
The Modula-2 Experience

Nan C. Schalle r
Undergraduate Computer Science Departmen t

Rochester Institute of Technology
Rochester, New York 1462 0

42

ABSTRAC T

The 1987-88 school year represents the first time that
the Undergraduate Computer Science Department a t
Rochester Institute of Technology (RIT) has offere d
its five quarter course programming skills sequenc e

with Modula-2 as its primary teaching language . Wha t
follows is a description of RIT's first year Modula- 2
experience including the trials and tribulations of new
languages, new compilers, and untried texts . With
only the first half of the sequence having been offere d
using Modula-2, the benefits derived from the chang e
thus far will be discussed as well as suggestions, con-
clusions, and a preview of what is yet to come .

INTRODUCTION

During the winter quarter of 1986, the RIT Undergra-
duate Computer Science Department decided t o
change from Pascal to Modula-2 as the primary teach-
ing language for its programming skills sequence. The
department was motivated to do so because Modula- 2
overcomes a lot of the deficiencies of Pascal, particu-
larly in the areas of data abstraction and separat e
compilation . Modula-2 provides additional benefit s
with the inclusion of generic data types, open arra y
parameters, and with improved syntax of contro l
structures .

The first freshman class (7 sections) to start the pro-
gramming skills sequence using Modula-2 began in th e
1987 fall quarter . The programming skills sequence i s
a series of five quarter courses: Algorithmic Structure s
(Introduction to Programming), Data Structures ,
Assembly Language, Program Design and Implementa-
tion, and Data Organization and Management (bette r
know as "DO(O}M" by the students) .

Currently, the first Modula-2 class is finishing up thei r
assembly language course . What follows is a descrip-
tion of RIT's first year Modula-2 experience .

START-UP

The first step in implementing the change to Modula- 2

was to locate a suitable, inexpensive compiler . In the

SIG C S E

	

vol . 20 No . 3 Sept . 198 8BULLETIN

fall quarter, the First Year Programming Laborator y
was equipped with 39 seats (terminals connected to a
DEC Vax 11/780 running Unix) and 6 dialup lines .
The compiler chosen was the Powell experimenta l
compiler ("mod" from DEC) . This choice was dic-
tated by ready availability and cost . The cost was
particularly important as an upgrade of the First Year
Programming Laboratory was imminent .

The Powell compiler presented some difficulties . It
relies on C input and output . The faculty teaching th e
first course felt that this was difficult conceptually fo r
novice programmers, particularly since all availabl e
textbooks discussed and utilized the InOut and Reall-
nOut modules for beginning I/O, To overcome thi s
problem, InOut and ReallnOut modules were writte n
locally and incorporated into the Modula-2 library .
The compiler also has limitations in the way in whic h
it deals with CARDINALS, range checking, an d
definition modules . In addition, several other idiosyn-
crasies were discovered . Many times it was difficul t
to determine whether a particular "discovery" wa s
attributable to the compiler or the chosen text, whic h
had turned out to be riddled with typos and othe r
errors .

The Undergraduate Computer Science Departmen t
feels very strongly that a student in the programmin g
skills sequence should receive the same course
material regardless of which professor's class the stu-
dent is attending. To this end, all of the faculty
involved with a particular course in the sequence typi-
cally meet on a weekly basis to discuss the cours e
topics for the week, common programming assign-
ments, discoveries, surprises and problems, This has
proven to be an invaluable mechanism to insure com-
mon experiences for the students . It also helped t o
insure the sanity of the participating faculty, espe-
cially with the change to a new language, a new,
unproven text, and a new compiler .

FIRST COURSE RESULTS

The experience with the first course (Algorithmi c
Structures) was mixed. The first course, since it is

http://crossmark.crossref.org/dialog/?doi=10.1145%2F51594.51602&domain=pdf&date_stamp=1988-09-01

4 3

presented in a quarter rather than a semester, onl y
covers basic language constructs such as control struc-
tures, procedures, sets, user-defined types, and arrays .
It also addressed the concept of modules . For the
basic language constructs covered, there was not a bi g
difference from those same constructs in Pascal . A lo t
of students had Pascal experience from high schoo l
and, consequently, felt like they had not learne d
much . They also did not like Modula-2's "standard "
I/O modules which are cumbersome and wordy .

