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Abstract

The increasing gap in performance between processors and main memory has made ef-
fective instructions prefetching techniques more important than ever. A major deficiency of
existing prefetching methods is that most of them require an extra port to I-cache. A recent
study by [19] shows that this factor alone explains why most modern microprocessors do not
use such hardware-based I-cache prefetch schemes. The contribution of this paper is two-fold.
First we present a method that does not require an extra port to I-cache. Second, the perfor-
mance improvement for our method is greater than the best competing method BHGP [23]
even disregarding the improvement from not having an extra port.

The three key features of our method that prevent the above deficiencies are as follows.
First, late prefetching is prevented by correlating misses to dynamically preceding instructions.
For example, if the I-cache miss latency is 12 cycles, then the instruction that was fetched 12
cycles prior to the miss is used as the prefetch trigger. Second, the miss history table is kept to
a reasonable size by grouping contiguous cache misses together and associated them with one
preceding instruction, and therefore, one table entry. Third, the extra I-cache port is avoided
through efficient prefetch filtering methods. Experiments show that for our benchmarks, chosen
for their poor I-cache performance, an average improvement of 9.2% in runtime is achieved
versus the BHGP methods [23], while the hardware cost is also reduced. The improvement
will be greater if the runtime impact of avoiding an extra port is considered. When compared
to the original machine without prefetching, our method improves performance by about 35%
for our benchmarks.
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1 Introduction

Instruction cache misses are a significant source of performance loss in modern processors. I-cache

performance is especially a problem in integer and database codes [1, 5], as these types of programs

tend to have less instruction locality. A very rough calculation reveals that the performance cost of

an I-cache miss can be large, even if misses are uncommon. Consider a machine with a 12-cycle

I-cache miss latency, running a program which exhibits an average of 1 instruction per cycle when

not idle due to I-cache misses, i.e. IPC = 1. Even if the miss rate is only 2%, the percentage of

cycles lost due to I-cache misses is roughly 2%*12/1 = 24%, which is not a small number.

Two current trends are likely to make the performance penalty from I-cache misses even more

in the future than it is today. First, the semi-conductor road-map [20] predicts a rapidly increasing

performance gap between processors and memory in the future: processor speeds are increasing at

60% a year, while memory speeds are growing at only 7% a year [6]. In this scenario, the I-cache

miss latency is likely to grow. Second, since more aggressive multi-issue machines such as EPIC

architectures [9] and proposed new superscalars [7, 14] have the potential to perform an increased

level of computation per cycle, every idle cycle due to an I-cache miss will delay a greater portion

of computation than on an older machine. Thus higher ILP makes the I-cache miss penalty larger

in terms of lost instruction issue opportunities. Combined, these two trends indicate that methods

to hide memory latency, which are already important, will become increasingly more useful.

Since the following terms are helpful in our discussion, we will now introduce the definitions of

use f ul, uselessandlateprefetches, as they are given in the literature. When the predictor indicates

that an I-cache miss will occur in the immediate future, aprefetchof that cache line is requested.

If the prediction is accurate and timely, the cache line will soon be accessed, resulting in auseful

prefetch. If the access occurs before the prefetch completes, however, the prefetch is termedlate,

and the I-cache latency is only partially hidden. If the prediction is incorrect and the cache line is

not accessed before it is evicted, then the prefetch isuseless.

Current methods for instruction prefetching suffer from deficiencies that have hindered their

adoption. The 1998 survey and evaluation paper by Tse and Smith [24] presents a well-argued case



for why current methods have failed. First, in some prefetching methods [22, 15], the prefetches are

triggered too late to hide all of the cache miss latency. Second, some methods [11] use a huge table

to store the miss history information. Finally and more importantly, most prefetching methods,

including the most recent [23, 13, 18], usecache probingto filter out useless prefetches. Cache

probing requires that the I-cache be checked before every potential prefetch, in order to prevent the

prefetching of lines that are already in the cache. Unfortunately, cache probing requires a second

port to the I-cache, so as to avoid interference with the normal instruction fetches that occur on

every cycle. This second port does not come for free – it usually slows down the cache hit time and

increases circuit area [19, 24]. Taken together, these factors can result in a trivial, or even negative,

net gain from prefetching.

