
Unfold/Fold Transformations and Loop Optimization of Logic Programs

Saumya K. Debray

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

Abstract: Programs typically spend much of their execution time in

loops. This makes the generation of efficient code for loops essen-

tial for good performance. Loop optimization of logic program-

ming languages is complicated by the fact that such languages lack

the iterative constructs of traditional languages, and instead use

recursion to express loops. In this paper, we examine the applica-

tion of unfold/fold transformations to three kinds of loop optimiza-

tion for logic programming languages: recursion removal, loop

fusion and code motion out of loops. We describe simple

unfold/fold transformation sequences for these optimizations that

can be automated relatively easily. In the process, we show that the

properties of unification and logical variables can sometimes be

used to generalize, from traditional languages, the conditions under

which these optimizations may be carried out. Our experience sug-

gests that such source-level transformations may he used as an

effective tool for the optimization of logic programs.

1. Introduction

The focus of this paper is on the static optimization of

logic programs. Specifically, we investigate loop optimization

of logic programs. Since programs typically spend most of

their time in loops, the generation of efficient code for loops is

essential for good performance. In the context of logic pro-

gramming languages, the situation is complicated by the fact

that iterative constructs, such asfor or while, are unavailable.

Loops are usually expressed using recursive procedures, and

loop optimizations have be considered within the general

framework of interprocedural optimization.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

o 1988 ACM 0-89791-269-l/88/0006/0297 $1.50

;

Language Design and Implementation
Atlanta, Georgia, June 22-24, 1988

There are various levels at which loop optimization may

be carried out for such languages: at the source language

level, at the intermediate language level, or at the final code

level. An advantage with performing the optimization at the

intermediate language or final code level is that certain opera-

tions, which are not expressible at the source level, become

explicit and hence amenable to optimization. However,

because of the significantly larger number of statements, vari-

ables, etc., that must be manipulated at the intermediate or

final code level, the analyses and transformations are usually

more complex than at the source level. For the purposes of

this paper, therefore, we consider optimizing transformations

applicable at the source level.

We consider the application of source-to-source transfor-

mations - specifically, unfold/fold transformations - to

improve the code for loops in Prolog. One potential problem

with unfold/fold transformations is that in general, “eureka”

steps - steps involving a significant amount of insight into the

behavior of the program being transformed or the algorithm it

implements - may be necessary to actually carry the transfor-

mation through and achieve real improvements. This can

make the transformations difficult to automate. Since we are

interested primarily in compiler optimizations, we restrict our

attention to cases where the transformations can be automarsd

relatively simply. We show how such classical loop optimiza-

tions as recursion removal (i.e. transformation of certain

recursive programs to tail recursive form), loop fusion, and

code motion out of loops can be handled using our approach.

For some of these, we are able to exploit the properties of log-

ical variables and unification to generalize, from traditional

languages, the conditions under which the optimizations can

be carried out.

There is a great deal of literature on loop optimization

for traditional languages, see [11. Unfold/fold transformations

were introduced by Burstall and Darlington for functional

297

http://crossmark.crossref.org/dialog/?doi=10.1145%2F53990.54020&domain=pdf&date_stamp=1988-06-01

languages [6], and have been applied to the improvement of

recursive programs in functional languages [6,13]. Cohen

considers the application of source-to-source transformations

to the improvement of recursive programs [9]. Arsac and

Kodratoff have studied the application of these techniques to

recursion removal from functions [2]. The application of

unfold/fold transformations to recursion removal in logic pro-

grams has been considered by Bloch [4], Debray [lo], and

more recently by Azibi et al. [3]. Tamaki and Sato [21], and

Kanamori and Horiuchi [14], have investigated the theory of

unfold/fold transformation systems for logic programs. Other

applications of unfold/fold transformation systems to logic

programming include improvement of tree manipulation pro-

grams [181, and of generate-and-test programs [19].

We assume some acquaintance with the fundamentals of

logic programming and Prolog. The remainder of this sum-

mary is organized as follows: Section 2 sketches some basic

notions used later in the paper. Section 3 considers recursion

removal, Section 4 discusses loop fusion, and Section 5

discusses code motion out of loops. Section 6 gives an over-

view of related work, and Section 7 concludes with a sum-

mary.

2. Preliminaries

2.1. Logic Programming Languages

A program in a logic programming language consists of

a set of predicate definitions, corresponding to procedure

declarations in traditional languages. A predicate definition

consists of a set of clauses, each clause being of the form

P(G) :- ql(T1), * . .P q,(T,).

Operationally, this can be thought of as a definition for the

procedure p, with formal parameters To, whose body consists

of a set of procedure calls (ql(T1), . . ., q,(T,)), and where

parameter passing is done via a generalized pattern-matching

procedure called unification. Declaratively, this may also be

read as the logical statement “[ql(Fl) and . . . and q,(F,)]

implies p(TO)“. Usually, logic programming languages

strengthen this one-way implication to be bidirectional, i.e. a

predicate defined as

p :-Body,.

. . .

p :- Bodym.

is interpreted declaratively as “p iff [Body1 or . . . or Body,]“.

This strengthening is referred to as the “completion” of the

predicate [81.

