
ETH Library

Schedulability of event-driven code
blocks in real-time embedded
systems

Report

Author(s):
Chakraborty, Samarjit; Erlebach, Thomas; Künzli, Simon; Thiele, Lothar

Publication date:
2002-02

Permanent link:
https://doi.org/10.3929/ethz-a-004605422

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
TIK Report 130

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004605422
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Schedulability of Event-Driven Code

Blocks in Real-Time Embedded Systems

Samarjit Chakraborty Thomas Erlebach Simon Künzli Lothar Thiele
Computer Engineering and Networks Laboratory

Eidgenössische Technische Hochschule Zürich
CH-8092 Zürich, Switzerland

E-mail {samarjit,erlebach,kuenzli,thiele}@tik.ee.ethz.ch

TIK-Report No. 130
This is an extended version of the paper that appears in the proceedings of the

39th Design Automation Conference (DAC) 2002, New Orleans
February 2002

Abstract

Many real-time embedded systems involve a collection of indepen-
dently executing event-driven code blocks, having hard real-time con-
straints. Tasks in many such systems, like network processors, are
either not preemptable or have restrictions on the number of preemp-
tions allowed. All the previous work on the schedulability analysis of
such systems either have exponential complexity, or allow unbounded
number of preemptions and are usually based on heuristics. In this
paper we present the exact necessary and sufficient conditions under
EDF, for the schedulability of such a collection of code blocks in a
non-preemptive environment, and give efficient algorithms for testing
them. For fixed priority schedulers we give a sufficient condition. We
validate our analytical results with experiments and show that the
schedulability analysis problem in such systems can be exactly and
efficiently solved in practice.

1 Introduction

Real-Time systems are generally modeled as a collection of independent
tasks, where each task generates a sequence of jobs, each of which is char-
acterized by a ready-time, an execution requirement, and a deadline. The
schedulability analysis of such a system is concerned with determining whether
it is possible to assign to each job a processor time equal to its execution
requirement, between its ready-time and its deadline. In the context of
most real-time embedded systems, each such task is required to model an
event-driven block of code, parts of which are triggered by external events

1

and require to be executed within a given deadline from the triggering time.
Such blocks of code are usually represented by their control flow graphs on
some appropriate level of abstraction, where the vertices represent portions
of code implementing some functionality and the edges represent the flow
of control. The vertices are triggered by external (and even internal) events
and have to be executed within their associated deadlines. The schedulabil-
ity analysis of such a collection of control flow graphs answers whether it is
possible to execute all the vertices within their deadlines, under all possible
event triggering sequences.

Figure 1: Control flow graph of a code implementing parts of a network
packet processor

As an example, Figure 1 shows on a very high level of abstraction, the
control flow graph of a code, implementing parts of an embedded network
packet processor. Such a processor may have several input ports through
which packets flow in, and after being processed they are put out on the ap-
propriate output ports. The code (similar to that in the figure) correspond-
ing to each input port is responsible for handling packets flowing through
that port, and all such blocks of code execute concurrently. The vertices in
this graph represent different packet processing functions and get triggered
by incoming packets (external events) or by preceding vertices when they
complete execution and are ready to forward the packet for further process-
ing. Some of these vertices might run on a single general purpose CPU core,
while others (representing encryption, or header processing) might run on
dedicated processors. To guarantee end-to-end deadlines to packets belong-
ing to real-time flows (such as voice), individual deadlines are associated
with each vertex of the graph through which the packet flows, and meet-
ing these individual deadlines guarantee the overall end-to-end delay. Such

2

splitting of deadlines among the vertices become necessary since different
vertices might be executing on different processors and each of them has to
be scheduled individually. The schedulability analysis of a collection of such
graphs is necessary to determine if all packets belonging to real-time flows
can be processed within their respective deadlines.

In this example and also in many other embedded systems scenarios,
due to constraints on memory and also due to efficiency reasons the number
of preemptions allowed is restricted, because of the usually large overhead
involved in preemptions. Once a vertex of the control flow graph in the
above example starts executing on a processor, it is required to continue till
completion before another vertex (probably from a different graph) can be
scheduled for execution. The advantages of preemption in such cases are
usually offset by the large overhead involved in preempting a process which
has only partially processed a packet.

Conditional real-time code. The main difficulty in the schedulabil-
ity analysis (both for preemptive and non-pre-emptive cases) of a collec-
tion of such control flow graphs lies in the fact that for general directed
acyclic graphs, what constitutes a worst case event triggering sequence for
an individual graph can not be determined in isolation, due to the pres-
ence of conditional branches. To illustrate this, consider our next exam-
ple.

while (external event) do
execute code block B0 /∗ (e0, d0) ∗/
if (C) then

execute code block B1 /∗ (e1, d1) ∗/
else

execute code block B2 /∗ (e2, d2) ∗/
end if

end while
In the above code, for each code block B, the tuples (e, d) enclosed

within the comments indicate the execution requirement and the deadline
of B. Now, if the condition C depends on some external event, or on the
value of a variable which can not be determined at compile time, then the
worst case branch here would depend on the other blocks of code execut-
ing concurrently with this one. Let e1 = 2, d1 = 2, e2 = 4 and d2 = 5.
If another code block is simultaneously executing with e = 1 and d = 1
then the (e1, d1) branch corresponds to the worst case, whereas if e = 2 and
d = 5 then the (e2, d2) branch corresponds to the worst case. Hence the
usual method followed for the feasibility analysis of hard-real-time systems,
of approximating a piece of code by its worst case behavior does not work
in the presence of conditional branches. The alternative, which involves
enumerating all possible execution paths in the control flow graph leads to

3

exponential complexity.