On the other hand, the structured programming con-
cepts were as easy to get across using Modula-2 a s

they had been using Pascal . The concept of modules ,
although somewhat more difficult for the novice t o
grasp, established the ground work for the othe r

courses in the sequence.

THE SECOND COURS E

Five sections of the data structures course wer e
offered for the first time in Modula-2 during th e
1987-88 winter quarter . This quarter proved to b e
particularly interesting . The equipment to upgrade th e
First Year Programming Laboratory arrived durin g
the first week of the quarter . The department ha d
received funding for 30 monochrome Sun 3/50 works-
tations and the Sun Modula-2 compiler . Because o f
the periodic extreme system overload experience d
with the Vax configuration in the First Year Program-
ming Laboratory, the department decided to procee d
with the Sun workstation installation over the two
week Christmas break. This decision was made wit h
some trepidation as this was well into the winter quar-
ter, ie ., just before the start of the fourth week . This
meant that the faculty as well as the students had t o
be brought up to speed on the workstations and th e
new compiler as rapidly as possible . Faculty and
laboratory assistant training started before the Christ-
mas break using the Sun workstations already installe d
in the Computer Graphics Laboratory . Student train-
ing was handled in the First Year Programmin g
Laboratory during class time . Students were given
exercises which introduced them to the workstatio n
capabilities, the new Modula-2 compiler and dbxtool ,
a window-based, interactive, source-level, symboli c
debugger . A summary of the Modula-2 compilers '
differences was composed and made available . The
overall installation went amazingly well and, as wa s
anticipated, the students' productivity has increase d
greatly .

Modula-2 started to pay off with the data structure s
course. Programming assignments were constructed t o
demonstrate the value of data abstraction to the stu-
dent . A typical programming assignment for the dat a
structures course has at least two parts . The first par t
requires the student to write a program which utilize s
a particular data structure(s). The faculty membe r
provides the student with the definition module(s) fo r

SI(CS E

	

Vol . 20 No . 3 Sept . 198 8
BULLETIN

the data structure(s) and a mechanism by which th e

student ' s program can be linked with the correspond-
ing faculty implementation module(s) . The secon d
part of the assignment requires the student to writ e

his/her own version of the data structure implementa-
tion module(s) using a specific type of implementation .

For example, they might be expected to implement a

stack using a record and an array . It is necessary fo r

the student's data structure implementation module(s)
to execute successfully with both the faculty dat a
structure testing program and with the student's use r

program from part 1 . The next programming assign-
ment then typically requires that the student imple-
ment the same data structure(s) in yet another manner ,
for example, with pointer variables, using the sam e
definition module(s) . This implementation module(s)
must again execute successfully with both the facult y
data structure testing program and with the student ' s
user program from the previous assignment .

SECOND COURSE RESULT S

The use of Modula-2 in the data structures course ha s
been instrumental in teaching students about dat a

abstraction. Some students find it very hard at first to
separate the utilization of a data structure from th e
implementation of the data structure. Others are quite
amazed to find that they do not need to alter thei r
user programs when implementing a data structure i n

a different way . Modula-2 facilitates getting thes e
ideas across to the student .

It should also be mentioned that the Sun Modula- 2
compiler, although it has some documented idiosyn-
crasies of its own, performed much better in genera l
than the Powell compiler had . In addition, the source
level, symbolic debugger, dbxtool, which can be used
with Sun's Modula-2 compiler, proved useful i n
increasing the students' productivity .