Logic programming languages lack iterative constructs

for loops such as for and while. Instead, loops in such

languages are expressed using tail recursive procedures

(though not necessarily linear, i.e. they are not limited to one

recursive call in the body). A loop can, in most cases, be wtit-

ten schematically using two clauses: a nonrecursive clause

giving the termination conditions, and a recursive clause con-

taining the body of the loop:

loop(X) :- loop-term(X).

loop(~) :-loop-body@, Y), loop(Y).

We will follow Edinburgh Prolog syntax and write vari-

able names starting with upper case letters, and non-variable

names (i.e. functor and predicate names) starting with lower

case letters. In addition, “anonymous” variables will be writ-

ten as underscores. We will adopt the following notation for

lists: the empty list will be written as ‘[I’, while a list with

head H and tail L will be written ‘[HIL]‘.

2.2. Unfold/Fold Transformations

Unfold/fold transformations, introduced by Burstall and

Darlington in the context of functional languages [6], are

based on a very simple idea: that of replacing equals by

equals. Unfolding refers to the replacement of a procedure

call by the appropriate instance of the procedure body, and is

essentially an inline expansion of the call. For example, given

the program

p(X, Y) :- q(X, Z), r(Z, Y).

q(U, V) :- s(U, WI, W), t(W, u2, V).

we can unfold the literal for q in the clause for p, to obtain

p(X, Y) :- s(X, Xl, WI), t(W1, X2, Y), r(Z, Y).

q(U, V) :- s(U, UI, W), t(W, u2, V).

In general, given the definitions

p(X) :- Lifs,, q(T), Lifs,

q(Y) :- BodyI.

. . .

q(Y) :-Body,.

let 8 be a substitution such that T = e(Y) (after renaming the

variables in the clauses, if necessary, so that no two clauses

have any variables in common). Then, we can unfold the

literai for 4 in the clause for p to obtain

p@(f)) :- B(Lits,, (Body1 ; . . . ; Body,), Lirs,).

If the predicates called from Lits, are free of metalanguage

constructs such as var and nonvar, and free of side effects,

then this unfolded clause can in fact be used to replace the

original clause for p that was unfolded.

298

One point to note here is that of variable renaming when

clauses are invoked. For technical reasons beyond the scope

of this paper (but see [16]), when a procedure is activated for a

call in a logic program, i.e., when a literal is unified with the

head of a clause, the variables in the invoked clause are

renamed so that it does not contain any variable used upto that

point in the computatiou. Since unfolding is essentially an

inline expansion of a literal, this sort of variable renaming is

necessary during unfolding as well. In the remainder of the

paper, we will assume that variables in clauses are renamed

whenever necessary to satisfy this requirement, and not state it

explicitly.

Folding refers to the replacement of an instance of a pro-

cedure body by a call to the procedure. For example, given

the predicate definitions

P(X y> :-PIK a, em), s(h(Z, y>>, p,(K a.

SW, v) :- W), SW>.

we can fold the literals for r and s in the clause defining p, to

yield

PK Y) :-vpL a, dkm, w, mP*K 9.

In general, given a clause

p(X) :- Lirs,, (L, ; . . .; L,), Lit.s,.

and a predicate 4 defined as

q(Y) :-Body, ; . . . ; Body,.

if there is a substitution 8 such that, after renaming variables

as necessary so that the two clauses do not share variables, we

have B(Bodyi) = L, 1 < i I m, then the clause for p can be

folded to yield

p(X) :- Lits,, q@(Y)), Lits,.

That unfold/fold transformations preserve partial correct-

ness in functional languages follows from the fact that thev

replace equals by equals; however, total correctness may have

to be proved separately. Things are a little more complicated

in logic programming languages because the underlying

theory is one of implication rather than equality. It can be

shown that unfold transformations still preserve partial

correctness,’ but fold transformations are applicable only if

we assume that the definition of a predicate in a program is an

if-and-only-if definition rather than a one-way implication.

This does not pose a problem in practice, since logic program-

ming languages usually make this assumption. It turns out,

however, that further restrictions are necessary if the

transformed programs are to have the same least-model

semantics as the original ones [21], i.e. if total correctness is

to be guaranteed with respect to SLD-resolution. The restric-

tions are essentially that (i) the substitution 8 used in the fold-

ing should substitute distinct variables for the internal vari-

ables of the literals Body,, . . ., Body,, and that these internal

variables should not occur in the head p(x) or in the other

literals in the body, Lits, and Lits,; and (ii) a clause is not

used to fold itself. Our experience has been that these con-

straints, while necessary, are not overly restrictive in practice.

3. Recursion Removal

In languages lacking explicit constructs for iteration,

loops are usually expressed as tail recursive procedures. It is

well known that tail recursion can be replaced by iteration (see

[5, 15,221). There are many problems, however, that are

strongly iterative in flavor, but whose natural specifications

are not tail recursive. This is exemplified by the factorial

function:

fact(x) = if x = 0 then 1 elsex *fact(x-1).

In Prolog, this might be coded as

fact(0, 1).

fact(N, F) :- N > 0, Nl is N-l, fact(N1, Fl), F is N * Fl.