Previous results. There is a large body of work on modeling real-time
embedded systems and on answering scheduling theoretic questions arising
in these models (see [1] for an overview). Whereas most of the previous work
considered independently executing tasks, of late there has been a consid-
erable amount of work on trying to model data and control dependencies
between tasks and addressing scheduling issues in such models (see [9] and
the references therein). Very recently, a new model called the recurring real-
time task model was proposed in [2, 4] for modelling codes with conditional
branches as shown in the examples above. It generalizes many of the previ-
ous models like the sporadic [7], multiframe [8], generalized multiframe [5],
and recurring branching [3]. However, the algorithms presented in [2] for the
feasibility analysis problem in this model for the preemptive uniprocessor
case, have a running time which is exponential in the number of vertices of
the task graphs, and the complexity of this problem was undecided. Recently
it was proved that this problem is NP-hard [reference omited for anonymity].

Our results. Relatively little is known about the non-preemptive version
of the problem, where tasks are triggered by external events and there exist
control dependencies between them as shown with our network packet pro-
cessor example. All the work in this area (see [6] and the references therein)
is based on heuristics and no exact tests for schedulability is known till now.
Moreover, in view of the recent NP-hardness result for the preemptive re-
curring real-time task model, the non-preemptive version is very likely to be
NP-hard as well.

In this paper we study the non-preemptive version of the recurring real-
time task model, for modelling a set of concurrently executing event-driven
code blocks with real-time constraints. Our main contributions are that
we give an exact necessary and sufficient condition for schedulability under
Earliest-Deadline-First (EDF), and a sufficient condition for fixed priority
scheduling. We also show that these conditions can be efficiently tested.
Towards this, we give pseudo-polynomial time algorithms and efficient ap-
proximation schemes which involve a trade-off between the running time of
the algorithms and the quality of the results produced. We validate our ana-
lytical results using experiments and show that for all practical purposes the
schedulability analysis of a collection of such code blocks can be accurately
and efficiently done. For the ease of presentation, the model we consider
here is slightly simpler than that of [2] in the sense that we do not consider
the recurring behavior of the code blocks. Using techniques described in [2]
it is possible to extend our results to incorporate this recurring behavior and
we postpone the details of this to a full version of this paper.

In the next section we formally describe the model. Section 3 presents the
schedulability test for EDF, following which we describe our approximation

4

schemes in Section 4. In Section 5 we present the test for fixed priority
schedulers, and finally Section 6 describes our experimental results.

2 The Task Model

A task modeling a block of code is represented by a directed acyclic graph
with a unique source and a sink vertex. Associated with each vertex v
is its execution requirement e(v) (which can be previously determined, for
example at compile time), and deadline d(v). Whenever the vertex v is
triggered, the code corresponding to it has to be executed (which takes e(v)
amount of time) within the next d(v) time units. Since we consider a non-
preemptive environment, once a vertex has started execution it can not
be preempted, and continues executing till completion. After it completes,
another vertex which has already been triggered, possibly belonging to a
different task graph, can be scheduled for execution.

Each directed edge (u, v) in the graph is associated with a minimum in-
tertriggering separation p(u, v), denoting the minimum amount of time that
must elapse before the vertex v can be triggered after the triggering of the
vertex u, and p(u, v) ≥ d(u). To illustrate the utility of this intertriggering
separation, consider the example task graph shown in Figure 2(a) in the
context of our previous network packet processor example. Let the first and
the third vertices be implemented on a processor P and the second vertex
on a different processor P ′. For the schedulability analysis on processor P ,
the subgraph to be considered is shown in Figure 2(b), but with a changed
intertriggering separation. Note that if all such subgraphs (implemented
on different processors) of any task graph pass the schedulability test on
their concerned processors, then the overall graph is also guaranteed to be
schedulable. In the context of such distributed implementations p(u, v) can
be termed as the communication delay, and if u and v are implemented on
the same processor then p(u, v) = d(v).

The semantics of the execution of such a task graph state that the source
vertex can be triggered at any time, and once a vertex u is triggered then
the next vertex v can be triggered only if there exists a directed edge (u, v)
and at least p(u, v) amount of time has elapsed since the triggering of u. If
there are directed edges (u, v1) and (u, v2) from the vertex u (representing a
conditional branch) then only one among v1 and v2 can be triggered, after
the triggering of u. Therefore, a sequence of vertices v1, v2, . . . , vk getting
triggered at time instants t1, t2, . . . , tk is legal if and only if there are directed
edges (vi, vi+1) and ti+1− ti ≥ p(vi, vi+1) for i = 1, . . . , k− 1. The real-time
constraints require that the code corresponding to vertex vi be executed
within the time interval [ti, ti + d(vi)].

Task sets and schedulability analysis. A task set T = {T1, T2, . . . , Tk}

5

(e1, d1)

(e3, d3)

p1 + p2

(e1, d1)

p1

(e2, d2)

p2

(e3, d3)

(a) (b)

Figure 2: (a) A task graph where vertices 1 and 3 are implemented on pro-
cessor P and vertex 2 on processor P ′, (b) The subgraph seen by processor
P

consists of a collection of task graphs, the vertices of which can get trig-
gered independently of each other. A triggering sequence for such a task
set T is legal if and only if for every task graph Ti, the subset of vertices
of the sequence belonging to Ti constitutes a legal triggering sequence for
Ti. In other words, a legal triggering sequence for T is obtained by merg-
ing together (ordered by triggering times, with ties broken arbitrarily) legal
triggering sequences of the constituting tasks.