It is therefore not surprising that current methods for hardware-based instruction prefetch-

ing are not widely used. As evidence, consider that most modern processors such as Ultra-

Sparc III [12], Itanium [10] and PowerPC [17] only prefetch sequential instructions or predicted

branch targets; no sophisticated hardware-based schemes are used. Instead, these machines pro-

vide special prefetch instructions that are scheduled by the compiler based on program analysis,

perhaps employing profiling. However, compiler-driven methods have their own shortcomings:

first, prefetch instructions themselves constitute overhead; second, not all compilers may imple-

ment prefetching; third, old binaries are not optimized; fourth, dynamic program behavior may

not be predictable at compile-time; and fifth, efficient portability across different implementations

of the ISA is difficult because the prefetching strategy is affected the hardware parameters, such

as cache size and latency. Consequently, we believe, and our results demonstrate, that a good

hardware-based prefetching method will have a significant positive impact.

This paper presents a hardware-based instruction prefetching method that correlates execu-

tion history with cache miss history. It improves upon existing methods by triggering prefetches

early enough to prevent stalls, by avoiding an extra port in the instruction cache, and by using a

reasonably-sized table, while at the same time prefetching a higher percentage of cache misses.

To achieve these gains, the method uses three innovations. First, each cache miss is correlated

with the instruction that was fetched a certain number of instructions before the miss; this correla-



tion is stored in a miss history table. Prefetches are triggered when their correlated instructions are

encountered in the future. Multiple execution paths leading to a particular cache-miss may result

in multiple triggering instructions for that miss. Second, contiguous cache misses are grouped

together and associated with one preceding instruction. This makes it possible to use a miss his-

tory table of reasonable size. Third, efficient prefetch filtering methods are used to reduce useless

prefetches. Thus it becomes unlikely that the prefetched line will already be present in the cache,

so that the instruction cache does not require a second port. To achieve this, a confidence-counter

strategy is used to retire unsuccessful correlations.

Our method is evaluated on a suite of applications for which instruction cache performance

is known to be a problem. Database and irregular programs typically demonstrate such behavior.

Several existing strategies are also implemented for comparison. Our method correctly prefetches

an average of 71.3% of I-cache misses, and 77.6% of these are prefetched early enough to com-

pletely hide the cache miss latency. As a result, the speedup for the benchmark applications is

about 1.5.

The rest of this paper is organized as follows. Section 2 presents further details on the exe-

cution history guided pre-fetching technique. Section 3 discusses the related works on instruction

prefetching. Section 4 describes the details of the simulation environment and the benchmarks used

for this study. Section 5 presents our experimental methodology and results. Section 6 summarizes

our conclusions.

2 Execution history guided instruction prefetching

We now describe our basic method. Let theprefetch distancebe a constant that is slightly greater

than the miss latency from L1 to L2 in the I-cache (typically 10-30 cycles for modern processors).

Let N be the average number of instructions that execute within thisprefetch distance. Whenever

there is an I-cache miss, the address of the instruction that was fetchedN instructions prior to the

miss, called theNth previous instructionis stored into a miss history table (MHT). Upon encoun-

tering thisNth previous instructionin the future, the hardware will prefetch unless the line is still in



the cache, as indicated by the MHT entry’s confidence counter. By defining the prefetch-triggering

instruction in terms ofN (instructions) rather than directly in terms of theprefetch distance(cy-

cles), we guarantee that the trigger will be unique for a particular execution path, since a particular

path has a fixed instruction-fetch order but a dynamic execution pattern. A non-uniqueNth pre-

vious instructionis still possible, however, if several execution paths lead to the same I-cache

miss. When this happens, the differentNth previous instructionsare stored independently in the

MHT. This proves to be a desirable property, as it properly handles cache lines for which there is a

tendency to a miss when following some execution paths, but not when following others.

The entries of the MHT contain the five fields shown in Figure 1: 1) the address of theNth

previous instruction(only the upper bits are needed since the MHT is indexed by the low-order

bits), 2) the beginning address of the cache line to prefetch, 3) a confidence counter, 4) a valid bit,

5) and the length of thestream. A streamis as a sequence of I-cache misses that are contiguous in

memory. Streams allow multiple prefetches from a single MHT entry.

