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Abstract 

We discuss possibilities for setting up an undergraduate 
laboratory for parallel processing and how such a laboratory, 
based on transputers, can be used iu a course on parallel 
processing. 

1. Introduction 

We have recently set up an undergraduate parallel 
processing laboratory at Colgate University. This laboratory 
is being used for a new course on parallel processing and it 
will be incorporated into other courses such as Programming 
Languages and Analysis of Algorithms. In this paper I will 
describe some of the alternative approaches which may be 
taken to set up such a laboratory and what I see to be 
some advantages and disadvantages of each. 

These observations are based on our experience here at 
Colgate while we investigated different possibilities for a 
parallel processing laboratory. I will give some estimates of 
costs for different kinds of equipment. These estimates are 
based on our explorations but are not by any means current 
prices. Anyone interested in precise cost estimates should 
contact the various manufacturers directly. 

2. Modes of Pamllel Processing 

There are several kinds of computing devices which 
can be called “parallel.” Going back to the earliest 
computers, the IAS (Institute for Advanced Study) computer 
was parallel at the arithmetic operation level--it worked 
with a 40 bit word. In contrast, the EDVAC was a bit- 
serial processor. The trade-offs at that time were the same 
as they are today--speed versus complexity of circuits. 

Almost all of today’s computers work in parallel at the 
arithmetic/logic level, with word lengths of 8,16,32, and 
64 bits. However, parallel computers execute higher level 
instructions simultaneously, processing many items of data at 
one time. There are several types of parallel processing: 
pipelines, vector processing, more general SIMD processing, 
shared-memory machines, and message-passing 
multicomputers. 
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Pipelining refers to the breakdown of instruction 
execution into a series of stages which can effectively be 
overlapped. Different processors (or parts of the processor) 
execute these stages in parallel, thus effectively increasing 
the throughput of the machine. This method was the basis 
of the early “supercomputers” like the Cray- 1. Many of 
today’s computers use pipelining to one degree or another. 
However, the model of computation which the user sees in 
such a computer is the same von Neuman model of serial 
computation. 

Vector processors, which may be implemented using 
pipelining, are designed to execute instructions efficiently 
on a linear array of values. These are also referred to as 
SJMD--single instruction stream, multiple data stream. The 
SIMD model can be extended to cover arrays of processors, 
where each processor executes the same instruction on its 
piece of data and may also reference the data located at 
nearby processors. In a d-dimensional mesh machine, nearby 
processors mean those which are nearest neighbors in the 
mesh connection (North, East, South, West for a 2-mesh). 
Other SIMD processors, such as the Connection Machine, 
may allow a greater variety of communications between 
processors. 

In contrast to the SIMD model, au MIMD (multiple 
instruction, multiple data) computer has many processors, 
each of which may be running a different process. MIMD 
machines can generally be viewed as shared-memory or 
message-passing machines. In a shared-memory machine, all 
processors access the same memory and can thereby 
communicate via memory operations. If the memory is all 
equally accessible to all processors, either via a bus or a 
switching network, it is called a tightly-coupled multi- 
processor. If the memory is parceled out among the 
processors, so that memory accesses may take a variable 
amount of time according to whether the address is local to 
the processor or not, it is called loosely-coupled. 

In a message-passing architecture or multicomputer, 
each processor has its own memory. Processors are linked 
in some communications network and communicate by 
passing messages from processor to processor. Thus the 
processing element is directly involved with the 
communication, whereas it is not in a shared-memory model. 

3. Commercially Available Machines 

It has recently become feasible to buy parallel 
machines for prices ranging from $20,000 to $200,000 and 
up. This means equipping an undergraduate laboratory for 
parallel processing is affordable. I will suggest some 
alternatives in this price range. My list is probably 
incomplete, but should serve to give some idea of what is 
available. 
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We investigated two machines of the tightly-coupled 
shared-memory type: the Sequent Balance 8000 and the 
Encore Multimax. Both of these are bus-based architectures 
where several processors communicate with shared memory 
on a common bus system (see Figure 1). Each uses a 
variety of techniques to enhance the bus band width. A 
Sequent Balance 8000 with six processors could cost under 
$100,000, depending on the configuration, Encore recently 
announced a version of the Multimax with eighteen 
processors for $150,000 under special university 
arrangements. 