The schedulability analysis of a task set T is concerned with determin-
ing whether for all possible legal triggering sequences of T , the codes corre-
sponding to the vertices of the task graphs can be scheduled such that all
their associated deadlines are met. As already mentioned before, here we
are interested in the non-preemptive uniprocessor version of this problem.
For heterogeneous implementations involving multiple processing units, as
in the network processor example, if the schedulability test holds for the
subgraphs on the individual processors then it holds for the collection T of
the original graphs as well.

3 Schedulability Analysis for EDF

Two traditional scheduling disciplines used in real-time systems are the
Earliest-Deadline-First (EDF) and fixed-priority. An EDF scheduler always
selects a ready job with the shortest deadline for execution and is known to
be optimal under preemption. In the non-preemptive case EDF is known
to be optimal for independently executing jobs if the scheduler is work con-
serving or non-idle (i.e. if a job is ready then it has to be scheduled if the
processor is empty).

In this section we concentrate on EDF schedulers and derive an ex-
act necessary and sufficient condition for the schedulability of a set of task
graphs under EDF. Not surprisingly, we show that for our task model EDF

6

is also an optimal non-preemptive work conserving scheduler.

3.1 Demand-Bound Function (T.dbf(t))

Our schedulability analysis is based on an abstraction of a task, represented
by a function called the demand-bound function. The demand-bound func-
tion of a task T , denoted by T.dbf(t), takes as an argument a real number
t and returns the maximum possible cumulative execution requirement by
vertices of T that have been triggered by a legal triggering sequence and
have both their ready times and deadlines within a time interval of length t.
Intuitively, T.dbf(t) denotes the maximum possible execution requirement
that can possibly be demanded by T within any time interval of length t,
if all its vertices are to meet their deadlines. As an example, consider the

Figure 3: Demand-bound function for task graph T

task graph T shown in Figure 3. For this graph, T.dbf(2) = 1 because the
vertex having an execution requirement of 1 and deadline 2, can trigger at
the beginning of any time interval of length 2 and has an execution require-
ment of 1 if it has to meet its deadline. Similarly, T.dbf(20) = 10 because
of a possible triggering of the two shaded vertices in the graph within any
interval of length 20.

In addition to T.dbf(t), we denote by T.dbf v(t), the maximum execution
requirement demanded by T within any time interval of length t, due to any
triggering sequence ending at the vertex v.

3.2 Conditions for Schedulability

In this section we give a necessary and sufficient condition for the schedula-
bility of a set of task graphs under EDF scheduling. This condition is spec-
ified by Algorithm 1, which uses the two functions T.dbf(t) and T.dbf v(t)
introduced in the last subsection.

Theorem 1 A task set T is schedulable under EDF if and only if Algo-
rithm 1 returns Y ES.

7

Algorithm 1 Algorithm for schedulability analysis under EDF
Input: Task set T
1: decision← Y ES
2: for all tasks Ti ∈ T and for all vertices v ∈ Ti and for all τ̂ ≥ 0 do
3: Let T̃ ← T \{Ti}
4: Tdbf=0 ← {T ∈ T̃ | T.dbf(τ̂ + d(v)) = 0}
5: emax ← maxv′{e(v′) | v′ is a vertex of a task T ∈ Tdbf=0}
6: Let Tdbf>0 ← {T ∈ T̃ | T.dbf(τ̂ + d(v)) > 0} and q ← |Tdbf>0|
7: index← 0
8: for p← 1 to q do
9: Let e′max ← max{e(v′) | v′ ∈ Tp, d(v′) > τ̂ + d(v)}

10: if index = 0 then
11: if e′max > (Tp.dbf(τ̂ + d(v)) + emax) then
12: emax ← e′max

13: index← p
14: end if
15: else
16: if e′max + Tindex(τ̂ + d(v)) > (Tp.dbf(τ̂ + d(v)) + emax) then
17: emax ← e′max

18: index← p
19: end if
20: end if
21: end for
22: if index �= 0 then
23: T̂ ← Tdbf>0\{Tindex}
24: end if
25: if τ̂ +d(v) < (Ti.dbf v(τ̂ +d(v))+

∑
T∈T̂ T.dbf(τ̂ +d(v))+emax) then

/∗ Condition (†) ∗/
26: decision← NO
27: end if
28: end for
29: return decision

Proof: Let v be any vertex of a task graph Ti ∈ T . The vertex v has
an execution requirement of e(v) and a deadline equal to d(v). Let v be
triggered at time t and it completes execution at time t + δ.

Let R≤d
T [t, t + τ] denote the sum of the execution requirements of the

vertices of any task graph T ∈ T which have been triggered in the time
interval [t, t + τ] and which have their deadlines less than or equal to d. Let
W v,t(t+ τ) (0 ≤ τ ≤ δ) denote the total execution requirement at time t+ τ
that was generated by all the tasks in T , and which must be met by the

8

processor (under EDF scheduling) before the vertex v that was triggered
at time t can complete its execution. W v,t(t + τ) includes the execution
requirement e(v) of the vertex v as well. We assume that the processor was
idle before time 0.