The hardware for the method, shown in Figure 2, consists of six components. First is themiss

history tableas already described. Second, afetch queueof lengthM stores the most recently

fetched instructions. The fetch queue is used to identify theNth previous instruction. M should

therefore be large enough to guarentee thatN instructions are always in the queue, even when

speculative instructions are evicted from it due to a branch misprediction. Third, theactive miss

record registerstores the address of the most recent miss and a pointer to the corresponding MHT

entry it created. This register is used for detecting streams, as described later in this section. Fourth,

the prefetch bufferstores the prefetched cache lines separately from the main cache. This buffer

prevents the I-cache from evicting useful lines for the sake of potentially useless prefetches. When

a cache miss happens, the prefetch buffer is first checked for the missing line, before accessing the

lower level of memory. The fifth and sixth items in the hardware are the return address stack and a

return instruction counter; their roles will be discussed later in Section 2.1.

We now describecache eviction indication, a technique for reducing useless prefetches, derived

from [18]. Since prefetching data that is already in the cache would simply waste memory band-

width, most existing methods directly check the I-cache for the presence of the prefetch candidate.



This solution, calledcache probing, requires a second I-cache port, with its consequent disadvan-

tages.Cache eviction indicationuses a different method:if the cache line has been evicted since

its last fetch or prefetch, then it is not in the cache, and should be prefetched, otherwise it can be

assumed to be in the cache. If the cache line has never been fetched before, then this test will yield

an incorrect result. This presents no difficulty, however, as no correlating method, including ours,

aims to avoid first-time misses.

The hardware for implementingcache eviction indicationis a confidence counter as shown in

Figure 1, along with the associated control logic. A confidence counter exists for each miss history

table entry; it consists of a small number of bits, usually 2-4. Values above a certain threshold

T indicate that the prefetch should be initiated; low values imply that the prefetch should not be

requested since it is likely to be useless.

An implementation ofcache eviction indicationrequires actions at three events.First, when a

cache line miss is encountered, the miss history table is updated. One update action is to created

a new entry with the confidence counter set to some valueR no more than the thresholdT. This

prevents subsequent executions of the dynamic trigger from prefetching, as the line is likely to be

in the cache. In our implementation, we set bothT andR to 0. The other update action that occurs

on a cache line miss is that, if the line is present in the prefetch buffer, the miss history table entry

that had caused that prefetch is found, and its confidence counter is set to beR again. Doing so

avoids future useless prefetches to lines that hit in the prefetch buffer. To keep track of what miss

history table entry to invalidate, however, requires extra bits in the prefetch buffer: for each cache

line, the index of the miss history table entry that is created when the cache line is brought into

prefetch buffer is stored in the prefetch buffer entry. Analogous bits are also required in the I-cache

as described below.

Thesecondevent that requires action under thecache eviction indicationscheme is when a line

is evicted from the I-cache. The counter field of the corresponding miss history table entry is set to

a high value that is above the threshold. This ensures that a subsequent execution of the triggering

instruction will cause a useful prefetch. Keeping track of the associated confidence counter entry

requires extra bits in every I-cache line, to store the miss history table entry that was created when



that line was brought into the cache. These bits are analogous to the corresponding bits in the

prefetch buffer. Thus, upon evicting a line from the I-cache, these extra bits are used to find the

entry for which the confidence counter is set to maximum.

The third event in thecache eviction indicationscheme is instruction fetch. For every instruc-

tion fetch, the miss history table is accessed with the instruction address as the index. If a matching

entry is found and the confidence counter for that entry is greater than the threshold, then the con-

fidence counter is decremented, and the prefetched cache line is brought into the prefetch buffer. If

the value after decrement falls below the threshold, the miss history table entry is invalidated. This

decrementing strategy ensures that entries are used for only a limited number of times – which is

useful in case the original correlation between the prefetch trigger instruction and the missed line

was for a different execution path. In such a case, it is important to retire the entry after a few times

as it would otherwise trigger useless prefetches forever. This is not a concern, however, if the same

path from the trigger to the missed line is followed subsequently; later hits in the prefetch buffer

will reset the miss history table entry as well.

The above algorithm for cache eviction, though complex to describe, is simple to implement.

The only additional hardware is a confidence counter for each miss history table entry and extra

bits to store a miss history table index for each line in the prefetch buffer and I-cache, plus the

associated control logic. Results show that the method is almost as effective as cache probing in

avoiding useless prefetches, without the use of a second I-cache port, and achieves a high degree

of prefetch coverage.