Both of these machines run multinrocessor versions of 
the Unix operating system and have versions of C, Pascal, 
and Fortran with parallel constructs added. 

Figure 1 

Bus-based Shared Ilemory Architecture 

One advantage of this type of machine is that in 
addition to providing a parallel processing environment, it 
would also provide a general purpose Unix environment. In 
addition, other types of parallel machines are readily 
simulated on a shared-memory machine. For example, a 
message-passing MIMI3 computer can be simulated on a 
shared memory computer by partitioning the shared memory 
into local memories for each processor and small segments 
of memory which would serve as channels for inter- 
processor communication. Each processor would be 
restricted to access only its “local” memory and those 
“channels” to which it was “connected.” On the negative 
side, the number of processors is limited by this 
architecture and, more realistically, by the budget. 

A second type of machine which is available is a 
hypercube mzhitecture. A hypercube multi-computer 
consists of 2 processor nodes, each including a processor 
and a local memory for that processor. The nodes are 
connected in a pattern which forms the edges of a d- 
dimensional cube, with a host processor connected to one or 
more nodes (see Figure 2). The processors work 
independently and asynchronously and communicate by 
passing messages. There are two hypercube machines which 
have low-end versions at a reasonable cost. Intel has the 
SugarCube, a version of their iPSC cube machine, with up to 
sixTeen nodes (their full cube can handle up to 128 nodesj. 
NCube. which markets a machine which takes UD to 1024 
nodes, also has a board for an IBM PC or compatible which 
has four of these nodes on it. Both machines have 
operating systems based on Unix. The NC&e board for a 
PC would cost about $10,000 and a SugarCube with four 
nodes $40,000 or eight nodes $80,000. 

These machines provide the basis for experimenting 
with the message-passing hypercube model. They also 
provide an expansion path to larger machines and come with 
an operating system which should make their use easier. On 
the other hand, the cost per processor is high for an 
undergraduate laboratory. 

A third alternative which might be possible, depending 
on local circumstances, would be for a department to 

Figure 2 

Four Dimensional Hypercube 

arrange time-sharing access to a nearby parallel Computing 
facility and whatever machines they have available. This 
has not been feasible for us at Colgate, so we have not 
investigated this closely. It seems likely, however, that this 
approach would not provide for the kind of experimentation 
desirable for a good laboratory experience. 

The alternative which we have taken is to develop 
parallel machines based on the Transputer, a microprocessor 
manufactured by Inmos, Ltd. in Bristol, England. Inmos 
markets an experimental system whereby a host board in an 
IBM PC compatible machine can be connected to a network 
in a development system which will hold up to ten boards 
with four transputers each. Computer System Architects 
(CSA) of Provo, Utah, market a similar system, except their 
4-transputer board goes into a PC expansion slot. 

The advantage of a transputer system is that a variety 
of message-passing architectures can be easily wired, in 
either the Inmos or CSA systems. The transputers use the 
language Occam, based on Hoare’s CSP (Hoare, 1978). On 
the other hand, there is nothing like the operating systems 
available on the other computers discussed. It is very much 
an experimental system. Finally, the cost is quite 
reasonable. A sixteen-transputer network, plus host 
transputer which will go into an IBM PC (5 slots needed) 
would cost $20-25,000 from CSA. The Inmos development 
system with 40 transputers, plus the host board for a PC, 
would cost $5565,000. 

Recently, another vendor, Microway, has announced a 
transputer-based add-in board for the IBM PC and 
compatibles. Their products are similar to the CSA boards. 

4. A Transputer-based ParaZZel Processing Laboratory 

At Colgate, we chose to develop a laboratory based on 
transputers. We were most interested in creating a lab 
where students could experiment as much as possible and 
confront some of the fundamental problems of parallel 
processing. The transputers enable us to experiment with 
different physical architectures, but using a common 
language--0ccam. 