If we look back in time, let t− τ̂ be the first time before the time instant
t when the processor does not have any vertex to execute with deadline
less than or equal to t + d(v) (i.e. the deadline of the vertex v). Hence,
during the entire interval [t− τ̂ , t+ δ), the processor always has some vertex
to execute with deadline less than or equal to t + d(v). W v,t(t + τ) for
any 0 ≤ τ ≤ δ is therefore composed of the following: (1) The remaining
execution requirement of the vertex that is in execution at time t−τ̂ , denoted
by P (t− τ̂). By our assumption of τ̂ , the deadline of this vertex is greater
than t + d(v). (2) The execution requirement generated by the vertices of
the task Ti during the time interval [t − τ̂ , t]. This includes the vertex v.
Clearly, all these vertices have a deadline less than or equal to t + d(v).
Therefore, this equals to R

≤t+d(v)
Ti

[t − τ̂ , t]. (3) The execution requirement
generated by vertices with deadlines less than or equal to t + d(v), from all
tasks belonging to a set, say T̂ , where T̂ ⊆ T \{Ti}, during the time interval
[t − τ̂ , t + τ]. Therefore, this is equal to

∑
T∈T̂ R

≤t+d(v)
T [t − τ̂ , t + τ]. (4)

The execution requirement served by the processor during the time interval
[t− τ̂ , t + τ].

Since we are considering a non-preemptive environment, the vertex which
is in execution at the time t − τ̂ has to finish executing before any vertex
having a deadline less or equal to t + d(v) can be executed. Therefore, the
processor always executes some vertex having a deadline less than or equal
to t + d(v) during the interval [t− τ̂ + P (t− τ̂), t + τ]. Hence,

W v,t(t + τ) = P (t− τ̂) + R
≤t+d(v)
Ti

[t− τ̂ , t] +∑
T∈T̂

R
≤t+d(v)
T [t− τ̂ , t + τ]− (τ̂ + τ) (1)

Now, note that if there exists a τ (0 ≤ τ ≤ d(v)) such that W v,t(t +
τ) = 0, then the vertex v completes execution on or before its deadline.
Substituting τ = d(v) in Equation (1), we obtain:

W v,t(t + d(v)) = P (t− τ̂) + R
≤t+d(v)
Ti

[t− τ̂ , t] +∑
T∈T̂

R
≤t+d(v)
T [t− τ̂ , t + d(v)] − τ̂ − d(v)

Following our definition of the demand-bound functions (dbf and dbf v),
clearly,

W v,t(t + d(v)) ≤ P (t− τ̂) + Ti.dbf v(τ̂ + d(v)) +∑
T∈T̂

T.dbf(τ̂ + d(v)) − τ̂ − d(v) (2)

9

To compute an upper bound on W v,t(t+d(v)) we would like to maximize
the right hand side of the above inequality (2). For this, note that if a vertex
v′ of a task T contributes to the term P (t − τ̂), then T can not belong to
the set T̂ . Following this constraint, for any task Ti and any vertex v ∈ Ti,
Algorithm 1 computes P (t− τ̂) = emax and the task set T̂ which maximizes
the right hand side of Inequality (2). Therefore, if the algorithm returns
Y ES, then we have (from Condition (†) of the algorithm),

W v,t(t + d(v)) ≤ τ̂ + d(v)− (τ̂ + d(v)) = 0

Hence, there exists a τ ≤ t+d(v) such that W v,t(t+d(v)) ≤ 0 and therefore
the vertex v completes execution before its deadline.

Now we give the proof of necessity. Suppose that for some task Ti ∈ T̂
and for some vertex v ∈ Ti and for some τ̂ , the Condition (†) in Algorithm 1
holds. We claim that in this case the task set T is not feasible. The term
emax in Condition (†) is due to some vertex v′ of some task in T (not equal
to Ti) and d(v′) > d(v) + τ̂ . Assume that the processor is empty before
time t − τ̂ and just before t − τ̂ the vertex v′ is triggered. Starting from
time t− τ̂ all the tasks T ∈ T̂ generate an execution requirement due to a
sequence of vertex triggerings which are the same as those which result in the
computation of T.dbf(τ̂ + d(v)) in Condition (†) of Algorithm 1. The task
Ti also generates an execution requirement due to a sequence of triggerings
that result in Ti.dbf v(τ̂ +d(v)) in Condition (†), starting from the time t− τ̂ ,
with the vertex v being triggered at time t.

Therefore, the execution requirement that has still to be met by the
processor at time t + d(v), before the vertex v can complete execution, is
given by:

W v,t(t + d(v)) = emax + Ti.dbf v(τ̂ + d(v)) +∑
T∈T̂

T.dbf(τ̂ + d(v))− (τ̂ + d(v))

Hence, from Condition (†) in Algorithm 1, we obtain that W v,t(t +
d(v)) > τ̂ + d(v) − (τ̂ + d(v)) = 0. Since apart from vertex v′ (which can
not be preempted), all the vertices of Ti and all the vertices of the tasks in
T̂ that have been triggered have a deadline of less than or equal to t + d(v),
some vertex misses its deadline at t + d(v).

Note that Step 2 in Algorithm 1 involves a loop over all possible values
of τ̂ ≥ 0. However, it suffices to consider only a finite set of τ̂s and this is
explained at the end of Section 4.2. The optimality of EDF in this model
follows from the fact that the proof of necessity makes no assumptions about
the scheduling discipline.

10

4 Approximate Schedulability Analysis

The demand bound function of a task graph can clearly be computed by
enumerating all possible paths in the graph and computing the execution
requirement and deadline corresponding to each path. In the worst case,
since the number of such paths can be exponential in the number of vertices
in the graph, this procedure will incur an exponential running time. It can be
shown by a reduction from the knapsack problem that computing T.dbf(t)
for a task graph T is NP-hard, implying that our algorithm for schedulability
analysis can have a worst case running time which is exponential in the
number of vertices in any task graph.