A remaining detail is how multiple contiguous cache lines that miss in the I-cache are combined

into a single entry in the miss history table – this optimization reduces the size of the table required.

To implement this optimization, theactive miss record registershown in Figure 2 stores the address

of the previous cache miss and the index of the entry. On every cache miss, the address of the

missed line is checked to see if it follows the previous missed cache line. If it does, and if the

length of the previous cache miss stream is less than four cache lines, then this length is increased

by one. Otherwise, a new miss history entry is inserted into the miss history table, and the register

is set to be the current missed address. In this way, up to four contiguous misses can be combined



into one entry.

2.1 Extension for return instructions

The base scheme described above may generate many useless prefetches for the special case of

when a return-from-procedure operation occurs between a prefetch triggering instruction and the

I-cache miss it is correlated to. The reason for this special case is that a procedure can be called

from several call sites, and the instructions following the return are different for each of them. In

this scenario, a cache miss among one return path will trigger prefetches among all.

Fortunately, we can avoid useless prefetches spanning returns by predicting the target of the

next return using areturn address stackand then prefetching only if the predicted target equals the

target of the stored miss history table entry. The return address stack is not a new idea; it has been

used before for predicting control flow [21]. The stack is maintained as follows: the return address

is pushed onto it for each procedure call, and popped for each return. The stack can overflow, but

the probability of overflow is made low by increasing the size of the stack. Thus, the top of the

stack predicts the target of the next return. In our simulation, the depth of the stack is 16.

Having extended the algorithm to handle prefetches that span returns, we now describe how

to identify this situation, so as to use the extension. A given prefetch spans a return if and only

if the sum of all returns in the fetch queue is greater than the sum of calls in the fetch queuethat

occur prior to the last return. For example, if the fetch queue contains a single call followed later

by a single return then we know that theNth previous instruction is from the same procedure as

the current instruction, and we would not use the extension. We similarly do not use this extension

if the number of calls is greater than the number of returns, as this represents a case where the

Nth previous instruction is from the caller (or an ancestor of the caller); prefetching into a callee

does not present the same problems as prefetching into the caller. This also explains why call

instructions that occur after the last return in the fetch queue are not counted.

Integrating this extension into our prefetching scheme requires the following three hardware

modifications. First, the entries of the fetch queue require both a new field for the return address



on the top of the stack at the time the instruction was fetched and also two new bits to indicate

whether the instruction is a call or a return. Second, to indicate when to use the extension, two

counters are introduced. One is signed and maintains the number of returns in the fetch queue

minus the number of calls that occur prior to the last return. The other records the number of calls

after the last return instruction in the queue. Third, an alternative format for miss history table

entries is introduced, as shown in Figure 3. This format is used when prefetches span returns.

Comparing Figures 1 and 3 reveals that two new fields have been added to this alternative format,

and thecache miss addressfield has been replaced with thereturn address.

When the extension is used, it operates very similarly to the way normal cache misses are

handled. The only difference is that, for an instruction to trigger a prefetch, not only must there

be a valid MHT entry for that instruction, but the return address for that entry must also match the

current predicted return address, as found by examining the top of the return address stack. When

a prefetch is initiated, the prefetch address is calculated as the sum of the return address and the

offset field from its table entry.

3 Related work

The instruction prefetching methods that have been previously investigated in the literature are

of two types: hardware based and compiler driven. Hardware-based prefetching methods do not

require any software support, where as compiler-driven prefetching methods rely on the compiler

to specify when and what to prefetch.

In compiler-driven approaches, such as cooperative pre-fetching [13], explicit prefetch instruc-

tions with predicted targets are inserted into the executable code by the compiler. Thus, no benefit

can be obtained for legacy programs, or for programs compiled elsewhere. Not only is compiler

support needed to insert prefetch instructions, but also the prefetch instructions consume fetch and

dispatch slots of the processor at run-time. With hardware-based prefetching, there are no such

problems.

Hardware-based cache prefetching algorithms can be divided into two categories: correlated



prefetching and non-correlated prefetching. Correlated prefetching techniques include Markov

prefetching [11] and branch-history-guided instruction prefetching(BHGP) [23]. Non-correlated

prefetching techniques include fetch-directed instruction prefetching(FDIP) [18], next-n-line prefetch-

ing [22], and wrong-path prefetching [15].