Recursion removal refers’ to the transformation of such

definitions to tail recursive form using operator properties

such as associativity [2]. Once tail recursion has been

achieved, iteration may be obtained in a relatively straightfor-

ward manner. This optimization can result in substantial sav-

ings in space and time. The problem has been studied in the

case of functional languages by several researchers [6,15,20].

In the case of logic programming languages, the situation is

somewhat different in that there is no notion of function appli-

cation and composition: rather, relations are computed using

unification. Moreover, these relations may be computed in

any order, in principle, and computations may be nondeter-

ministic, making it difficult to predict statically the structures

of expressions that might have to be evaluated.

3.1. An Example

We first illustrate our approach by a simple example.

Consider a predicate to compute the length of a list:

(1) ML 0).
(2) len([HIL], N) :- len(L, Nl), N is Nl + 1.

While the computation essentially involves traversing a list

and incrementing a counter at each step, the natural

specification of the problem above is not tail recursive, and

299

hence, for a list of length N, requires O(N) stack space. We

apply unfold/fold transformations, together with knowledge

about the associativity of the operator ‘+‘, to transform this

specification to tail recursive form. The first step involves

generalization. Here, an auxiliary predicate is generated,

whose purpose is to make the recursive call and the tail com-

putation “N is Nl + 1”. Our aim will be to optimize this aux-

iliary predicate. The clauses resulting from the auxiliary

predicate definition are

(3) W[l,O).

(4) len([HIL], N) :- len-l(L, N, 1).

(5) len-l(L, N, M) :- len(L, Nl), N is Nl + M.

The next step is to remove mutual recursion between these

predicates by unfolding the call to fen in clause (5):

(6) len-l([], N, M) :-N is 0 + M.

(7) len-l([HIL], N, M) :- len-l(L, Nl, l), N is Nl + M.

This (with the obvious simplification of (6)) is the basic

dejinition of the auxiliary predicate. While this looks similar

to the original definition, the crucial difference is that an extra

argument (the generalization argument) is now available. The

remainde; of the transformation focuses on collapsing the

basic definition to obtain tail recursion. Collapsing consists of

an unfolding, followed by a simplification step, and finally a

folding step. The first step is to unfold (7) using the initial

definition (5), yielding

(8) len-l([HIL], N, M) :-

len(L, N2), Nl is N2 + 1, N is Nl + M.

Using properties of the arithmetic predicate is and the associa-

tivity of +. (8) is transformed to

(9) len-l([HIL], N, M) :- len(L, N2), N is N2 + (1 + M).

The computation of the subexpression l+M is independent of

the call to len, and can be pulled forward to give

(10) len-l([HIL], N, M) :-

K is 1 + M, len(L, N2), N is N is N2 + K.

The final step is to fold (10) using (5) (which had been used in

the most recent unfolding step). This yields the clause

(11) len-l([HIL], N, M) :- K is 1 + M, len-l(L, N, K).

which is tail recursive. The final tail recursive definition,

equivalent to the original program, is therefore

len([lLO.
len([HIL], N) :- len-l(L, N, 1).

len-1 ([I, M, W
len-l([HIL], N, M) :- K is 1 + M, len-l(L, N, K).

3.2. The Transformation Strategy and its Applicability

We refer to the class of predicates we are interested in as

almost-tail-recursive. Define a clause to be almost-tail-

recursive if it the goals following the last recursive literal in

the body involve only primitive computations. A predicate is

almost-tail-recursive if every recursive clause for it is either

tail-recursive or almost-tail-recursive, and there is at least one

almost-tail-recursive clause. An almost-tail-recursive clause

will be written as

p :- 41. f . ., 4,. p, evaW1 0 T2, X>. n 2 0.

where eval is a pseudo-evaluable-predicate, denoting that the

result of evaluating T, 0 T2 is unified with X. The “goal”

eval(T1 o Tz, X) will be referred to as the tail computation.

The transformation strategy follows the example above

quite closely. The procedure for carrying out the various steps

of the transformation is described in [lo]. The steps involved

are the following:

(1) Define the auxiliary predicate. This is done as follows:

consider an almost-tail-recursive predicate with tail com-

putations (eval(Tll o T,,, X1), eval(Tnl o T,,, X,)).

Corresponding to each tail computation eval(Tjl o Tj2,

Xi), let Cj = (Cjl, cinj) be a tuple of all maximal

ground subtrees of Tjl and T,2. Let N = max

(length(cj)). Then, if the arity of the original predicite

is k, then that of the auxiliary predicate is k + N.

Consider the jfh tail computation, eval(Tj, o Tj2. X;), with

Fj being (ci,, cjnj). Corresponding to each Cjk , let vk

be a new variable, and let v be the tuple (v 19 ***9 Vjnj).

Let TT1, TTz be the expressions obtained by replacing

each cjk by vk in Tjl and Tjz.

Replace each almost-tail-recursive clause by a pair of

clauses, one for the original predicate and one for the

auxiliary predicate, defined as follows: if the original

clause is

P@O) :- q@& p(fd, evaVl 0 T2, X).

and the auxiliary predicate is p,. then the corresponding

pair of clauses is
--

P&> :- q&)JqZ, c>.
- -

pl(Z, C) :-p(zz), evaf(T; OT;,X).