In this section we first show that T.dbf(t) for any task graph can be
efficiently approximated. Towards this we give a fully-polynomial time ap-
proximation scheme (FPTAS) for computing T.dbf(t). Using this result we
then give approximate decision algorithms for schedulability analysis.

4.1 Approximating the Demand-Bound Function

Given a task graph T we first give a pseudo-polynomial time algorithm for
computing T.dbf(t) for any t ≥ 0, based on dynamic programming. Let
there be n vertices in T denoted by v1, . . . , vn, and without any loss of
generality we assume that there can be a directed edge from vi to vj only
if i < j. Following our notation described in Section 2, associated with
each vertex vi is its execution requirement e(vi) which here is assumed to
be integral (a pseudo-polynomial algorithm is meaningful only under this
assumption), and its deadline d(vi). Associated with each edge (vi, vj) is
the minimum intertriggering separation p(vi, vj).

Let ti,e be the minimum time interval within which the task T can have
an execution requirement of exactly e time units due to some legal triggering
sequence, considering only a subset of vertices from the set {v1, . . . , vi}, if
all the triggered vertices are to meet their respective deadlines. Let tii,e
be the minimum time interval within which a sequence of vertices from
the set {v1, . . . , vi}, and ending with the vertex vi, can have an execution
requirement of exactly e time units, if all the vertices have to meet their
respective deadlines. Lastly, let E = maxi=1,...,n e(vi). Clearly, nE is an
upper bound on T.dbf(t) for any t ≥ 0. It can be trivially shown by induction
that Algorithm 2 correctly computes T.dbf(t), and has a running time of
O(n3E).

Given this algorithm, any t ≥ 0, and an 0 < ε ≤ 1, let Tt be the subgraph
of T consisting only of those vertices vi for which d(vi) ≤ t, and let Et denote
the maximum execution requirement of a vertex from among all vertices of
Tt. Now we scale all the execution requirements associated with the vertices
of Tt by K = εEt/n i.e. e′(vi) = �e(vi)/K	 and run the algorithm with
the new e′(vi)s and the graph Tt. Let V be the set of vertices (with the

11

Algorithm 2 Computing T.dbf(t)
Input: Task graph T , and a real number t ≥ 0

for e← 1 to nE do

t1,e ←
{

d(v1) if e(v1) = e
∞ otherwise

t11,e ← t1,e

end for
for i← 1 to n− 1 do

for e← 1 to nE do
Let there be directed edges from the vertices vi1 , vi2 , . . . , vik to vi+1

ti+1
i+1,e ←




min{tijij ,e−e(vi+1)
− d(vij) + p(vij , vi+1)+

d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,
d(vi+1) if e(vi+1) = e, and∞ otherwise

ti+1,e ← min{ti,e, ti+1
i+1,e}

end for
end for
T.dbf(t)← max{e | tn,e ≤ t}

scaled execution requirements) that result in the computation of T.dbf(t)
in this algorithm. We claim that the summation of the original (unscaled)
execution requirements of these vertices is greater than or equal to (1 − ε)
times the actual demand-bound function for the task graph for this value of
t. Further, since this algorithm now runs in time O(n4/ε), (with the scaled
execution requirements), it is an FPTAS for computing T.dbf(t). We denote
this approximate value of T.dbf(t) computed by this algorithm by T.dbf ′(t).

Lemma 1 There exists an FPTAS for computing T.dbf(t). For any ε the
algorithm runs in O(n4/ε) time, where n is the number of vertices in the
task graph T .

Proof: Given a task graph T with n vertices and any time interval t,
consider the subgraph of T which consists of only those vertices vi for which
d(vi) ≥ t. Let E = maxi e(vi) among these nodes. Clearly, T.dbf(t) ≥ E.
For any 0 < ε ≤ 1, let K = εE/n. Now scale the execution requirements of
all the vertices of this subgraph as follows: e′(vi) = �e(vi)/K	. Then clearly,

e(vi)
K
− 1 ≤ e′(vi) ≤

e(vi)
K

This implies that

e(vi) ≥ Ke′(vi) (3)
Ke′(vi) ≥ e(vi)−K (4)

12

We run the dynamic programming algorithm (Algorithm 2) with the scaled
execution requirements e′(vi) on this subgraph. Let some path π = v1, . . . , vk

be the output of the dynamic programming algorithm (which results in the
computation of T.dbf(t) by Algorithm 2). Let πOPT be the path in the task
graph T which results in the computation of the exact T.dbf(t). Then,∑

v∈π

e(v) ≥ K
∑
v∈π

e′(v) (from (3))

≥ K
∑

v∈πOPT

e′(v) (π is optimal with the e′(v)s

≥
∑

v∈πOPT

(e(v) −K) =
∑

v∈πOPT

e(v) −K|πOPT |

≥
∑

v∈πOPT

e(v)−Kn =
∑

v∈πOPT

e(v) − εE

≥ T.dbf(t)− εT.dbf(t) = (1− ε)T.dbf(t)

Therefore, if we denote the sum
∑

v∈π e(v) by T.dbf ′(t) then T.dbf(t) ≥
T.dbf ′(t) ≥ (1 − ε)T.dbf(t). Since the maximum execution requirement E
in the dynamic programming algorithm is now n/ε, the running time of this
FPTAS is O(n4/ε).

4.2 Approximate Decision Algorithms

Our approximate decision algorithms use the approximate demand-bound
function (T.dbf ′(t)) introduced in the last subsection, instead of the exact
values T.dbf(t), in Algorithm 1. The decision algorithms are parametrized
by 0 < ε ≤ 1, where the number of wrong answers and the running time
depend on the value of ε chosen. For smaller values of ε the percentage of
probable wrong answers decrease, but at the expense of the running time of
the algorithm.