Correlated prefetching associates each cache miss with some previous event, such as a prior

miss in Markov prefetching [11] or a branch instruction in branch-history-guided instruction prefetch-

ing (BHGP) [23]. Usually the correlations are stored in a dedicated table. Markov prefetching

correlates consecutive miss addresses. These correlations are stored in a miss-address prediction

table which is indexed using the current miss address, and which can return multiple predicted

addresses. In branch-history-guided instruction prefetching, cache misses are correlated with the

execution of branch instructions, and the correlations are stored in a prefetch table which is in-

dexed using the address of the branch instructions. Later when the same events happen again, the

prefetches are triggered.

Compared with the most recent related method, BHGP, our method has four main features.

First, any instruction can be a trigger, where as BHGP only uses branch instructions as triggers.

When only branches are triggers, each basic block can only have one entry in the miss history

table. Our finer granularity allows more prefetching opportunities. Second, contiguous missed

cache lines are grouped together, whereas in BHGP, the basic blocks are used as the minimum

units of prefetching. For a large basic block spanning multiple cache lines, it is possible that only

some of these lines will cause misses. Thus, our method reduces the number of useless prefetches.

Third, a confidence counter is used in the MHT, not in the L2 cache as in BHGP. This not only

limits useless prefetches, but also invalidates useless miss history records while keeping the useful

ones, thus reducing contention in the MHT. Fourth, the triggers associated with return instructions

are treated specially. This prevents the triggers in a callee function from prefetching a cache line

that corresponds to a different caller.

We now consider the non-correlated prefetching methods proposed in the literature. Instead of

using a miss history table, these methods predict which instructions will be executed in the near

future, in order to prefetch them. These predictions are made according to different events in the



different algorithms. In fetch directed instruction prefetching (FDIP) [18], there is a decoupled

branch predictor which runs 2 to 10 fetch blocks ahead of the instruction cache fetch. This predic-

tor identifies instructions that may be used in the near future and triggers prefetches. In next-n-line

prefetching [22], the access of the current cache line by the processor causes several successive

cache lines to be prefetched. Wrong-path prefetching [15], combines next-n-line prefetching with

a mechanism to always prefetch the taken target of control transfers that are executed by the pro-

cessor.

In regards to timeliness, correlated prefetching methods generally outperform non-correlated

methods. A prefetch is timely if it occurs early enough to fully hide the memory latency. Correlated

algorithms are more timely because they relate a cache miss to a prior event, which can be chosen

so as to occur early enough to hide the cache miss latency. In contrast, non-correlated prefetches

are usually triggered when a dynamically nearby cache line is encountered or misses in the cache.

Thus the prefetches are often late. An exception is fetch-directed instruction prefetching, FDIP,

which is a non-correlated method with the timeliness property. It is timely because the branch

predictor runs ahead of the instruction cache fetch. FDIP is very aggressive, however, by trying

to prefetch every instruction that could be useful, regardless of whether it already exists in the

cache. Even with a perfect branch predictor, the number of prefetch requests equals the number

of dynamic instructions divided by the cache block size. Typically the cache miss rate is about

5%, so 95% of these prefetches are useless. Thus FDIP depends on very efficient prefetch filtering

algorithms.

The statement that correlated prefetching methods are more timely than non-correlated meth-

ods may appear to contradict [8], where it was found that non-correlated prefetching methods

could hide approximately 90% of the miss delay for prefetched lines. The explanation is that the

simulated platform in [8] is a traditional supercomputer CRAY YMP. The measured IPC for their

benchmarks is less than12, and sometimes less than1
4. On most of today’s processors, however, the

IPC is above 1 for many programs – including those programs studied in our results. Moreover, as

the gap between memory access time and computer cycle time grows, the timeliness of the non-

correlated prefetching methods will deteriorate further. As a result, correlated approaches appear



more promising.

In prefetching algorithms there is a trade off between miss coverage and memory bandwidth

consumption. A more aggressive prefetching algorithm tends to prefetch more instructions, and

hence may cover more cache misses. But at the same time, more useless prefetches are likely. This

can consume more memory bandwidth, which will then affect other operations in the system and

harm performance. There are several methods used to limit the memory bandwidth consumed by

useless prefetches. Some of these methods are introduced in the following paragraphs.