With support from grants from the NSF CSIP program, 
the Culnener Foundation. and Borland International. we 
develosed a lab with t&e workstations. Each workstation 
comprises a Zenith-248 (PC AT equivalent) containing a 
transputer development board (one transputer, 2 megabytes 
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memory) and four 4-transputer boards, each transputer 
having 256K memory. The transputer boards were 
manufactured by CSA and the Transputer Development 
System for programming in Occam came from Inmos. We 
have the capability of wiring transputers in all three 
machines together to make one large network, but for our 
course in parallel processing we use them as three 
workstations. We use each transputer workstation as a 
four-dimensional hypercube (see Figure 2). The hypercube 
architecture combines a relatively low number of 
connections with a short maximum distance between 
procedsors and an easy addressing scheme. In a cube with 
p = 2 processors, the total number of links between 
processors is (p log p)/2 and the maximum distance is log p. 
Furthermore, every cube has an embedded mesh, such as the 
four by four mesh embedded in a four-dimensional cube 
(Figure 3) and a binary tree maps conveniently into a cube 
(Figure 4). If the nodes of a cube are numbered by having 
each bit represent a dimension, with nodes located at the 
comers of a d-dimensional unit cube, then the neighbors of 
a node have addresses that differ in exactly one bit (see 
Figure 2). 

Figure 3 

A 4x4 mesh embedded In a four dimensional 
hypercube, Adding the lighter lines makes 
a toroldal mesh. 
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Figure 4 

A Binary Tree Embedded in a tiypercube 
with Host between Nodes 0 and 1. White 
Nodes pass on Messages. 

Another architecture which we can experiment with is 
the shuffle-exchange. In this interconnection scheme even 
to odd nodes are connected and connections corresponding 
to a perfect shuffle are included. We also include odd to 
even connections (see Figure 5). This architecture shares 
some of the advantages of the hypercube, such as a log p 
maximal distance between nodes, but has the advantage of a 
constant number of connections at each node. For example, 
a cube of dimension higher than four cannot easily be done 
with transputers since they have only four links per node, 
but a shuffle exchange of any size can be constructed. 
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One advantage of working with transputers is that we 
can experiment with these different architectures and 
several others, rather than being limited to a single 
configuration. 

We are teaching an experimental course on parallel 
processing during the Fall semester, 1987. The course 
begins with the study of parallel architectures, based on the 
book Parallel Computing. Theory and Comparisons (Lipovski 
and Malek, 1987). The objective of this part of the course 
is to make students familiar with the variety.of approaches 
to parallel computing and the strengths and weaknesses of 
each. Each student does a presentation and a paper on a 
particular machine or architecture. This takes just under 
half the course. 

For the rest of the course we study parallel 
algorithms. Our objective is to understand some of the 
methods for developing parallel algorithms and to analyze 
the performance of these algorithms, especially their 
speedup over serial algorithms and their asymptotic behavior 
as either the number of processors grows or the size of the 
problem grows. Typically, we consider how each algorithm 
can be mapped onto several different parallel architectures 
and the advantages or disadvantages of each. We use the 
text Designing Efficient Algorithms for Parallel Comuuters 
(Quinn, 1987), for this part of the course. Each student is 
responsible for doing a presentation on a particular 
algorithm, including a parallel implementation on one of our 
transputer systems. 

Because we were only able to set up our parallel 
machines a few weeks before this class began, the 
laboratory for this fist time is experimental. Our objective 
for the laboratory is to enable students to experience some 
of the particular difficulties with parallel programming and 
to learn some of the techniques used in parallel 
programming. 

During the first three weeks of the semester, the 
students are reauired to become familiar with the Transputer 
Development System, an environment produced by Inmos for 
writing programs in the language Occam. In addition, they 
must become familiar with the language Occam, in particular 
the idea of passing messages between processes over 
channels and the constructs for executing subprocesses in 
parallel. This can be done on a single transputer, so at this 
point students need not learn the details of loading a set of 
programs onto a network. The students are responsible for 
writing a simple program using a pipeline of communicating 
processes. 

During the next two weeks, the students must learn 
the steps for setting up and configuring a set of programs 
for a hypercube. They experiment with variations on a 
simple communications program to become familiar with this 
process and the structure of the cube. 