Given a task graph T with n vertices, and any t ≥ 0, as in the last
subsection, let Tt denote the subgraph of T consisting of only those vertices
vi for which d(vi) ≤ t, and let Et denote the maximum execution require-
ment of a vertex among all the vertices of Tt. For our approximate decision
algorithm, note that for all possible values of t ≥ 0, there can be at most
n distinct values of Et for any task graph. For each such Et, we consider
the corresponding subgraph that gives rise to this Et as described above,
and scale the execution requirements of the vertices of this subgraph by
K = εEt/n. In each such subgraph Tt, the number of values of time in-
tervals t′ at which the value of Tt.dbf ′(t′) changes is bounded by O(n2/ε),
and hence the number of values of time intervals t at which the value of∑

T∈T T.dbf ′(t) changes is bounded by O(|T |n3/ε).
It follows that in Step 2 of Algorithm 1 that it is sufficient to run the

loop only for O(|T |n3/ε) values of τ̂ , since the value of
∑

T∈T T.dbf ′(τ̂) can

13

change at most these many number of times. Therefore, the loop in Step 2
executes for a total of O(|T |2n4/ε) times.

For each task T ∈ T , computing the tn,e values for each of its sub-
graphs Tt, using Algorithm 2 and the scaled execution requirements requires
O(n4/ε) time, and these values are stored in a table. Hence computing
all such values for all the task graphs in T takes O(n5|T |/ε) time. The
Step 25 in the algorithm dominates the running time among all the steps
inside the loop (Steps 3-27), and requires a computation of Ti.dbf ′v(t) +∑

T∈T̂ T.dbf ′(t + emax) where t = τ̂ + d(v). To compute this, note that
computing T.dbf ′(t) for any T ∈ T requires a binary search to identify the
appropriate table corresponding to a subgraph Tt, and then a linear search
through this table. Therefore, this requires O(n2ε−1 log n) time. The ex-
actly same time is for computing T.dbf ′v(t). Hence, computing the value of
Ti.dbf ′v(t) +

∑
T∈T̂ T.dbf ′(t + emax) for t = τ̂ + d(v) in Step 25 requires a

total of O(|T |n2ε−1 log n) time. Therefore, the total run time of Algorithm 1
using the approximate demand-bound functions is O(|T |3n6ε−2 log n).

Since T.dbf ′(t) ≤ T.dbf(t) for any t ≥ 0, this algorithm is overly pes-
simistic, in the sense that for certain task sets which are not schedulable,
the algorithm might still return a Y ES. However, for task sets where some
vertices might miss their deadlines by a large time lengths, the algorithm
always returns a NO. So the algorithm errs only for task sets where some
vertices might miss their deadlines by “small” amounts of time and this can
be parametrized by ε. Therefore, any 0 < ε ≤ 1 characterizes a class of task
sets for which the algorithm errs. Decreasing ε reduces this class of such
task sets for which the algorithm errs, at the cost of increasing the running
time quadratically in 1/ε, and therefore this gives a fully polynomial-time
approximate decision scheme for approximate feasibility testing.

Pessimistic Algorithms. Recall that for any t ≥ 0, Et is the maximum
execution requirement of a vertex among all the vertices in the subgraph Tt.
Then it follows from the proof of Lemma 1 that T.dbf ′(t) + εEt ≥ T.dbf(t).
Hence, in Algorithm 1, if instead of T.dbf(t), the value (T.dbf ′(t) + εEt) is
used, then this gives a pessimistic decision algorithm. Such an algorithm
might return a NO for certain schedulable task sets. However, for task sets
which after being scheduled still leave some idle processor time (which can
be parametrized by ε), then the algorithm always returns a Y ES. Again,
decreasing ε reduces the class of task sets for which the algorithm errs, at
the cost of the running time increasing quadratically in 1/ε.

A Pseudo-Polynomial Time Algorithm Lastly, it may be noted that Al-
gorithm 1 along with the pseudo-polynomial time algorithm for computing
the demand-bound function of a task graph also implies a pseudo-polynomial
time algorithm for schedulability analysis. To see this, let for any task
T ∈ T , tTmax denote the maximum amount of time elapsed among all ex-

14

ecution sequences starting from the source vertex of T and ending at the
sink vertex, if every vertex is triggered at the earliest possible time (respect-
ing the minimum intertriggering separations). Let tmax = maxT∈T tTmax.
Clearly, it is sufficient to test the Condition (†) in Algorithm 1 only for
τ̂ = 1, . . . , tmax. Both T.dbf v(τ̂ + d(v)) and T.dbf v(τ̂ + d(v)) in the Step 25
of the algorithm for any τ̂ can be determined in pseudo-polynomial time by
Algorithm 2 and clearly, tmax is pseudo-polynomially bounded, implying a
pseudo-polynomial algorithm for schedulability analysis.

5 Schedulability Analysis for Fixed Priority Sched-
ulers

In this section we briefly present our results on the schedulability analysis of
fixed priority schedulers. Here, a priority is assigned to each task graph, and
among the ready vertices the scheduler always selects a vertex belonging to
the highest priority task. Unlike the case with EDF, the schedulability test
that we derive here is only a sufficient but not a necessary condition.

The test that we present in this section is also based on an abstraction
of a task, similar to the demand-bound function in Section 3.1, and uses a
function called the request-bound function. The request-bound function of
a task T , denoted by T.rbf(t), takes as an argument a real number t and
returns the maximum possible cumulative execution requirement by vertices
of T that have been triggered according to some legal triggering sequence
and have their ready times within any time interval of length t. Intuitively,
T.rbf(t) is an upper bound on the maximum amount of time, within any
time interval of length t, for which T can deny the processor to all lower-
priority tasks.