One method to limit useless prefetches, cache probe filtering, is used in most prefetching algo-

rithms [23, 13, 18]. The idea is to first check whether the line that is a candidate for prefetching

is already present in the primary instruction cache before the prefetch is performed. If it is al-

ready there, the prefetch request is discarded. While cache probe filtering is the most widely

proposed method, and prevents all useless prefetches, it is expensive to build, because it requires

an additional port for checking the address tags of the cache lines to avoid interfering with nor-

mal cache operations. Because ideal multiporting is costly, current commercial multiport caches

are implemented by time division multiplexing [16], by multiple copy replication [2], or by inter-

leaving [25]. The drawbacks of these practical implementations include circuit complexity, area

overhead, bandwidth sacrifice, and also longer access latency [19]. Taking into account these

drawbacks, [24] measures a zero or negative performance gain from using prefetching methods

that require cache probing.

Another method to reduce the memory bandwidth consumption from prefetching is to use a

prefetch bit associated with each line in the primary instruction cache plus a saturating counter or a

confirmation bit for each line in the next lower level of the instruction cache [18, 23]. The prefetch

bit remembers whether the line was prefetched but not yet used, and the saturating counter records

the number of consecutive times that the line was prefetched, but not used, before it was replaced.

If the saturating counter for a prefetching cache line is above a threshold T, the prefetch request is

ignored. In our scheme, there is a confidence counter for each entry in the miss history table. The

counter works in a similar way to [18, 23], preventing repeated useless prefetches.

Fetch-directed instruction prefetching [18], employs a different method for limiting useless



prefetches. A prefetch target buffer records the cache line to be prefetched. In each entry of the

buffer there is anevictedbit. This bit is set when the cache line of the corresponding prefetch

target is evicted from the instruction cache. An extra field is introduced for each cache line of the

instruction cache. This field functions as an index to the prefetch target buffer and identifies the

prefetch entry that last caused the cache line to be brought into the cache. When a cache line is

evicted from the cache, the index is used to access the prefetch target buffer, and the evicted bit

in the entry corresponding to the index is set, indicating that the cache line will be prefetched the

next time it is used as a branch prediction. Although [18] uses a saturating counter and an evicted

bit, similar to the confidence counter we use in our MHT, they do not use this information to avoid

the extra I-cache port, as we do.

4 Benchmarks and simulation environment

We perform detailed cycle-by-cycle simulations of four CPU2000 benchmarks from SPEC [4]

on SimpleScalar [3]. SimpleScalar is a configurable machine model that can simulate aggressive

out-of-order superscalars. The SimpleScalar simulator models a processor in detail, including

the number and latency of the functional units, branch prediction, branch penalties, the memory

hierarchy, cache miss penalties, and so forth. Table 1 shows the microarchitectural configurations

used for the SimpleScalar simulations in our experiments. These parameter values are reasonable

for modern processors, and were chosen for ease of comparison with [23].

To compare the performance of our EHGP algorithm, with existing prefetch algorithms, we

have also implemented two older methods in SimpleScalar: next-n-line prefetching [22] and branch

history guided prefetching (BHGP) [23]. While both of these are purely hardware based, the for-

mer is a typical non-correlated prefetching technique, and the latter is the most recent correlated

method. Next-n-line prefetching has two variants: prefetches can be triggered each time a cache

line is accessed, or when a cache miss happens. Since our simulation results show very little differ-

ence between these variants, we use the latter approach. For the branch history guided prefetching,

the distance between the cache miss and the associated branch instruction is set to be 5 basic blocks,



as in [23]. Both next-n-line and BHGP use the same two methods to filter useless prefetches: cache

probing and a saturating bit in L2 cache. The parameters used for branch history guided prefetch-

ing and for execution history guided prefetching are listed in Table 2. The simulation results for

branch history based prefetching are different from those in [23], because SimpleScalar runs PISA

(Portable Instruction Set Architecture) code, while [23] uses a version of ALPHA. It should be

noted, however, that for each benchmark, the number of branches is almost the same when com-

piled for PISA as for ALPHA.

Four benchmarks from CPU2000 are evaluated: crafty, gcc, perl and vortex. The benchmarks

selected are those where I-cache performance is especially a problem; for many floating point and

some integer codes it is not. The benchmarks include vortex, an object-oriented database program,

representative of an important class of applications. The details of these applications are described

in Table 3. As in [23] the first 2 billion instructions are used.