If y is the set of variables fz together with the variables

appearing in the tail computation eval(T1 o T2, X), then 2

300

= (x0 u xl) n y corresponds to the variables in the

almost-tail-recursive call and tail computation that

appear elsewhere before it in the original clause, and c,

v, T; and Tl are as defined above.

(2) Unfold the auxiliary predicate to remove mutual recur-

sion with the original predicate. This yields the basic
definition of the auxiliary predicate. Simplify the nonre-

cursive clauses of the basic definition using algebraic

identities where possible.

(3) Use colfupsing to transform the auxiliary predicate to tail

recursive form. This involves an unfolding step, fol-

lowed by some arithmetic manipulation using operator

properties such as associativity and distributivity, and

finally a folding step that achieves tail recursion.

The example above, illustrating the transformation, was

extremely simple in that the predicate involved had only one

recursive clause, was deterministic, and used only one kind of

arithmetic operator. Our transformation is also applicable,

however, to predicates that involve multiple recursive clauses,

use more than one kind of operator (provided that the opera-

tors satisfy certain simple algebraic properties), or are non-

deterministic. For example, our transformation can deal with

[he !iondeterministic computation described by

1
Iifx=O

f(x) = 2*f(x-1)ifx (>O>is even
3*f(x-1)-l or 2*f (x-l)+1 ifx (> 0) is odd

Given an almost-tail-recursive clause

P(G) :- (11. . . ., 4,. p(.ft), eval(T, 0 T2, X>

the tail computation eval(T1 o T2, X) will be referred to as

left-independent (respectively, right-independent) if T,

(respectively, T.J is independent of the recursive literal p(x1).

A simple case of independence that is encountered relatively

often is when either T, or T2 is a ground term, as in the len

example above. Independence may be inferred via static

analysis methods described in [7,12]. We have the following

sufficient conditions for this transformation to be applicable:

Proposition 3.1: The transformation is applicable if, for every

tail computation eval(T, o T2, X) in the definition, o is associa-

tive, and either every tail computation is left-independent, or

every tail computation is right-independent. 0

If the operator o is also commutative, the requirement can be

relaxed somewhat:

Proposition 3.2: The transformation is applicable if, for every

tail computation eval(T, 0 T2, X) in the definition, o is associa-

tive and commutative, and every tail computation is either

left-independent or right-independent. I7

If more than one kind of operator is involved, they must

satisfy certain distributivity requirements:

Proposition 3.3: Let F be the set of operators appearing in the

tail computations of an almost-tail-recursive predicate. A

sufficient condition for the transformation to be applicable is

that (i) each tail computation contains all the operators in F

(or can be modified to incorporate them with the appropriate

identity elements, which must exist); (ii) each operator in F is

associative; (iii) F can be totally ordered so that givenfi,f2 in

F,fi 5 f2 if and only iff, is right (left) distributive overf2; and

(iv) each such operator in each tail computation operates over

a left (right) independent expression. 0

The modification of this proposition to incorporate operator

commutativity, to relax the requirements given, is straightfor-

ward.

The benefits accruing from recursion removal include

space savings (since the tail recursive predicates can usually

execute in O(1) space, compared to the O(N) space require-

ments of the recursive definitions2), as well as improvements

in speed resulting from the elimination of the recursive calls.

The reduced space usage also improves locality of reference

on the runtime stack. Preliminary experiments indicate that

apart from the space savings, program speeds can improve

from 12% to over 45%, even for code written by experienced

Prolog programmers.

4. Loop Fusion

Loop fusion, also known as loop jamming, refers to the

merging of the bodies of two loops. Amongst the benefits of

loop fusion are (i) repeated traversals of data structures may

be avoided; (ii) the tests of one loop disappear; and (iii) the

construction of intermediate data structures may be avoided.

In traditional languages, two loops may be fused only if

both have the same number of iterations. A sufficient condi-

tion for loop fusion to be legal is that no quantity is computed

by the second loop at iteration i if it is computed by the first

* Nondcterministic almost-tail-recursive predicaies still require O(N)
space after transformation to tail recursive form, but the space
rcquircments of the transformed program are smaller than those of the

original almost-tail-recursive one.

301

loop at iteration i 2 i, and no value is used by the second loop

at iteration i if it is computed by the first loop at iteration j 2 i.

In our approach, the properties of unification and logical vari-

ables can be exploited to weaken these conditions for logic

programming languages. For example, loop fusion can some-

times be effected even the two loops do not have the same

number of iterations; because of unification and the once-only

nature of “assignment” in logic programming languages, it is

not necessary to require that no quantity be computed by the

second loop at iteration i if it is computed by the first loop at

iteration j 2 i; and logical variables can sometimes be used as

placeholders to effect loop fusion even when a value is com-

puted by the first loop at iteration j but “used” by the second

loop at iteration i I j. On the other hand, because loops are

typically written as recursive procedures, the detection of

situations where two loops are candidates for fusion is some-

what more complicated than in traditional languages..

4.1. An Example

We first illustrate our basic approach to loop fusion via

fold/unfold transformations using a simple example. Consider

a program that computes the combined length of two lists:

(1) len2(Ll, L2, N) :-

append(L1, L2, L3), length(L3, N).