Therefore, in the example task graph in Figure 3, T.rbf(t) = 7 for t < 10,
because of the vertex with e = 7, d = 10, and for example, T.rbf(10) = 10
because of the two shaded vertices.

Theorem 2 Given a task set T = {T1, . . . , Tk}, where the task Tp has pri-
ority p (1 ≤ p ≤ k) and p < q indicates that Tp has a higher priority than Tq.
The task set T is static-priority schedulable if for all tasks Tp the following
condition holds: for all vertices v belonging to the task graph of Tp, and for
all t ≥ 0, ∃ 0 ≤ τ ≤ d(v) − e(v) for which

t + τ ≥ Tp.rbf(t) +
p−1∑
q=1

Tq.rbf(t + τ)− e(v) + emax
>p

where emax
>p = max{e(v′) | v′ is a vertex in any of the task graphs Tl, l =

p + 1, . . . , q}

15

Proof: Let v be any vertex of the priority-p task graph Tp. The vertex
v has an execution requirement of e(v) and a deadline equal to d(v). Let v
be triggered at time t and it completes execution at time t + δ.

Let W v,t(t + τ) (0 ≤ τ ≤ δ) denote the total execution requirement at
time t + τ that was generated by all the task in T , and which must be met
before the vertex v that was triggered at time t can complete its execution.
W v,t(t + τ) therefore includes the execution requirement e(v) of the vertex
v as well.

Now if we look back in time, let t − τ̂ be the first time before the time
instant t when the processor did not have any vertex of any task graph of
priority ≤ p to execute. Clearly, t − τ̂ is the time instant at which some
vertex of a task graph having priority ≤ p was triggered. The processor at
this time was either executing some vertex of a task graph having priority
> p or was idle. W v,t(t + τ) is therefore composed of the following: (1)
The remaining execution requirement of some vertex of a task graph having
priority > p, (2) The execution requirement generated by vertices of the
task graph Tp (including the vertex v) during the time interval [t− τ̂ , t], (4)
The execution requirement generated by vertices of task graphs ∪p−1

q=1{Tq}
during the time interval [t− τ̂ , t + τ], (5) The execution requirement served
by the processor during the time interval [t− τ̂ , t + τ].

Therefore,

W v,t(t + τ) ≤ emax
>p + Tp.rbf(τ̂) +

p−1∑
q=1

Tq.rbf(τ + τ̂)− (τ̂ + τ) (5)

From the condition given in the theorem, we obtain that for τ̂ , ∃ 0 ≤
τ ′ ≤ d(v) − e(v) for which

τ̂ + τ ′ ≥ Tp.rbf(τ̂) +
p−1∑
q=1

Tq.rbf(τ̂ + τ ′)− e(v) + emax
>p

Using this in inequality (5) implies that ∃ 0 ≤ τ ′ ≤ d(v) − e(v) for which

W v,t(t + τ ′) ≤ (τ̂ + τ ′) + e(v) − (τ̂ + τ ′) = e(v)

Now since W v,t(t + τ ′) includes e(v), the execution requirement of the
vertex v, either v is in execution at time t + τ ′ or it has already completed
execution by this time. Hence v meets its deadline.

It can be shown that computing T.rbf(t) is also NP-hard, but by using
a similar dynamic programming algorithm as used for the demand-bound

16

function, it can be computed in pseudo-polynomial time. Using this algo-
rithm and the scaling technique described in Section 4.1, it is possible to
formulate an approximate decision algorithm exactly similar to that pre-
sented for EDF. We omit the details due to space constraints.

6 Experimental results

Typically any real-time embedded system is designed and implemented using
some high-level development environment, where a timing analyzer extracts
the timing information and the temporal and other dependencies from a
code and represents this in the form of a task model, and then performs a
schedulability analysis based on this model. This step is frequently encoun-
tered in the hardware/software co-design of embedded real-time systems and
also in high-level design space explorations of such systems.

In spite of the theoretical guarantees in our algorithms the experiments
reported here are interesting because of two reasons. Firstly, many approxi-
mations schemes are exceedingly difficult to implement and in practice might
have running times which are comparable or even worse than the equivalent
simpler exponential time algorithms, for all practical input instances. Sec-
ondly, the parameter ε in our algorithms represents a trade-off between the
quality of the results obtained and the running time. Hence, it is interesting
to identify a suitable value of ε for any realistic input instance.

The results we report here are only for the feasibility analysis under EDF.
An algorithm for the fixed priority scheduler would give similar results both
in terms of quality and running time, since it is based on similar underlying
principles. However, it would be difficult to verify the results in this case
since only a sufficient condition for schedulability is known.

We have implemented the pseudo-polynomial exact algorithm for the
EDF feasibility analysis, and also the approximation scheme. For our ex-
periments, we have randomly generated synthetic task graphs, using two
parameters. The first is the maximum execution requirement associated
with any vertex of the graph, E, which effects the running time of the
pseudo-polynomial time algorithm and the quality of the results generated
by the approximation scheme. We call the second parameter the connectiv-
ity factor. If v1, . . . , vn are the vertices of a task graph such that there is
an edge from vi to vj only if j > i, then for each vertex vj we construct an
edge from vi to vj with a probability equal to the connectivity factor of the
graph, for i = 1, . . . , j − 1.

