can run MobiEmu and create an virtual ad-hoc
network in many Linux computer networks with reasonable
CPU speed and memory.

6. ISSUES AND DISCUSSION

6.1 Evaluation
We are interested in measuring the performance and over-

head of MobiEmu and evaluate its scalability. The first

4VMware is another virtual PC system for testing purposes.
However, it requires root privilege to install and run, mak-
ing it unsuitable for our “non-dedicated testbed” purpose.
Further, it is a commercial software and it will be difficult
for us to integrate with MobiEmu like we did to UML.

Linux
kernel

testbed network

UML

ad-hoc
system/
appl s/w

s

Linux
kernel

Linux
kernel

Linux
kernel

Linux
kernel

Linux
kernel

master
ctrlr

control channel

UML

ad-hoc
system/
appl s/w

s UML

ad-hoc
system/
appl s/w

s UML

ad-hoc
system/
appl s/w

s UML

ad-hoc
system/
appl s/w

s UML

ad-hoc
system/
appl s/w

s

UML virtual ad-hoc network

test host

s - slave controller

Figure 5: Architecture of MobiEmu’s UML Exten-
sion

question we want to answer is whether the control chan-
nel overhead is significant. As we have mentioned earlier, if
the timestamp-message approach generates too much over-
head, we will have to switch to a globally synchronized clock
and rewrite MobiEmu slaves in different language.

We have conducted a small experiment to measure the
control channel overhead. We have installed MobiEmu in a
Linux Beowulf cluster of 51 Pentium-III PCs. The testbed
network is a Gbps Ethernet switch. Saving one host for the
master controller, we are able to set up and emulate an ad-
hoc network of 50 nodes. We have measured the control
channel traffic volume under various 50-node mobility sce-
narios (randomly generated by ns2 setdest). We start the
emulation with any test subject and simply let each testbed
machine changes its connectivity according to the topology
control rules. We count the number of control channel mes-
sages after the emulation starts. Since there is no feedback
messages, all the traffic are timestamp multicast messages.

Table 1: Control channel traffic volume for 50-node
scenarios

maxspeed area volume (# msg/sec)
1 1000x1000 3.327
2 1000x1000 5.885
4 1000x1000 11.452
8 1000x1000 16.123

16 1000x1000 28.955
1 500x500 5.715
2 500x500 11.439
4 500x500 21.444
8 500x500 30.503

16 500x500 52.309

Table 1 illustrates the results. Here the maxspeed (m/s)
and area size (m x m) are parameters to the setdest sce-
nario generator. From the table we can see that the control
traffic volume increases as the maxspeed increases or as the
area size decreases. This is reasonable because the num-
ber of timestamp messages are proportional to the topology
change frequency. But even with the highest volume under
our scenarios, it is only 52 message/second, or 20kb/s (each
timestamp message is 48-byte including IP/UDP header),
which can be easily handled by most networks.

The bottleneck for scalability is on the testbed network.
It must have the same bandwidth as the total capacity of

109



the ad-hoc network. We are currently conducting study to
evaluate the scalability of this approach. That is, we want
to answer questions like, to emulate an ad-hoc network of
certain size and certain density, what are the bandwidth
requirements for the testbed network.

6.2 System Support for Implementing Ad-Hoc
Routing at User-Space

In addition to the lack of testing environment, another
source of frustration for MANET researchers is the sophis-
ticated system-level programming so often required to im-
plement an ad-hoc routing protocol. In a related project at
HRL, we have been developing mechanisms to lift such bur-
den from MANET researchers. Our goal is to enhance the
underlying system services and to develop MANET-specific
APIs, so that most ad-hoc routing protocols can be imple-
mentable entirely in user-space.

The first mechanism we worked on is the system support
for on-demand routing [7]. Normally, actual packet routing
is done in operating system kernel in a table-driven fash-
ion. The role of a routing protocol is to update the route
table periodically. Whenever the system needs to send out
or forward a packet, it consults this table for a matching
entry. If this entry does not exist, the kernel will drop the
packet immediately. However, this is not a desirable behav-
ior for many ad-hoc routing protocols, especially those that
operate in an “on-demand fashion”. In on-demand ad-hoc
routing, not all routes would exist a priori; some must be
“discovered” when needed [13]. In this case, the correct be-
havior should be: 1) withholding the packet, 2) notifying
the ad-hoc routing daemon of a route request, and 3) wait-
ing for route discovery to finish and update the route table.
Unfortunately, most common operating systems (including
Linux) have yet to support this routing mode directly.

In [7], the authors have discovered a simple way to achieve
this in Linux without modifying the kernel. The basic idea
is to use a local tunnel device called Universal TUN/TAP
(tun) as the route target for nodes without yet a valid route.
Packets to these nodes are thus routed to this device, and
through this device to a user-space daemon for buffering.
The daemon will then interact with the ad-hoc routing pro-
cess, such as invoking route requests, and re-inject the pack-
ets back to the kernel (through a raw socket) once the route
is ready. We are currently developing the API to allow easy
implementation of any on-demand ad-hoc routing protocol
in this framework, and we are adding this support to our
ad-hoc network developing and testing environment.