(2) qpm-K[l, L L).
(3) append([HiLl], L2, [HIL3]) :- append(L1, L2, L3).

(4) lewhUO>.

(5) length([HIL], N) :- length(L, Nl), Nis Nl + 1.

The predicate len2 consists of two loops, each of which

traverses a list once. The transformation begins by unfolding

the call to append in (1):

(6) len2([], L2, N) :- length(L2, N).

(7) len2([HIL], L2, N) :-

append(L, L2, L3), length([HIL3], N).

Thi: second step is to unfold the call to lengfh in (7):

(8) len2([HILl], L2, N) :-

append(L1, L2, L3), length(L3, Nl), N is Nl + 1

Finally, (8) is folded using the original definition of len2,

given by clause (l), to yield

(9) len2([HILl], L2, N) :-

len2(Ll, L2, Nl), N is Nl + 1.

The final definition of len2, therefore, is:

len2([], L2, N) :- length(L2, N).

len2([HILl], L2, N) :- len2(Ll, L2, Nl), N is Nl + 1.

Since the transformed program avoids traversing the fist input

302

list twice, and also does not construct an intermediate list by

concatenating the two input lists, it is both faster (by about

12%) and more space efficient than the original program. The

reader can see also that this could be further optimized using

the recursion removal techniques discussed in the previous

section.

4.2. The Transformation Strategy and its Applicability

The transformation follows the example above. For sim-

plicity of exposition, we assume that there is a predicate

whose sole function is to execute the loops we intend to

merge, i.e. which is defined by a single clause whose body

consists simply of calls to the respective loops. We refer to

this predicate as the loop driver. Assume we begin with

definitions of the form

(1) loopdriver :- loop,(Y), loop.&).

(2) loopt :- loop-termt(X).

(3) loop,(x) :- loop-body,@, L), loop,(Y).

(4) loop,(X) :- loop-term@).

(3 loop,(x) :- loop-body@, Y), loop,(Y).
- -

In clause (l), it is assumed that X , Y and 2 may overlap. The

steps involved in the transformation are the following:

(1) Unfold the calls to the recursive predicates in the clause

for the loop driver. This yields the clauses

(6) loop-driver(X) :- loop-term,(Y), loop-term,(Z).

(7) loopdriver :-
--

loop-bodyt(Y, U), loopt(loop-term.@).

63) loopdriver :-

loop-ten-n,(Y), loop-body,@, ?). loop,(v).

(9) loopJriver(X) :-
--

loop-body,K U), loopI(

loop-body&F, v), loop@>.

(2) Rearrange independent computations in the resulting

recursive clause (9), such that the calls to the loops being

folded are adjacent. The clause resulting from this is:

(10) loop-driver(X) :-
-- --

loop-bodylO’, U >, loop-body&Z, V 1,

loop,(U), loop2(V,.

(3) Fold the resulting clause using the original definition of

the loop driver. The resulting clause is:

(11) loopdriver :-
--

loop-body,@, fi), loop-bodyz(Z, V),

loop-driver (W).

The transformed definition, where the loops have been fused,

consists of clauses (6), (7), (8) and (11).

We next consider conditions under which the transforma-

tion is applicable. Our basic aim is to first try and transform

the recursive clause (9), resulting from the unfolding, to the

form in (lo), where the literals for loop, and loop2 are adja-

cent. Once this has been achieved, the folding step can be car-

ried out. For the first step to be possible, it may be necessary

to rearrange the literals in the clause, from

loopJriver(X) :-

loop-bo$$? h,loop,(%,

loop-body@, v), loop&

to

loopdriver :-
-- - -

loop-body, (Y, U >, loop-body2(Z, V >,

loop,(U), loopz(V).

This requires that “loopt(and “loop-body.@, v)” be

independent, i.e. not share variables at runtime (data depen-

dence analysis may be used to determine this, see [7, 121). In

general, however, the rearrangement of literals in a clause can

affect computational aspects of programs such as termination,

the order in which solutions are generated, etc. We must be

able to guarantee that the rearrangement in this case will not

adversely affect the computational behavior of the program.

While this is difficult to determine in general, it is relatively

straightforward in some cases, e.g. where, in addition to the

independence criterion stated, (i) the loops are deterministic

or functional (see [ll, 17]), so that solution order is not an

issue; (ii) the termination of loop-body;! is guaranteed (e.g.

when it consists only of simple tests, or involves no recur-

sion); and (iii) loop, is free of side-effects. (Notice that loop,

may be nonterminating, but in this case delaying its execution

by reordering literals cannot adversely affect the termination

behavior of the program.)

Once this rearrangement of literals has been carried out, it is

necessary to fold the resulting clause,

(4 loop-driver(f) :-
-- - -

loop-body,K U >, loop-body&Z, V 1,

loop&U), loop2(V).

using the original definition of loop-driver, given by

(W loop-driver(R) :- loopl(S), loop&T).