5 Results

This section presents the results of our simulation experiments. First, we compare the performance

of different prefetching methods. Next, several parameters of our method are varied in order to

find their best values.

Figure 4 shows the normalized runtimes of our benchmarks for five competing prefetching

strategies, including our own. All runtimes are normalized so that the runtime without prefetching

equals 1.0. On the x-axis are the four benchmark programs, each with five bars for the different

methods. From left to right, the first bar is for a double-sized I-cache configuration, the second is

for next-n-line prefetching [22], the third is for branch history guided prefetching (BHGP) [23], the

fourth is for branch-history guided prefetching without the cache probing operation, and the fifth is

for our method, execution history guided prefetching (EHGP). As the figure shows, all prefetching

methods outperform the double-sized I-cache configuration, except for on perl. Increasing the size

of the I-cache is therefore not the best solution to poor I-cache performance. Further, we observe

that the two miss history based methods, BHGP and EHGP, outperform next-n-line prefetching.



The reason lies in the timeliness of the triggered prefetches.

The salient result from Figure 4 is that our EHGP method is able to outperform BHGP without

using an extra I-cache port as BHGP does. This is an important contribution since an extra port

to I-cache is likely to slow down the clock cycle time [24, 19]. Consequently since our cycle-

accurate simulator does not model the cycle time itself, the actual performance for BHGP is likely

to be significantly worse than EHGP. The figure also shows that BHGP relies heavily on cache

probing. Finally note that the absolute speedup can be approximated as follows: for perl, the base

IPC is 0.83, the I-cache miss rate is 4.1%, and the miss latency is 12 cycles, therefore with 50% of

misses prefetched early enough, the speedup is 4.1%*50%*12/0.83, which is 29%.

Figure 5 shows the breakup of prefetches into useful, late and useless prefetches as a fraction of

the total I-cache misses. For each benchmark program on the x-axis there are four cases measured:

next-n-line prefetching (NNL), branch history guided pre-fetching (BHGP), branch history guided

prefetching without cache probing filtering (B(W/O)), and our method, execution history guided

prefetching (EHGP).

Three observations are made from Figure 5. First, more useless prefetches are triggered with

B(W/O) than with BHGP as is expected, and also fewer useful prefetches are triggered. Second,

although EHGP makes more useless pre-fetches than BHGP, stemming from its not using cache

probing, it compensates for this by having more useful prefetches. Third, the actual memory band-

width requirements for BHGP and for next-n-line are higher than displayed in Figure 5. Although

some prefetch requests are ignored because the saturating bit from the L2 cache equals 0, yet these

requests still consume memory bandwidth while accessing the L2 cache. This additional cost is

not measured in the figure. Our method, EHGP, does not have this difficulty.

The simulation results show that history-based prefetching methods may work well even though

they do not prefetch first-time cache misses. This shows that most cache misses are not first time

misses. In fact, our results show that only a negligible 0.003% of misses are first time misses. Non-

history-based schemes can prefetch first-time misses, but they have their own problems. Next-n-

line and wrong-path prefetching will prefetch the cache lines too late to fully hide the cache miss

latency. Fetch directed prefetching, though it avoids the use of an extra port, triggers too many



useless prefetches. Even with a perfect branch predictor, the number of prefetches is proportional

to the number of dynamic instructions.

One of the most serious problems with history-based methods is that they may build up large

amounts of history. Combining continuous cache misses into one history entry reduces the size

of the history table that is required. Figure 6 shows the distribution of cache misses, as broken

down by the number of continuous cache misses of which this miss is a part. About half of the

cache misses belong to miss streams with lengths larger than 4. In BHGP, the issue is addressed

by prefetching whole basic blocks at a time instead of individual lines. Basic blocks average about

6 instructions, which is 2 cache lines. In contrast, custom-length combinations are generated by

EHGP when needed. Moreover, it is possible that only part of a basic block misses in the cache.

Therefore, prefetching the entire block as with BHGP may not be the best approach.

To evaluate the impact of combining cache lines, our pre-fetching algorithm is evaluated with

different maximum combination lengths. When the length of a cache miss stream exceeds the max-

imum value, the stream is split into two streams, and two unrelated MHT entries are maintained.