7. RELATED WORK
The most notable ad-hoc network experimentation is con-

ducted by researchers at CMU [11, 12, 13]. They have man-
aged to construct a testbed consisted of 5 mobile nodes im-
plemented as cars driving at about 25 to 40 km/h over a
course with two stationary nodes separated by a distance of
about 700m (2 - 3 radio hops). Later, they have constructed
a bigger testbed consisted of 8 nodes driving around a 700m
by 300m site. Researchers at BBN have also implemented
a 10-node ad-hoc network in a real experiment [17]. One
obvious disadvantage of such real testbed strategy is that
they are not scalable and not reproducible.

Emulation is the next strategy toward repeatable and scal-
able experimentation. Researchers in CMU has used the
ns2 emulation mode [4] in studying wireless network appli-

cations [8]. In such an emulation experiment, each packet
from a real machine is sent to a centralized machine on which
an ns2 simulation of the desired network is running, and
the packet is delayed or dropped according to the behav-
ior determined wholly inside the simulation; if the packet
is not dropped within the simulation, it is then resent on
the real network at the appropriate time to its real des-
tination. Compared with our MobiEmu system, the ns2
emulation is good for testing end-host applications in an
ad-hoc environment, but not for testing ad-hoc network or
routing protocols because everything within the boundary
of the ad-hoc network is simulated. In contrast, our mo-
bility emulation approach is good for testing core ad-hoc
network mechanisms. On the other hand, ns2 emulation is
more accurate for end-host applications because it simulates
all layers (physical layer and up).

CMU’s macfilter [11] is a trace-driven emulation tool that
is very similar in concept to our emulation. In fact, the
development of our MobiEmu was in part inspired by mac-
filter. A similar idea is also used in another ad-hoc network
testing tool called APE (Ad-hoc Protocol Evaluation) [10].
While macfilter and APE are merely packet-killers driven by
trace, our tool allows more user controls, such as coordinat-
ing all test hosts and manipulating the emulation clock, and
is applicable to more situations, such as emulation without
a dedicated testbed. In addition, our tool provides a vi-
sualization of the mobility scenario as the emulation goes,
as well as a user-defined visualization of the ad-hoc net-
work operations. In contrast, CMU’s scenario visualization
tool (ad-hockey [11]) merely creates and plays wireless sce-
nario without direct interaction with simulation or emula-
tion. To summarize, MobiEmu goes far beyond macfilter
and ad-hockey to be a complete integrated environment for
developing and testing ad-hoc networks.

In addition to the packet-killer function, APE also pro-
vides data collection and analysis supports for testing and
evaluating ad-hoc routing protocols. These functions are
lacking in our MobiEmu. Other trace-driven emulation tools
such as CMU and Berkeley’s trace-based emulation [14] do
not support multi-hop ad-hoc networks. Nor do the previous
topology emulation tools that we mentioned earlier.

Described in a recent MobiHoc paper [6], “testbed on a
desktop” is a strategy for providing an emulation of real-
world wireless environments in a conveniently small “wire-
less testbed.” Each wireless node has an external antenna,
and the communication patterns among different nodes are
restrained by shielding the antennas, attenuating the gain,
and connecting the different wireless nodes through atten-
uators, splitter/combiners, cables, connectors and termina-
tors. “Testbed on a desktop” is independent of the operat-
ing system of the implementation platforms and works with
most modern wireless networking interfaces. Compared with
our mobility emulation approach, the “testbed on a desk-
top” strategy provides more faithful emulation of the wire-
less communication environment. However, the complexity
involved in configuring the physical components has really
limited its configurations and its scale. In contrast, our tool
can provide more flexible emulation and is scalable to a large
number of nodes, but with only approximations on the phys-
ical and MAC layer.

8. CONCLUSION AND FUTURE WORK
We have developed an integrated environment for develop-

110



ing and conducting “live” tests of wireless ad-hoc networks
in the laboratory setting. The MobiEmu tool allows the
test of an ad-hoc network (both systems and applications) in
large scale and with any mobility scenarios. It provides flex-
ible control and visualization capabilities for better testing
and understanding of the software dynamics. We have used
this tool in various research projects with great success. It
has reduced the time we spend in testing and debugging ad-
hoc network protocol implementations. We have also used
it in educational projects where new applications have been
tried out in emulated ad-hoc networks.

We fully understand the limitation of our mobility em-
ulation approach. Since it does not emulate the physical
and MAC layer, it should only be used in testing but not in
performance evaluation. On the other hand, detailed emu-
lation of the physical environment and the MAC protocols
would require significant computation and hard real-time
processing. To do this, it requires a new architecture and a
significantly more powerful testbed.