For this to be possible, it is necessary that for some substitu-

tion 8,

(i) the literals “Ioop,(@), /oop&~)” in (A) be an instance of

the literals “loop,(s), foop2(~)” in (B) via the substitu-

tion 8, i.e. ?? = 3(.?) and v = e(f); and

(ii) 8 substitutes distinct variables for the internal variables

of (B), i.e. the set of variables

V = (vars(S) u van(F)) - vars(R)

and further, for no variable v in V is e(v) a variable
- - -

occurring in (U, V, X) in clause (A).

If these conditions are satisfied, the transformation can be car-

ried through and loop fusion accomplished (condition (ii) is

essentially that due to Tamaki and Sato for preserving

equivalence, and referred to in Section 2.2).

In some cases these conditions can be weakened further,

using the properties of unification and logical variables. This

enables us to generalize the loop fusion conditions for tradi-

tional languages, by using logical variables as placeholders in

some situations where a value is computed by the first loop at

iteration j but “used” by the second loop at iteration i 5i. This

is illustrated by the following example. Consider the follow-

ing program, where the predicate llasr is defined so that

Ilast(L,, LJ is true if and only if L, and L, are lists of the

same length, with each element of L, equal to the last element

of L,:

llast([l ,[I).
llast([EILl], L2) :- lastelt(L1, E, M), mklist([EILl], M, L2).

lastelt([],X,X).

lastelt([ElIL], -, X) :- lastelt(L, El, X).

mkW[l, _, [I).
mklist([- ILl], E, [EIL2]) :- mklist(L1, E, L2).

Given a query “llast([1,4,2], X)“, it can be seen that last&
produces the value of the last element of the input list on its

third iteration, but this value is used by mklist on its first itera-

tjon. Ordinarily, therefore, these two loops would not be

fusible. Indeed, if the transformation steps are applied, it can

be seen that the last folding step fails, and the transformation

cannot be carried through. However, we can exploit logical

variables to make loop fusion possible, by incorporating an

extra generalization step. The idea is to introduce an addi-

tional logical variable whose value will be that of the last ele-

ment of the list. This is used as a placeholder while building

the output list, whose elements are not known until the last

element of the input list is encountered in the iteration. At this

point, all the elements of the output list are filled in at the

same time via unification. Details of the transformation are as

follows: first, we redefine llast in terms of an auxiliary predi-

303

cate Ilast- 1, incorporating a generalization variable:

llast(L1, L2) :- Ilast- l(L1, L2, -).

Ilast- 1 ([I, [I, - 1.
IIast- I ([EILI], L2, M) :-

lastelt(L1, E, M), mklist([EILl], M, L2).

From this point the transformation proceeds as before. After

unfolding the literals for lastelt and mklist in llast-1, we get

its definition as

llast- 1([1, [I, -1.
llast- l([E], [EIL], E) :- mklist([], E, L).

llast- l([El, E2lLl], [EIL2], E) :-

lastelt(L1, E2, E), mklist([E2ILl], E, L2).

The final folding step of the transformation, applied to the last

clause, then yields the desired definition:

Ilast(L1, L2) :- llast- 1 (Ll, L2, -).

llast- IUI, [I, -h
llast- l([E], [EIL], E) :- mklist([], E, L).

Ilasr- l([El, E21Ll], [EIL2], E) :- Ilast- 1([E2lLl], L2, E).

In general, the requirement that the literals “loop,(6)” and

“loop-body,@, v)” be independent can be relaxed, if

loop-body2 consists entirely of unifications, as long as loop, is

free of metalanguage constructs such as Prolog’s var, nonvar

and ‘==’ predicates. The intuition here is that if loop, is free

of side effects (as required earlier) and also free of

metalanguage constructs such as these, then it consists of pure

code, and in this case moving some unifications forward will

not affect the semantics of the program. Moreover, as illus-

trated by the llast example above, the requirement that the

literals

loop@), 100P*(v)

be an instance of the body of the original definition of

loop-driver can also be weakened similarly in some cases by

using an additional generalization step. Together, these show

that the requirement that the loop fusion conditions for tradi-

tional languages can sometimes be generalized using logical

variables and unification.

The transformation described here is not limited to linear

tail recursive predicates. For example, the predicate tmarmin

(defined below), which computes the maximum and minimum

leaf values in a nonempty tree, can be transformed from

tmaxmin(T, Max, Min) :- tmax(T, Max), tmin(T, Min).

tmax(leaf(X), X).

tmax(tfee(X,Y), 2) :-

tmax(X, Zl), tmax(Y, Z2), max(Zl,Z2, Z).

tmin(leaf(X), X).

tmin(tree(X,Y), 2) :-

tmin(X, Zl), tmin(Y, Z2), min(Zl,Z2, Z).

to the following, which avoids repeated traversals of the same

data structure:

tmaxmin(leaf(X), X, X).

tmaxmin(tree(X,Y), Max, Min) :-

tmaxmin(X, Maxl, Minl), tmaxmin(Y, Max2, Min2),

max(Max 1, Max2, Max), min(Min 1, Min2, Min).

Notice that the associativity of mar and min can be used to

transform this to a nonlinear tail recursive definition using the

recursion removal techniques discussed earlier, resulting in a

more space-efficient program.

5. Code Motion out of Loops

There may be computations in a loop whose results are

independent of the number of times the loop is executed.

