The Modula-2 Experience

bl Nan C. Schaller
Sheck op Undergraduate Computer Science Department
Rochester Institute of Technology
Rochester, New York 14620

ABSTRACT

The 1987-88 school year represents the first time that
the Undergraduate Computer Science Department at
Rochester Institute of Technology (RIT) has offered
its five quarter course programming skills sequence
with Modula-2 as its primary tcaching language. What
follows is a description of RIT’s first year Modula-2
experience including the trials and tribulations of new
languages, new compilers, and untried texts. With
only the first half of the sequence having been offered
using Modula-2, the benefits derived from the change
thus far will be discussed as well as suggestions, con-
clusions, and a preview of what is yet to come.

INTRODUCTION

During the winter quarter of 1986, the RIT Undergra-
duate Computer Science Department decided to
change from Pascal to Modula-2 as the primary teach-
ing language for its programming skills sequence. The
department was motivated to do so because Modula-2
overcomes a lot of the deficiencies of Pascal, particu-
larly in the arcas of data abstraction and scparate
compilation. Modula-2 provides additional benefits
with the inclusion of generic data types, open array
parameters, and with improved syntax of control
structures.

The first freshman class (7 sections) to start the pro-
gramming skills sequence using Modula-2 began in the
1987 fall quarter. The programming skills sequence is
a series of five quarter courses: Algorithmic Structures
(Introduction to Programming), Data Structures,
Assembly Language, Program Design and Implementa-
tion, and Data Organization and Management (better
know as "DO{O}M" by the students).

Currently, the first Modula-2 class is finishing up their
assembly language course. What follows is a descrip-
tion of RIT’s first year Modula-2 experience.

START-UP

The first step in implementing the change to Modula-2
was to locate a suitable, inexpensive compiler., In the

S'GCEE Vol. 20 No. 3 Sept. 1988

ULL IN

fall quarter, the First Year Programming Laboratory
was cquipped with 39 seats (terminals connected to a
DEC Vax 11/780 running Unix) and 6 dialup lines,
The compiler chosen was the Powell experimental
compiler ("mod" from DEC) . This choice was dic-
tatcd by ready availability and cost. The cost was
particularly important as an upgrade of the First Year
Programming Laboratory was imminent,

The Powell compiler presented some difficulties. It
relies on C input and output. The faculty teaching the
first course felt that this was difficult conceptually for
novice programmers, particularly since all available
textbooks discussed and utilized the InOut and Reall-
nOut modules for beginning 1/0. To overcome this
problem, InOut and ReallnOut modules were written
locally and incorporated into the Modula-2 library.
The compiler also has limitations in the way in which
it deals with CARDINALS, range checking, and
delinition modules. In addition, several other idiosyn-
crasies were discovered. Many times it was difficult
to determine whether a particular "discovery" was
attributable to the compiler or the chosen text, which
had turned out to be riddled with typos and other
crrors.

The Undergraduate Computer Science Department
feels very strongly that a student in the programming
skills sequence should rececive the same course
material regardless of which professor’s class the stu-
dent is attending. To this end, all of the faculty
involved with a particular course in the sequence typi-
cally meet on a weekly basis to discuss the course
topics for the week, common programming assign-
ments, discoveries, surprises and problems. This has
proven to be an invaluable mechanism to insure com-
mon experiences for the students. It also helped to
insure the sanity of the participating faculty, espe-
cially with the change to a new language, a new,
unproven text, and a new compiler,

FIRST COURSE RESULTS

The experience with the first course (Algorithmic
Structures) was mixed. The first course, since it is


http://crossmark.crossref.org/dialog/?doi=10.1145%2F51594.51602&domain=pdf&date_stamp=1988-09-01

presented in a quarter rather than a semester, only
covers basic language constructs such as control struc-
tures, procedures, scts, uscr-defined types, and arrays.
It also addressed the concept of modules. For the
basic language constructs covered, there was not a big
difference from those same constructs in Pascal. A lot
of students had Pascal experience from high school
and, consequently, felt like they had not learned
much. They also did not like Modula-2’s "standard"
I/0 modules which are cumbersome and wordy.