Finally, students must do a parallel implementation for 
the algorithm which they present in class and use this 
implementation to test the efficiency of the algorithm. 
They may use either the hypercube, 4x4 mesh, or shuffle 
exchange for their implementation. During the past 
semester students studied a variety of algorithms for their 
final projects. The development of a non-deadlocking 
communications system for a hypercube: since the 
hypercube runs asynchronously, it is possible for cyclic 
deadlock to occur when each processor in a cycle is trying 
to send to the next one. In this situation the message- 
passing in the cube will come to a halt and the computation 
stops. Although buffering reduces the probability of such 

deadlock, it cannot eliminate it. Consequently Scott Cost, 
who worked on this project, developed a scheme of token- 
passing to avoid deadlock. 

A second project was the development of a systolic 
matrix multiplication algorithm. Although the 
implementation of this type of algorithm on an asynchronous 
machine involves a high overhead for synchronization, we 
expect to see significGt speedup of computation for large 
arrays (experiments to determine actual speedups have not 
been completed at the time this is written). 

Another student is adapting the Fast Fourier Transform 
algorithm to the hypercube architecture. This is an 
algorithm involving a binary divide and conquer using 
recursion. Algorithms of this type can be conveniently 
mapped to a hypercube by having an active node pass one 
recursive call to a neighboring node and continue itself with 
the other. 

Other algorithms which students have explored include 
a maze routing algorithm for routing wires in VLSI work, 
image analysis on a hypercuhe, and dictionary look-up using 
a hypercube. 

5. Future Prospects 

After working through the seminar on parallel 
processing once, I have formulated some ideas on how to 
revise the course in the future. Some of these ideas could 
not be implemented the frost time around, simply because we 
did not have the equipment in time to do the necessary 
development. 

With equipment in place and some prepared lab 
assignments, I would plan to put less emphasis on 
architectures and more on algorithms than was possible the 
fist time. Nevertheless, it is important for a course 
introducing parallel processing to survey the variety of 
approaches and architectures which are available. I would 
plan three weeks on this part of the course. The remaining 
nine weeks of the course would be spent studying parallel 
algorithms. I would organize the course around different 
types of algorithms so that some time would be spent 
discussing each of the following: low-communicationihigh- 
compute algorithms which can be done on a simple 
architecture such as a pipeline; local communications 
algorithms, such as low-level image processing (edge 
resolution algorithms); systolic algorithms such as matrix 
multiplication on a mesh; basic building blocks for higher 
level algorithms including parallel prefix operations, array 
packing, bucket sort; recursive algorithms which map 
naturally onto a cube such as the FIT example given above 
(several kinds of algorithm fall into this class); sorting 
algorithms such as bitonic sort. For each group of 
algorithms I would provide students with an example, and 
require them to develop a similar algorithm using the same 
approach, or experiment with the given algorithm by doing 
timing analysis on variation of the implementation. As a 
result of the experimental version of the course I have 
preliminary implementations of parallel prefix summation, 
systolic matrix multiplication, and FFf’s. I hope to have a 
few more well work& examples ready as well as refinements 
of these, before I next teach this course. 

I will organize the laboratory component of the course 
so that students will do something like the following 
sequence: 

1. Fundamentals of Occam programming on a single 
processor. 

2. A pipeline program on a single processor. 
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3. A pipeline program on a pipeline of processors. 
4. Experimentation with systolic matrix multiplication 

-- an empirical study of speedup. 
5. Building a larger program from some low-level 

operations such as parallel prefix summation. 
6. A comparison of two different implementations of 

FFr’s. 
7. Individual projects. 

6. Summary 

A variety of machines are now available which make a 
parallel processing laboratory for undergraduates feasible for 
a reasonable cost. The selection of machines may depend 
on several criteria, including their use beyond parallel 
programming. At Colgate we selected a transputer-based 
system because it provides us with an experimental machine 
which we can configure in several ways. The students must 

get close to the operations of the pamllel architecture and 
thereby learn about many of the issues fundamental to 
parallel processing. We expect that in the future we can 
add units involving parallel processing and making use of 
this equipment to several of our other upper-level courses. 
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