Since these computations are loop invariant, there is no need

to perform them repeatedly. Instead, they may be moved to a

point just before the start of the loop. This is referred to as

code motion out of loops.

As mentioned in Section 2.2, it is necessary to rename

variables in clauses when carrying out unfold/fold transforma-

tions. Sometimes, however, it is also necessary to keep track

of the identities of variables across such renamings. To this

end, we have the following proposition:

Proposition 5.1: Consider a clause

p(x) :- Lits,, X = T,, Lits,, X = T2, Lits,.

where T, and Tz are alphabetic variants. Then, the clause is

equivalent to

p(x) :- Lits,, X = T,, Lits,, X = T,, e(Lits,).

where 8 is a substitution that renames T2 to TI. IJ

It is, in fact, possible to strengthen this proposition

significantly, e.g., by eliminating the requirement that T, and

T2 be alphabetic variants. In this case, 8 becomes the most

general unifier of T, and T2, and the clause we obtain is

p(f) :- Lits,, X = Q(T,), Lits,, X = B(T,), Lits,.

In this case, however, it is more difficult to argue that the two

clauses are necessarily equivalent operationally, since the

unification of X with O(T,) instead of TI may change the

behavior of the program if Lits2 has side effects or contains

metalanguage constructs. It can also affect the termination

304

beh:ivior of Lits2. For our purposes, the Weak Version given in

Proposition 5.1 is adequate, so we choose to avoid the compli-

cations of the more general statement.

In logic programs, loop invariant computations can often

be detected simply by using unfold/fold transformations at the

source level. This is illustrated by the following example.

Consider the program

process-vars([], J

process-vars([X I L], Table) :-

Table = table(VarTab, CTab),

proc-var(X, VarTab), process-vars(L, Table).

The first step in detecting loop invariant computations is to

unfold the tail recursive literal. This gives the clause

process-vars([], J

process-vars([X], Table) :-

Table = table(VarTab, CTab), proc-var(X, VarTab).

process-vars([XIL], Table) :-

Table = table(VarTab, CTab), proc-var(X, VarTab),

L = [Y ILl], Table = table(VarTrabt, CTabt),

proc-var(Y, VarTab,), process-vars(L1, Table).

Notice that the unfolding step, after the application of Proposi-

tion 5.1, results in the duplication of the literal “Table =

table(VarTab, CTab)” in the recursive clause. It follows, from

a straightforward inductive argument, that this computation is

invariant in the loop and hence may be moved out of the body

of the loop. The resulting code is

process-vars(L, Table) :-

Table = table(VarTab, CTab), process-varsl(L, VarTab).

process-varsl([], J.

process-varsl([XlL], VarTab) :-

proc-var(X, VarTab), process-varsl(L, VarTab).

The transformation strategy follows this example. Consider a

loop written as

loop(X) :- loop-term(X).

loop(X) :- proc,(U), q(L), proc.&V), loop(Z).

The first step is to unfold the tail recursive clause and examine

the recursive clause that results for duplicate literals intro-

duced as a result of unfolding. Suppose the clause resulting

from unfolding and applying Proposition 5.1 is

loop(X) :-

pm,@>, q(C proc2(b,

proct(U’), q(Y), proc2(V’), loop(z’).

The literal “q(Y)” is duplicated by the unfolding step, and

hence is a candidate for motion out of the loop. Before it can

actually be moved, however, we have to ensure that the reord-

ering of literals this entails will not adversely affect the com-

putational behavior of the program. The conditions under

which the reordering can be carried out are similar to those for

loop fusion: (i) procl and 4 are deterministic or functional, so

that solution order is not an issue; (ii) “procl(~>” and “q(y)”

are independent; (iii) 9 is guaranteed to terminate (e.g. when it

consists of simple tests or arithmetic computations); and (iv)

proct and q are free of metalanguage predicates and side

effects.

Once the loop-invariant computation has been identified

and the conditions above have been checked, the transforma-

tion proceeds as follows: first, literals in the original definition

are reordered so that the loop-invariant computation is at the

head of the clause:

loop(X) :- loop-term(X).

loop(X) :-q(Y), proct(U), proc@), loop(Z).

An auxiliary predicate loop-l is now introduced, whose

definition resembles that of the original predicate, except that

the loop-invariant computation has been deleted. The

definition of the loop is modified to refer to this auxiliary

predicate:

loop(X) :- loop-term(X).

loop(X) :- q(Y), proct(Cr), proc2(V), loop-l(Z).

loop-l(X) :- loop-term(X).

loop-1 (2) :- proc,(ll), proc.@), loop-l(Z).

In order for this program to be equivalent to the original one,

it is also necessary that 4 be free of side effects. This is easy

to guarantee if q consists of simple tests and arithmetic com-

putations.

In effect, what this does is to move the loop-invariant

computation to the preheader for the loop, Traditionally, the

plausibility of code motion out of loops has rested on the

assumption that the loop will be executed at least once on the

average. We do not have to make this assumption here

(though we expect that loops will typically be executed at

least once): notice that the code for loop termination is

repeated, once in the predicate loop and once in loop-l. What

this achieves is that the loop-invariant computation q(Y) is

performed only if the loop body is executed at least once; and

further, it is performed at most once for any call to that loop.