On the other hand, the structured programming con-
cepts were as easy to get across using Modula-2 as
they had been using Pascal. The concept of modules,
although somewhat more difficult for the novice to
grasp, established the ground work for the other
courses in the sequence.

THE SECOND COURSE

Five sections of the data structures course were
offered for the first time in Modula-2 during the
1987-88 winter quarter. This quarter proved to be
particularly intcresting. The equipment to upgrade the
First Year Programming Laboratory arrived during
the first week of the quarter. The department had
received funding for 30 monochrome Sun 3/50 works-
tations and the Sun Modula-2 compiler. Because of
the periodic extreme system overload experienced
with the Vax configuration in the First Year Program-
ming Laboratory, the department decided to procced
with the Sun workstation installation over the two
week Christmas break. This decision was made with
some trepidation as this was well into the winter quar-
ter, ie., just before the start of the fourth week. This
meant that the faculty as well as the students had to
be brought up to spced on the workstations and the
new compiler as rapidly as possible. Faculty and
laboratory assistant training started before the Christ-
mas break using the Sun workstations already installed
in the Computer Graphics Laboratory. Student train-
ing was handled in the First Year Programming
Laboratory during class time. Students were given
exercises which introduced them to the workstation
capabilitics, the new Modula-2 compiler and dbxtool,
a window-based, interactive, source-level, symbolic
debugger., A summary of the Modula-2 compilers’
differences was composed and made available. The
overall installation went amazingly well and, as was
anticipated, the students’ productivity has increased
greatly.

Modula-2 started to pay off with the data structures
course, Programming assignments were constructed to
demonstrate the value of data abstraction to the stu-
dent. A typical programming assignment for the data
structures course has at least two parts, The first part
requires the student to write a program which utilizes
a particular data structure(s). The faculty member
provides the student with the definition module(s) for

. 20 No. 3 Sept. 1988

43

the data structure(s) and a mechanism by which the
student’s program can be linked with the correspond-
ing faculty implementation module(s). The second
part of the assignment requires the student to write
his/her own version of the data structure implementa-
tion module(s) using a specific type of implementation.
For example, they might be expected to implement a
stack using a record and an array. It is necessary for
the student’s data structure implementation module(s)
to execute successfully with both the faculty data
structurc testing program and with the student’s user
program from part 1. The next programming assign-
ment then typically requires that the student imple-
ment the same data structure(s) in yet another manner,
for example, with pointer variables, using the same
definition module(s). This implementation module(s)
must again execute successfully with both the faculty
data structure testing program and with the student’s
user program from the previous assignment.

SECOND COURSE RESULTS

The use of Modula-2 in the data structures course has
been instrumental in teaching students about data
abstraction. Some students find it very hard at first to
scparate the utilization of a data structure from the
implementation of the data structure, Others are quite
amazed to find that they do not need to alter their
user programs when implementing a data structure in
a different way. Modula-2 [acifitates getting these
ideas across to the student.

It should also be mentioned that the Sun Modula-2
compiler, although it has some documented idiosyn-
crasics of its own, performed much better in general
than the Powell compiler had. In addition, the source
level, symbolic debugger, dbxtool, which can be used
with Sun's Modula-2 compiler, proved uscful in
increasing the students’ productivity.