Researchers at HRL are currently working on the next
generation ad-hoc network emulator called WiNE (Wire-
less Network Emulator). It will simulate both the physi-
cal environment (including propagation model, fading and
path-loss, jamming and interference, antenna gain and re-
ceiver sensitivity, etc.) and the data-link layer (such as
802.11 MAC, among others). The new architecture con-
sists of two main hardware components: a back-end cluster
of high-speed processors for computing the physical world,
and a front-end cluster of PCs that are similar to the Mo-
biEmu testbed nodes. The detailed real-time simulation of
the underlying physical environment is done at the back-end
cluster with active-networking and parallel simulation tech-
nologies. Coupling the two clusters is a fast interconnect
which handles the real-time control (Myrinet). The data
traffic is handled by a separate data network, similar to the
MobiEmu testbed network.

9. ACKNOWLEDGMENTS
We’d like to thank Gavin Holland of HRL for his encour-

agement and suggestions in writing this paper. He also pro-
vided us the “Kandahar” demo shown in Section 3.4 and
a description of the WiNE project that he is working on
now. We’d also like to acknowledge Vikas Kawadia of UIUC
(who interned with HRL in Summer 2001) for his contribu-
tions in the on-demand routing support and in particular
the Linux solution (Section 6.2). Thanks also go to Sharad
Agarwal of UC Berkeley, Son Dao and Bo Ryu of HRL, and
the anonymous reviewers for their useful feedback.

10. REFERENCES
[1] L. Breslau, et.al. Advances in network simulation.

IEEE Computer, 33(5):59–67, May 2000.

[2] CMU Monarch Group. CMU monarch extensions to
the NS-2 simulator. URL:
http://monarch.cs.cmu.edu/cmu-ns.html.

[3] J. Dike. A user-mode port of the linux kernel. In
Proceedings of the 4th Annual Linux Showcase &
Conference, Atlanta, GA, Oct. 2000. URL:
http://user-mode-linux.sourceforge.net.

[4] K. Fall. Network emulation in the VINT/ns simulator.
In Proceedings of the 4th IEEE Symposium on

Computers and Communications (ISCC’99), July
1999.

[5] Z. J. Haas. The routing algorithm for the
reconfigurable wireless networks. In Proceedings of
IEEE International Conference on Universal Personal
Communications (ICUPC’97), San Diego, California,
Oct. 1997.

[6] J. Kaba and D. Raichle. Testbed on a desktop:
Strategies and techniques to support multi-hop manet
routing protocol development. In Proceedings of the
2001 ACM International Symposium on Mobile Ad
Hoc Networking & Computing (MobiHoc’01), Long
Beach, California, Oct. 2001.

[7] V. Kawadia and Y. Zhang. Implementing on-demand
routing in linux. HRL Technical Report, 2002.

[8] Q. Ke, D. A. Maltz, and D. B. Johnson. Emulation of
multi-hop wireless ad hoc networks. In Proceedings of
7th International Workshop on Mobile Multimedia
Communications (MoMuC’00), Oct. 2000.

[9] U. C. Kozat, G. Kondylis, B. Ryu, and M. K. Marina.
Virtual dynamic backbone for mobile ad hoc
networks. In Proceedings of IEEE ICC’01, 2001.

[10] H. Lundgren, D. Lundberg, E. Nordstrm, C. Tschudin,
and J. Nielsen. A large-scale testbed for reproducible
ad hoc protocol evaluations. In Proceedings of IEEE
Wireless Communications and Networking Conference
(WCNC 2002), Orlando, Florida, Mar. 2002.

[11] D. Maltz, J. Broch, and D. Johnson. Experiences
designing and building a multi-hop wireless ad hoc
network testbed. Technical Report CMU-CS-99-116,
School of Computer Science, Carnegie Mellon Univ.
(http://www.monarch.cs.cmu.edu/papers.html), Mar.
1999.

[12] D. Maltz, J. Broch, and D. Johnson. Lessons from a
full-scale multihop wireless ad hoc network testbed.
IEEE Personal Communications Magazine, 8(1):8–15,
Feb. 2001.

[13] D. A. Maltz. On-Demand Routing in Multi-hop
Wireless Mobile Ad Hoc Networks. PhD thesis,
Carnegie Mellon University, 2001. URL:
http://www.monarch.cs.cmu.edu/monarch-
papers/maltz-thesis.ps.gz.

[14] B. Noble, M. Satyanarayanan, G. Ngyuen, and
R. Katz. Trace-based mobile network emulation. In
Proceedings of SIGCOMM’97, Cannes, France, Sept.
1997.

[15] C. Perkins and E. Royer. Ad hoc on-demand distance
vector routing. In Proceedings of the 2nd IEEE
Workshop on Mobile Computing Systems and
Applications, pages 90–100, New Orleans, LA, Feb.
1999.

[16] C. E. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing (DSDV)
for mobile computers. In Proceedings of ACM
SIGCOMM’94, London, U.K., Sept. 1994.

[17] R. Ramanathan and R. Hain. An ad hoc wireless
testbed for scalable, adaptive qos support. In
Proceedings of IEEE Wireless Communications and
Networking Conference (WCNC 2000), volume 3,
pages 998–1002, Chicago, Illinois, Sept. 2000.

[18] R. Russell. Linux 2.4 packet filtering HOWTO. URL:
http://netfilter.samba.org/documentation/.

111