In this sense, therefore, the code achieved above is optimal.

Of course, not all loop invariant computations may be
detected using this scheme.

305

6. Conclusions

Since programs typically spend much of their time in

loops, the generation of efficient code for loops is essential for

good performance. Loop optimization in logic programming

languages is complicated by the fact that such languages lack

iterative constructs, such as for and while, that are available in

traditional languages. Instead, logic programming languages

express loops using recursion. In this paper, we examine the

application of unfold/fold transformations to the optimization

of loops in logic programming languages. Specifically, we

examine three loop optimizations: recursion removal, loop

fusion, and code motion out of loops. We give simple

unfold/fold transformation sequences to carry out the loop

optinnzations in these cases, and describe the conditions under

which the transformations are applicable. In the process, we

show how the properties of unification and logical variables

can be used to generalize the conditions of applicability of

these optimizations from traditional languages.

References

1. A. V. Aho, R. Sethi and J. D. Ullman, Compilers -

Principles, Techniques and Tools, Addison-Wesley,

1986.

2. J. Arsac and Y. Kodratoff, Some Techniques for

Recursion Removal from Recursive Functions, ACM

Trans. Prog. Lang. and Systems 4, 2 (Apr. 198% 295-

322.

3. N. Azibi, E. J. Costa and Y. Kodratoff, Methode de

Transformation de Programmes de Burstall-Darlington

Appliquee a la Programmation Logique, Research

Report No. 268, Universite de Paris-Sud, Orsay, France,

Mar. 1986.

4. C. Bloch, Source-to-Source Transformations of Logic

Programs, CS84-22, Dept. of Applied Mathematics,

Weizmann Institute of Science, Rehovot. Israel, Dec.

1984.

5. M. Bruynooghe, The Memory Management of

PROLOG Implementations, in Logic Programming, K.

L, Clark and S. Tamlund (ed.), Academic Press,

London, 1982. A.P.I.C. Studies in Data Processing No.

16.

6. R. M. Burstall and J. Darlington, A Transformation

System for Developing Recursive Programs, J. ACM 24,

1 (January 1977), 44-67.

7. J. Chang, A. M. Despain and D. DeGroot, AND-

Parallelism of Logic Programs Based on A Static Data

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Dependency Analysis, in Digest of Papers, Compcon

8.5, IEEE Computer Society, Feb. 1985.

K. L. Clark, Negation as Failure, in Logic and Data

Bases, H. Gallaire and J. Minker (ed.), Plenum Press,

New York, 1978.

N. H. Cohen, Source-to-Source Improvement of

Recursive Programs, Ph.D. Thesis, Harvard University,

Cambridge, MA, May 1980.

S. K. Debray, Optimizing Almost-Tail-Recursive

Prolog Programs, in Proc. IFIP International

Conference on Functionaf Programming Languages

and Computer Architecture, Nancy, France, Sept. 1985.

S. K. Debray and D. S. Warren, Detection and

Optimization of Functional Computations in Prolog, in

Proc. Third Int. Conf. on Logic Programming, London,

July 1986. Springer-Verlag LNCS vol. 225.

S. K. Debray, Static Inference of Modes and Data

Dependencies in Logic Programs, Tech. Rep. 87-24,

Dept. of Computer Science, University of Arizona,

Tucson, AZ, Aug. 1987.

M. S. Feather, A System for Assisting Program

Transformation, ACM Trans. Prog. Lang. and Systems

4, 1 (Jan. 1982), l-20.

T. Kanamori and K. Horiuchi, Construction of Logic

Programs Based on Gneralized Unfold/Fold Rules, in

Proc. 4th. International Conference on Logic

Programming, Melbourne, Australia, May 1987, pp.

744-768.

R. B. Kieburtz and J. Schultis, Transformations of FP

Program Schemes, in Proc. I981 Conf. Func. Prog.

Langs. and Comp. Arch., ACM, Portsmouth, New

Hampshire, Oct. 1981.

J. W. Lloyd, Foundations of Logic Programming,

Springer Verlag, 1984.

C. S. Mellish, Some Global Optimizations for a Prolog

Compiler, J. Logic Programming 2, 1 (Apr. 1985), 43-

66.

H. Nakagawa, Prolog Program Transformations and

Tree Manipulation Algorithms, J. Logic Programming

2,2 (July 1985), 77-91.

H. Seki and K. Furukawa, Notes on Transformation

Techniques for Generate and Test Logic Programs, in

Proc. Fourth IEEE Symposium on Logic Programing,

San Fransisco, CA, Sep. 1987, pp. 215-223.

306

20. E. St.-James, Recursion is More Efficient than Iteration,

in Proc. I984 ACM Symp. on LISP and Functional

Programming, Austin, Texas, Aug. 1984.

21. H. Tamaki and T. Sato, Unfold/Fold Transformations of

Logic Programs, in Proc. 2nd. Logic Programming

Conference, Uppsala, Sweden, 1984.

22. D. H. D. Warren. An improved Prolog implementation

which optimises tail recursion, Research Paper 156,

Dept. of Artificial Intelligence, University of Edinburgh,

Scotland, 1980. Presented at the 1980 Logic

Programming Workshop, Debrecen, Hungary.

307