Figure 7 shows the result. When cache misses are not combined, the performance is significantly

worse than when the maximum combination length is 4. Also, when there is no limitation on the

length, the performance degrades. This is because more useless prefetches are requested.

Figure 8 measures the benefit of extending our baseline method to handle return instructions,

as described in Section 2.1. As expected, the cache misses are prefetched with more accuracy. As

a result, the performance with the extension is better.

Figure 9 shows the measured performance of our method with different sizes for the miss his-

tory table. With a smaller table, fewer prefetches are triggered, thus resulting in less performance

improvement. Since a larger MHT will consume more chip area, the actual table size should be

decided by the manufacturer based on the available area and the time of access.

Another interesting question is the performance advantage of our method over BHGP versus

the size of the MHT. We found that the average performance improvement fell to 5.7% for a 8K

size MHT, down from 9.2% for 16K. In the other direction, increasing the table size to 32K kept the

performance improvement relatively unchanged from the 16K case. As explained in [23], BHGP



only requires 8K for the MHT, and increasing it to 16K does not significantly improve performance.

In our method, 16K is a better choice. As technology develops, this may be a desirable property.

(Detailed figures not shown.)

Figure 10 shows the impact of varyingN, defined above as the number of instructions between

the trigger and the I-cache miss. WhenN is small, the accuracy of the prefetch algorithm is good,

but the prefetches are triggered too late to fully hide the cache miss latency. With a largerN,

the accuracy may be worse and prefetched lines may be evicted before being used. The key is to

choose the optimal value ofN for the given architecture. For our platform,N = 16 gives the best

performance.

6 Summary

This paper describes a hardware-based execution history guided method for instruction prefetch-

ing. It improves upon existing methods by triggering prefetches early enough, by avoiding the

extra port for the I-cache, and yet prefetching a high percentage of cache misses with a table of

reasonable size.

To achieve these gains, our method makes three innovations. First, cache misses are corre-

lated with dynamically preceding instructions at a certain fixed dynamic distance. Prefetches are

subsequently triggered by those instructions before the cache misses happen. Second, contiguous

cache misses are grouped together and associated with one preceding instruction, allowing a miss

history table of reasonable size. Third, efficient prefetch filtering methods are used and thus an

extra I-cache port is unnecessary.
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Fetch & Decode Width 8
Issue Width 4
L/S Queue Size 16
Reservation Stations 64
Integer Function Units 4 add/2 mult
Branch Predictor 2-lev, 2K-entry
Memory System Ports to CPU 4
L1 I and D Cache(each) 16KB, 2-way, 32 byte
L1 Cache Access Time(cycles)1
Unified L2 Cache 1MB, 4-way, 64 byte
L2 Cache Access Time(cycles)12
Memory Access Time(cycles) 30

Table 1: SimpleScalar Configuration



BHGP EHGP
Prefetch buffer 2K, 4-way, 16-entry, fully

32 byte associated, 32 byte
Prefetch buffer 1 1
access time(cycles)
Prefetch table 16K, 8-way, 16K, 8-way

8 byte 8 byte

Table 2: Hardware Parameters for BHGP & EHGP



Input I-cache
Name Description Data IPC Miss

Set Rate
computer crafty.in

crafty chess reference 1.17 3.6%
program input set

GNU integrate.c
gcc C reference 0.92 3.4%

compiler input set
interpreter scrabbl.in

perlbmk of the Perl train 0.83 4.1%
language input set
object- vortex.in

vortex oriented train 0.71 6.9%
database input set

Table 3: Benchmarks. All benchmarks were tested for the first 2 billion instructions executed.



Instruction Cache miss Length Confidence Valid
address address counter bit

Figure 1:
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Instruction Return Offset to Length Confidence Valid Type
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Figure 1: Format for Entries in the Miss History Table

Figure 2: Hardware for Our Method

Figure 3: Alternative Format for Entries in Miss History Table

Figure 4: Normalized Runtimes for Different Methods

Figure 5: Breakdown of Prefetches by Method

Figure 6: Distribution of Continuous Cache Misses

Figure 7: Impact of Length Field

Figure 8: Impact of Return Address Stack

Figure 9: Impact of Miss History Table Size

Figure 10: Impact of Trigger Distance,N


