
An Undergmduate Pamllel Processing Laboratory

Chris Nevison
Colgate University

Hamilton, New York 13346

Abstract

We discuss possibilities for setting up an undergraduate
laboratory for parallel processing and how such a laboratory,
based on transputers, can be used iu a course on parallel
processing.

1. Introduction

We have recently set up an undergraduate parallel
processing laboratory at Colgate University. This laboratory
is being used for a new course on parallel processing and it
will be incorporated into other courses such as Programming
Languages and Analysis of Algorithms. In this paper I will
describe some of the alternative approaches which may be
taken to set up such a laboratory and what I see to be
some advantages and disadvantages of each.

These observations are based on our experience here at
Colgate while we investigated different possibilities for a
parallel processing laboratory. I will give some estimates of
costs for different kinds of equipment. These estimates are
based on our explorations but are not by any means current
prices. Anyone interested in precise cost estimates should
contact the various manufacturers directly.

2. Modes of Pamllel Processing

There are several kinds of computing devices which
can be called “parallel.” Going back to the earliest
computers, the IAS (Institute for Advanced Study) computer
was parallel at the arithmetic operation level--it worked
with a 40 bit word. In contrast, the EDVAC was a bit-
serial processor. The trade-offs at that time were the same
as they are today--speed versus complexity of circuits.

Almost all of today’s computers work in parallel at the
arithmetic/logic level, with word lengths of 8,16,32, and
64 bits. However, parallel computers execute higher level
instructions simultaneously, processing many items of data at
one time. There are several types of parallel processing:
pipelines, vector processing, more general SIMD processing,
shared-memory machines, and message-passing
multicomputers.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

Pipelining refers to the breakdown of instruction
execution into a series of stages which can effectively be
overlapped. Different processors (or parts of the processor)
execute these stages in parallel, thus effectively increasing
the throughput of the machine. This method was the basis
of the early “supercomputers” like the Cray- 1. Many of
today’s computers use pipelining to one degree or another.
However, the model of computation which the user sees in
such a computer is the same von Neuman model of serial
computation.

Vector processors, which may be implemented using
pipelining, are designed to execute instructions efficiently
on a linear array of values. These are also referred to as
SJMD--single instruction stream, multiple data stream. The
SIMD model can be extended to cover arrays of processors,
where each processor executes the same instruction on its
piece of data and may also reference the data located at
nearby processors. In a d-dimensional mesh machine, nearby
processors mean those which are nearest neighbors in the
mesh connection (North, East, South, West for a 2-mesh).
Other SIMD processors, such as the Connection Machine,
may allow a greater variety of communications between
processors.

In contrast to the SIMD model, au MIMD (multiple
instruction, multiple data) computer has many processors,
each of which may be running a different process. MIMD
machines can generally be viewed as shared-memory or
message-passing machines. In a shared-memory machine, all
processors access the same memory and can thereby
communicate via memory operations. If the memory is all
equally accessible to all processors, either via a bus or a
switching network, it is called a tightly-coupled multi-
processor. If the memory is parceled out among the
processors, so that memory accesses may take a variable
amount of time according to whether the address is local to
the processor or not, it is called loosely-coupled.

In a message-passing architecture or multicomputer,
each processor has its own memory. Processors are linked
in some communications network and communicate by
passing messages from processor to processor. Thus the
processing element is directly involved with the
communication, whereas it is not in a shared-memory model.

3. Commercially Available Machines

It has recently become feasible to buy parallel
machines for prices ranging from $20,000 to $200,000 and
up. This means equipping an undergraduate laboratory for
parallel processing is affordable. I will suggest some
alternatives in this price range. My list is probably
incomplete, but should serve to give some idea of what is
available.

0 1988 ACM 0-89791-256-X/88/0002/0068 $1.50 68

http://crossmark.crossref.org/dialog/?doi=10.1145%2F52965.52982&domain=pdf&date_stamp=1988-02-01

We investigated two machines of the tightly-coupled
shared-memory type: the Sequent Balance 8000 and the
Encore Multimax. Both of these are bus-based architectures
where several processors communicate with shared memory
on a common bus system (see Figure 1). Each uses a
variety of techniques to enhance the bus band width. A
Sequent Balance 8000 with six processors could cost under
$100,000, depending on the configuration, Encore recently
announced a version of the Multimax with eighteen
processors for $150,000 under special university
arrangements.