CONCLUSIONS

So far, the move to Modula-2 has been a positiv e
experience . Modula-2 does overcome some of th e
worst deficiencies in Pascal . Pascal requires that th e
data type of an identifier be fully known at all times .
This makes it possible for the user to misuse a dat a
structure. For example, if a data structure is con-
structed with an array, in Pascal the user could legall y
access a piece of information from the middle of th e
array whether or not it was currently an active ele-
ment in the data structure . Modula-2 alleviates thi s
problem through the use of two mechanisms . First ,
the definition and implementation module structur e
provides an isolated location for the data structur e
and its accessing functions. The user only has acces s
to the information in the definition module : documen-
tation, constants, global variables, data types, functio n
and procedure names and parameters . Second,
Modula-2 permits the use of an opaque data type. In

4 4

this case, the definition module contains only th e
name (not the implementation) of the data type. The
implementation of that data type is specified in th e

implementation module . The user typically does no t
have access to the source code of the implementatio n

module . Therefore, if a data structure is implemente d
using an array, the user will not know how it is imple-
mented and will only be able to access the data struc-
ture through its accessing functions .

The isolation of the data structure in its own modul e
provides a mechanism through which the student ca n
realize the ease with which an implementation can b e
changed without the user program being altered . In
addition, it makes the case for separate compilation a n
easy one to present . Separate compilation wa s
cumbersome at best with Pascal since Pascal was not
originally designed with that concept in mind . With

Modula-2 it is quite natural to group various pro-
cedures into separate modules . One can easily see tha t
once compiled, it is not necessary to recompile these
modules unless they are modified in some way . It i s
only necessary to link these modules with the use r
modules .

The case for writing reusable procedures is also rein -
forced with the concept of separately compile d
modules . The user has contact with this idea from th e
very beginning use of Modula-2 . Even the input an d
output is handled with separate, already compiled ,
modules .

The availability of open arrays and generic data type s
also contributes to the reusable procedure concept .
Open arrays are arrays of a particular data typ e
without regard to length or subscripts . This mean s
that an array A can be specified in a procedure as a n
ARRAY OF CHAR . Its subscripts will range from 0
to HIGH(A). This procedure can then be used wit h
any singly dimensioned array of type CHAR, no
matter how the actual array parameter was actuall y
originally declared . Generic data types takes this a
step further . The generic data type WORD, for exam-
ple, can be used to represent anything contained in a
word and therefore an ARRAY OF WORD can gen-
eralize the usefulness of a procedure. For example ,
the procedure below is a generalized swap routin e
using generic data types:

FROM SYSTEM IMPORT WORD ;

PROCEDURE GenericSwap(VAR x, y :
ARRAY OF WORD;
VAR ok : BOOLEAN) ;

(* Swaps the contents of two
variables of the same size *)

SIG C S E

	

vol . 20 No . 3 Sept . 198 8
BULLETIN

VA R
count : CARDINAL ;
temp : WORD ;

BEGIN
IF HIGH(x) <> HIGH(y) THE N

ok := FALSE ;
ELS E

FOR count := 0 TO HIGH(x) DO
temp := x[count] ;
x[count]

	

y[count] ;
y[count]

	

temp ;
END ;

	

(* FOR *)
ok := TRUE;

END; (* IF *)
END GenericSwap ;

The ease and success of changing to Modula-2 can b e
greatly enhanced with a good text and compiler . If
possible, the compiler choices and texts should be stu-
died in conjunction . Trying the examples in the text s
with all the compiler choices would aid in making a
good decision. If information is needed to get started ,
it would be useful to become involved with th e
Modula-2 information news group
(INFO-M2%UCF I VM.BITNET n cunyvm.cuny.edu)
on USENET.

It is always a good idea to provide the student wit h
language support tools, such as a good interactive ,
screen-oriented editor and a source level, interactiv e
debugger. These will help to increase the student 's
productivity. The debugger, in addition, allows th e
student to follow his/her code step-by-step, thus ena-
bling the student to visualize the activity provided b y
each language construct. With this knowledge the stu-
dent can quickly learn how to program more effec-
tively .

AND NEXT ?

The 1988 fall quarter will begin the courses from th e
programming skills sequence which are expected t o
put Modula-2 to the "real" test. Both the Progra m
Design and Implementation course and the Data
Organization and Management course require th e
student to design and write large (typically more than
1500 lines) programs on their own. They will also be
required to write one large program as part of a team .
The value of various design techniques and separat e
compilation will be stressed . Be sure to come bac k
next spring for an update or contact me sooner if yo u
wish (csnet : ncs a rit, UUCPnet: rochester!ritcv!ncs, or
bitnet: ncsics@ritvax) .