CONCLUSIONS

So far, the move to Modula-2 has been a positive
experience. Modula-2 does overcome some of the
worst deficiencies in Pascal. Pascal requires that the
data type of an identifier be fully known at all times.
This makes it possible for the user to misuse a data
structure., For example, if a data structure is con-
structed with an array, in Pascal the user could legally
access a piece of information from the middle of the
array whether or not it was currently an active ele-
ment in the data structure. Modula-2 alleviates this
problem through the use of two mechanisms. First,
the definition and implementation module structure
provides an isolated location for the data structure
and its accessing functions. The user only has access
to the information in the definition module: documen-
tation, constants, global variables, data types, function
and procedure names and parameters. Second,
Modula-2 permits the use of an opaque data type. In



this case, the definition module contains only the
name (not the implementation) of the data type. The
implementation of that data type is specified in the

implementation module, The user typically does not
have access to the source code of the implementation
module. Therefore, if a data structure is implemented
using an array, the user will not know how it is imple-
mented and will only be able to access the data struc-
ture through its accessing functions.

The isolation of the data structure in its own module
provides a mechanism through which the student can
realize the ease with which an implementation can be
changed without the user program being altered. In
addition, it makes the case for separate compilation an
easy one to present. Separate compilation was
cumbersome at best with Pascal since Pascal was not
originally designed with that concept in mind. With
Modula-2 it is quite natural to group various pro-
cedures into separate modules. One can easily see that
once compiled, it is not necessary to recompile these
modules unless they are modified in some way. It is
only necessary to link these modules with the user
modules.

The case for writing reusable procedures is also rein-
forced with the concept of separately compiled
modules. The user has contact with this idea from the
very beginning use of Modula-2. Even the input and
output is handled with separate, already compiled,
modules.

The availability of open arrays and gencric data types
also contributes to the reusable procedure concept.
Open arrays are arrays of a particular data type
without regard to length or subscripts. This means
that an array A can be specified in a procedure as an
ARRAY OF CHAR. Its subscripts will range from 0
to HIGH(A). This procedure can then be used with
any singly dimensioned array of type CHAR, no
matter how the actual array parameter was actually
originally declared, Generic data types takes this a
step further, The generic data type WORD, for ¢xam-
ple, can be used to represent anything contained in a
word and therefore an ARRAY OF WORD can gen-
eralize the usefulness of a procedure. For example,
the procedure below is a gencralized swap routine
using generic data types:

FROM SYSTEM IMPORT WORD;

PROCEDURE GenericSwap(VAR X, v :
ARRAY OF WORD;
VAR ok : BOOLEAN);

(* Swaps the contents of two
variables of the same size *)

. 20 No. 3 Sept. 1988

44

VAR
count : CARDINAL;
temp : WORD;

BEGIN
IF HIGH(x) <> HIGH(y) THEN
ok := FALSE;
ELSE
FOR count := 0 TO HIGH(x) DO
temp := x[count];
x[count] := y[count];
y[count] := temp;

END; (* FOR *)
ok = TRUE;
END:; (*1IF ¥

END GenericSwap;

The case and success of changing to Modula-2 can be
greatly enhanced with a good text and compiler. If
possible, the compiler choices and texts should be stu-
died in conjunction, Trying the examples in the texts
with all the compiler choices would aid in making a
good decision. If information is needed to get started,
it would be useful to become involved with the
Modula-2 information news group
(INFO-M2%UCF1VM.BITNET@cunyvm.cuny.edu)
on USENET.

It is always a good idea to provide the student with
language support tools, such as a good interactive,
screen-oriented editor and a source level, interactive
debugger. These will help to increase the student’s
productivity. The debugger, in addition, allows the
student to follow his/her code step-by-step, thus ena-
bling the student to visualize the activity provided by
each language construct, With this knowledge the stu-
dent can quickly learn how to program more effec-
tively.

AND NEXT?

The 1988 fall quarter will begin the courses from the
programming skills sequence which are expected to
put Modula-2 to the "real" test. Both the Program
Design and Implementation course and the Data
Organization and Management course require the
student to design and write large (typically more than
1500 lines) programs on their own. They will also be
required to write one large program as part of a team.
The value of various design techniques and separate
compilation will be stressed. Be sure to come back
next spring for an update or contact me sooner if you
wish (csnet: nes@rit, UUCPnet: rochesterlritcvinges, or
bitnet: ncsics@ritvax).