Both of these machines run multinrocessor versions of
the Unix operating system and have versions of C, Pascal,
and Fortran with parallel constructs added.

Figure 1

Bus-based Shared Ilemory Architecture

One advantage of this type of machine is that in
addition to providing a parallel processing environment, it
would also provide a general purpose Unix environment. In
addition, other types of parallel machines are readily
simulated on a shared-memory machine. For example, a
message-passing MIMI3 computer can be simulated on a
shared memory computer by partitioning the shared memory
into local memories for each processor and small segments
of memory which would serve as channels for inter-
processor communication. Each processor would be
restricted to access only its “local” memory and those
“channels” to which it was “connected.” On the negative
side, the number of processors is limited by this
architecture and, more realistically, by the budget.

A second type of machine which is available is a
hypercube mzhitecture. A hypercube multi-computer
consists of 2 processor nodes, each including a processor
and a local memory for that processor. The nodes are
connected in a pattern which forms the edges of a d-
dimensional cube, with a host processor connected to one or
more nodes (see Figure 2). The processors work
independently and asynchronously and communicate by
passing messages. There are two hypercube machines which
have low-end versions at a reasonable cost. Intel has the
SugarCube, a version of their iPSC cube machine, with up to
sixTeen nodes (their full cube can handle up to 128 nodesj.
NCube. which markets a machine which takes UD to 1024
nodes, also has a board for an IBM PC or compatible which
has four of these nodes on it. Both machines have
operating systems based on Unix. The NC&e board for a
PC would cost about $10,000 and a SugarCube with four
nodes $40,000 or eight nodes $80,000.

These machines provide the basis for experimenting
with the message-passing hypercube model. They also
provide an expansion path to larger machines and come with
an operating system which should make their use easier. On
the other hand, the cost per processor is high for an
undergraduate laboratory.

A third alternative which might be possible, depending
on local circumstances, would be for a department to

Figure 2

Four Dimensional Hypercube

arrange time-sharing access to a nearby parallel Computing
facility and whatever machines they have available. This
has not been feasible for us at Colgate, so we have not
investigated this closely. It seems likely, however, that this
approach would not provide for the kind of experimentation
desirable for a good laboratory experience.

The alternative which we have taken is to develop
parallel machines based on the Transputer, a microprocessor
manufactured by Inmos, Ltd. in Bristol, England. Inmos
markets an experimental system whereby a host board in an
IBM PC compatible machine can be connected to a network
in a development system which will hold up to ten boards
with four transputers each. Computer System Architects
(CSA) of Provo, Utah, market a similar system, except their
4-transputer board goes into a PC expansion slot.

The advantage of a transputer system is that a variety
of message-passing architectures can be easily wired, in
either the Inmos or CSA systems. The transputers use the
language Occam, based on Hoare’s CSP (Hoare, 1978). On
the other hand, there is nothing like the operating systems
available on the other computers discussed. It is very much
an experimental system. Finally, the cost is quite
reasonable. A sixteen-transputer network, plus host
transputer which will go into an IBM PC (5 slots needed)
would cost $20-25,000 from CSA. The Inmos development
system with 40 transputers, plus the host board for a PC,
would cost $5565,000.

Recently, another vendor, Microway, has announced a
transputer-based add-in board for the IBM PC and
compatibles. Their products are similar to the CSA boards.

4. A Transputer-based ParaZZel Processing Laboratory

At Colgate, we chose to develop a laboratory based on
transputers. We were most interested in creating a lab
where students could experiment as much as possible and
confront some of the fundamental problems of parallel
processing. The transputers enable us to experiment with
different physical architectures, but using a common
language--0ccam.