Figures 5 and 6 show the running time of the exact pseudo-polynomial
algorithm and the approximation scheme for four different values of ε on a
task set consisting of three graphs, when the number of vertices in each of
these graphs is gradually increased. The maximum execution requirement
(E) associated with any vertex was set to 100 and 500 respectively.

17

0.2 0.4 0.6

Connectivity Factor

Figure 4: Typical Task Graphs generated for connectivity factors equal to
0.2, 0.4, 0.6

Figure 5: Running time versus the number of vertices in the task graphs,
for E = 100

The connectivity factor in all the graphs was set to 0.4. In Figure 4
we give some example graphs which we obtained from the automatic graph
generation tool. We decided to use a connectivity factor of 0.4, because
the generated graphs have a realistic mixture of branches and consecutive
tasks. The CPU time was measured on a moderately loaded Sunblade 1000
running SunOS 5.8 with 750 MHz CPU and 2 GB RAM. All the algorithms
were implemented in Java.

Note that for any set of task graphs, the optimal choice of ε depends

18

Figure 6: Running time versus the number of vertices in the task graphs,
for E = 500

on the maximum execution requirement E, associated with any vertex. For
instance, in the above example if E = 100 then the performance of the
exact algorithm is better than the approximation scheme with ε = 0.2 (see
Figure 5. To give an example of the values of E that might occur in practice,
we show in Table 6 typical execution reruirements of a real-time flow from
our network processor example in Figure 1. Here RISC1 is a PowerPC,
RISC2 is a ARM9TDMI, the µ-Engine is one similar to that present in the
Intel IXP1200 and the DSP is similar to the TMS320C620x.

Figure 7 shows the exact value of the demand-bound function T.dbf(t)
computed by the pseudo-polynomial algorithm, and its upper and lower
bounds (T.dbf ′(t) + εE and T.dbf ′(e) respectively) computed by the ap-
proximation scheme. It should be noted that the value of T.dbf ′(t) for all
values of t is almost equal to T.dbf(t), and this is better than the worst case
theoretical bound. The values shown in this graph are for a task graph with
E = 1000, ε = 0.6 and the number of vertices in the task graph and the
connectivity being equal to 30 and 0.4. Figure 8 shows the error incurred in
approximating T.dbf(t) for the same graph.

Lastly, Figure 9 shows the percentage of wrong answers returned by
the approximation scheme for different values of ε. For this we have used
100 task sets, each consisting of three task graphs with 30 vertices in each
graph and having a connectivity factor of 0.4. The maximum execution
requirement of any vertex was set to 100. All the task sets considered here
either almost fully load the processor, or when not schedulable, the vertices
miss their deadlines only by small amounts of time, and therefore these
represent the difficult cases for our approximation algorithms.

19

Task Name RISC 1 RISC 2 µ-Engine DSP
Voice Encoder 119460 119200 132200 11300
RTP Tx 100 110 110 160
UDP Tx 310 270 280 300
Build IP Header 130 130 110 190
Route Look Up 370 420 290 640
Calc Check Sum 200 180 150 110
ARP Look Up 300 330 230 500
Schedule 270 310 400 490

Table 1: Possible execution requirements associated with the vertices of the
task graph in Figure 1

Figure 7: The demand-bound function (T.dbf(t)) and the upper and lower
bounds on its approximation

7 Conclusion

In this paper we have considered the schedulability analysis of a collection
event-driven real-time code blocks. Although this problem is very likely to
be computationally difficult (NP-hard) we have shown that for all practical

20

Figure 8: The errors incurred in approximating T.dbf(t) for the example
shown in Figure 7

Figure 9: Percentage of wrong answers returned by the approximation
scheme for different values of ε

purposes it can be efficiently solved. For fixed priority schedulers we have
presented only a sufficient condition for schedulability. Here it would be
interesting to come up with a test which is both necessary and sufficient.

21

8 Acknowledgements

Samarjit Chakraborty is funded by the Schweizerische Nationalfonds zur
Förderung der wissenschaftlichen Forschung (SNF) through the project NCCR-
MICS. Simon Künzli is funded by the Kommission für Technologie und In-
novation (KTI) through the project SPEAC.

References

[1] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentelli.
Scheduling of embedded real-time systems. IEEE Design and Test of
Computers, 1998.

[2] S. Baruah. Dynamic- and static-priority scheduling of recurring real-time
tasks. To appear in Real-Time Systems.

[3] S. Baruah. Feasibility analysis of recurring branching tasks. In Proc.
10th Euromicro Workshop on Real-Time Systems, pages 138–145, 1998.

[4] S. Baruah. A general model for recurring real-time tasks. In Proc. IEEE
Real-Time Systems Symposium, pages 114–122. IEEE Computer Society
Press, 1998.

[5] S. Baruah, D. Chen, S. Gorinsky, and A.K. Mok. Generalized multiframe
tasks. Real-Time Systems, 17(1):5–22, 1999.

[6] P. Eles et al. Scheduling of conditional process graphs for the synthesis
of embedded systems. In Proc. Design, Automation and Test in Europe
(DATE), 1998.

[7] A.K. Mok. Fundamental Design Problems of Distributed Systems for the
Hard-Real-Time Environment. PhD thesis, Laboratory for Computer
Science, MIT, 1983.

[8] A.K. Mok and D. Chen. A multiframe model for real-time tasks. IEEE
Transactions on Software Engineering, 23(10):635–645, 1997.

[9] P. Pop, P. Eles, and Z. Peng. Schedulability analysis for systems with
data and control dependencies. In Proc. 12th Euromicro Conference on
Real-Time Systems, 2000.

22