With support from grants from the NSF CSIP program,
the Culnener Foundation. and Borland International. we
develosed a lab with t&e workstations. Each workstation
comprises a Zenith-248 (PC AT equivalent) containing a
transputer development board (one transputer, 2 megabytes

69

memory) and four 4-transputer boards, each transputer
having 256K memory. The transputer boards were
manufactured by CSA and the Transputer Development
System for programming in Occam came from Inmos. We
have the capability of wiring transputers in all three
machines together to make one large network, but for our
course in parallel processing we use them as three
workstations. We use each transputer workstation as a
four-dimensional hypercube (see Figure 2). The hypercube
architecture combines a relatively low number of
connections with a short maximum distance between
procedsors and an easy addressing scheme. In a cube with
p = 2 processors, the total number of links between
processors is (p log p)/2 and the maximum distance is log p.
Furthermore, every cube has an embedded mesh, such as the
four by four mesh embedded in a four-dimensional cube
(Figure 3) and a binary tree maps conveniently into a cube
(Figure 4). If the nodes of a cube are numbered by having
each bit represent a dimension, with nodes located at the
comers of a d-dimensional unit cube, then the neighbors of
a node have addresses that differ in exactly one bit (see
Figure 2).

Figure 3

A 4x4 mesh embedded In a four dimensional
hypercube, Adding the lighter lines makes
a toroldal mesh.

HGt

Figure 4

A Binary Tree Embedded in a tiypercube
with Host between Nodes 0 and 1. White
Nodes pass on Messages.

Another architecture which we can experiment with is
the shuffle-exchange. In this interconnection scheme even
to odd nodes are connected and connections corresponding
to a perfect shuffle are included. We also include odd to
even connections (see Figure 5). This architecture shares
some of the advantages of the hypercube, such as a log p
maximal distance between nodes, but has the advantage of a
constant number of connections at each node. For example,
a cube of dimension higher than four cannot easily be done
with transputers since they have only four links per node,
but a shuffle exchange of any size can be constructed.

0

1

2

3

4

5

6

8

Figure 5

One advantage of working with transputers is that we
can experiment with these different architectures and
several others, rather than being limited to a single
configuration.

We are teaching an experimental course on parallel
processing during the Fall semester, 1987. The course
begins with the study of parallel architectures, based on the
book Parallel Computing. Theory and Comparisons (Lipovski
and Malek, 1987). The objective of this part of the course
is to make students familiar with the variety.of approaches
to parallel computing and the strengths and weaknesses of
each. Each student does a presentation and a paper on a
particular machine or architecture. This takes just under
half the course.

For the rest of the course we study parallel
algorithms. Our objective is to understand some of the
methods for developing parallel algorithms and to analyze
the performance of these algorithms, especially their
speedup over serial algorithms and their asymptotic behavior
as either the number of processors grows or the size of the
problem grows. Typically, we consider how each algorithm
can be mapped onto several different parallel architectures
and the advantages or disadvantages of each. We use the
text Designing Efficient Algorithms for Parallel Comuuters
(Quinn, 1987), for this part of the course. Each student is
responsible for doing a presentation on a particular
algorithm, including a parallel implementation on one of our
transputer systems.

Because we were only able to set up our parallel
machines a few weeks before this class began, the
laboratory for this fist time is experimental. Our objective
for the laboratory is to enable students to experience some
of the particular difficulties with parallel programming and
to learn some of the techniques used in parallel
programming.

During the first three weeks of the semester, the
students are reauired to become familiar with the Transputer
Development System, an environment produced by Inmos for
writing programs in the language Occam. In addition, they
must become familiar with the language Occam, in particular
the idea of passing messages between processes over
channels and the constructs for executing subprocesses in
parallel. This can be done on a single transputer, so at this
point students need not learn the details of loading a set of
programs onto a network. The students are responsible for
writing a simple program using a pipeline of communicating
processes.

During the next two weeks, the students must learn
the steps for setting up and configuring a set of programs
for a hypercube. They experiment with variations on a
simple communications program to become familiar with this
process and the structure of the cube.

Finally, students must do a parallel implementation for
the algorithm which they present in class and use this
implementation to test the efficiency of the algorithm.
They may use either the hypercube, 4x4 mesh, or shuffle
exchange for their implementation. During the past
semester students studied a variety of algorithms for their
final projects. The development of a non-deadlocking
communications system for a hypercube: since the
hypercube runs asynchronously, it is possible for cyclic
deadlock to occur when each processor in a cycle is trying
to send to the next one. In this situation the message-
passing in the cube will come to a halt and the computation
stops. Although buffering reduces the probability of such

deadlock, it cannot eliminate it. Consequently Scott Cost,
who worked on this project, developed a scheme of token-
passing to avoid deadlock.

A second project was the development of a systolic
matrix multiplication algorithm. Although the
implementation of this type of algorithm on an asynchronous
machine involves a high overhead for synchronization, we
expect to see significGt speedup of computation for large
arrays (experiments to determine actual speedups have not
been completed at the time this is written).

Another student is adapting the Fast Fourier Transform
algorithm to the hypercube architecture. This is an
algorithm involving a binary divide and conquer using
recursion. Algorithms of this type can be conveniently
mapped to a hypercube by having an active node pass one
recursive call to a neighboring node and continue itself with
the other.

Other algorithms which students have explored include
a maze routing algorithm for routing wires in VLSI work,
image analysis on a hypercuhe, and dictionary look-up using
a hypercube.

5. Future Prospects

After working through the seminar on parallel
processing once, I have formulated some ideas on how to
revise the course in the future. Some of these ideas could
not be implemented the frost time around, simply because we
did not have the equipment in time to do the necessary
development.

With equipment in place and some prepared lab
assignments, I would plan to put less emphasis on
architectures and more on algorithms than was possible the
fist time. Nevertheless, it is important for a course
introducing parallel processing to survey the variety of
approaches and architectures which are available. I would
plan three weeks on this part of the course. The remaining
nine weeks of the course would be spent studying parallel
algorithms. I would organize the course around different
types of algorithms so that some time would be spent
discussing each of the following: low-communicationihigh-
compute algorithms which can be done on a simple
architecture such as a pipeline; local communications
algorithms, such as low-level image processing (edge
resolution algorithms); systolic algorithms such as matrix
multiplication on a mesh; basic building blocks for higher
level algorithms including parallel prefix operations, array
packing, bucket sort; recursive algorithms which map
naturally onto a cube such as the FIT example given above
(several kinds of algorithm fall into this class); sorting
algorithms such as bitonic sort. For each group of
algorithms I would provide students with an example, and
require them to develop a similar algorithm using the same
approach, or experiment with the given algorithm by doing
timing analysis on variation of the implementation. As a
result of the experimental version of the course I have
preliminary implementations of parallel prefix summation,
systolic matrix multiplication, and FFf’s. I hope to have a
few more well work& examples ready as well as refinements
of these, before I next teach this course.

I will organize the laboratory component of the course
so that students will do something like the following
sequence:

1. Fundamentals of Occam programming on a single
processor.

2. A pipeline program on a single processor.

71

3. A pipeline program on a pipeline of processors.
4. Experimentation with systolic matrix multiplication

-- an empirical study of speedup.
5. Building a larger program from some low-level

operations such as parallel prefix summation.
6. A comparison of two different implementations of

FFr’s.
7. Individual projects.

6. Summary

A variety of machines are now available which make a
parallel processing laboratory for undergraduates feasible for
a reasonable cost. The selection of machines may depend
on several criteria, including their use beyond parallel
programming. At Colgate we selected a transputer-based
system because it provides us with an experimental machine
which we can configure in several ways. The students must

get close to the operations of the pamllel architecture and
thereby learn about many of the issues fundamental to
parallel processing. We expect that in the future we can
add units involving parallel processing and making use of
this equipment to several of our other upper-level courses.

References

Hoare, C. A. R., 1978. “Communicating Sequential
Processes,” Communications of the ACM, vol. 21, pp.
666-677.

Lipovski, G. J., and M. Malek, 1987. Parallel Comuuting,
Theory and Comparisons. New York: John Wiley &
Sons.

Quinn, M. J., 1987. Desienina Efficient AlPorithms for
Parallel Computers. New York: McGraw-Hill.

72

