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Abstract: Programs typically spend much of their execution time in 

loops. This makes the generation of efficient code for loops essen- 

tial for good performance. Loop optimization of logic program- 

ming languages is complicated by the fact that such languages lack 

the iterative constructs of traditional languages, and instead use 

recursion to express loops. In this paper, we examine the applica- 

tion of unfold/fold transformations to three kinds of loop optimiza- 

tion for logic programming languages: recursion removal, loop 

fusion and code motion out of loops. We describe simple 

unfold/fold transformation sequences for these optimizations that 

can be automated relatively easily. In the process, we show that the 

properties of unification and logical variables can sometimes be 

used to generalize, from traditional languages, the conditions under 

which these optimizations may be carried out. Our experience sug- 

gests that such source-level transformations may he used as an 

effective tool for the optimization of logic programs. 

1. Introduction 

The focus of this paper is on the static optimization of 

logic programs. Specifically, we investigate loop optimization 

of logic programs. Since programs typically spend most of 

their time in loops, the generation of efficient code for loops is 

essential for good performance. In the context of logic pro- 

gramming languages, the situation is complicated by the fact 

that iterative constructs, such asfor or while, are unavailable. 

Loops are usually expressed using recursive procedures, and 

loop optimizations have be considered within the general 

framework of interprocedural optimization. 
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There are various levels at which loop optimization may 

be carried out for such languages: at the source language 

level, at the intermediate language level, or at the final code 

level. An advantage with performing the optimization at the 

intermediate language or final code level is that certain opera- 

tions, which are not expressible at the source level, become 

explicit and hence amenable to optimization. However, 

because of the significantly larger number of statements, vari- 

ables, etc., that must be manipulated at the intermediate or 

final code level, the analyses and transformations are usually 

more complex than at the source level. For the purposes of 

this paper, therefore, we consider optimizing transformations 

applicable at the source level. 

We consider the application of source-to-source transfor- 

mations - specifically, unfold/fold transformations - to 

improve the code for loops in Prolog. One potential problem 

with unfold/fold transformations is that in general, “eureka” 

steps - steps involving a significant amount of insight into the 

behavior of the program being transformed or the algorithm it 

implements - may be necessary to actually carry the transfor- 

mation through and achieve real improvements. This can 

make the transformations difficult to automate. Since we are 

interested primarily in compiler optimizations, we restrict our 

attention to cases where the transformations can be automarsd 

relatively simply. We show how such classical loop optimiza- 

tions as recursion removal (i.e. transformation of certain 

recursive programs to tail recursive form), loop fusion, and 

code motion out of loops can be handled using our approach. 

For some of these, we are able to exploit the properties of log- 

ical variables and unification to generalize, from traditional 

languages, the conditions under which the optimizations can 

be carried out. 

There is a great deal of literature on loop optimization 

for traditional languages, see [ 11. Unfold/fold transformations 

were introduced by Burstall and Darlington for functional 
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languages [6], and have been applied to the improvement of 

recursive programs in functional languages [6,13]. Cohen 

considers the application of source-to-source transformations 

to the improvement of recursive programs [9]. Arsac and 

Kodratoff have studied the application of these techniques to 

recursion removal from functions [2]. The application of 

unfold/fold transformations to recursion removal in logic pro- 

grams has been considered by Bloch [4], Debray [lo], and 

more recently by Azibi et al. [3]. Tamaki and Sato [21], and 

Kanamori and Horiuchi [14], have investigated the theory of 

unfold/fold transformation systems for logic programs. Other 

applications of unfold/fold transformation systems to logic 

programming include improvement of tree manipulation pro- 

grams [ 181, and of generate-and-test programs [19]. 

We assume some acquaintance with the fundamentals of 

logic programming and Prolog. The remainder of this sum- 

mary is organized as follows: Section 2 sketches some basic 

notions used later in the paper. Section 3 considers recursion 

removal, Section 4 discusses loop fusion, and Section 5 

discusses code motion out of loops. Section 6 gives an over- 

view of related work, and Section 7 concludes with a sum- 

mary. 

2. Preliminaries 

2.1. Logic Programming Languages 

A program in a logic programming language consists of 

a set of predicate definitions, corresponding to procedure 

declarations in traditional languages. A predicate definition 

consists of a set of clauses, each clause being of the form 

P(G) :- ql(T1), * . .P q,(T,). 

Operationally, this can be thought of as a definition for the 

procedure p, with formal parameters To, whose body consists 

of a set of procedure calls (ql(T1), . . ., q,(T,)), and where 

parameter passing is done via a generalized pattern-matching 

procedure called unification. Declaratively, this may also be 

read as the logical statement “[ql(Fl) and . . . and q,(F,)] 

implies p(TO)“. Usually, logic programming languages 

strengthen this one-way implication to be bidirectional, i.e. a 

predicate defined as 

p :-Body,. 

. . . 

p :- Bodym. 

is interpreted declaratively as “p iff [Body1 or . . . or Body,]“. 

This strengthening is referred to as the “completion” of the 

predicate [ 81. 

Logic programming languages lack iterative constructs 

for loops such as for and while. Instead, loops in such 

languages are expressed using tail recursive procedures 

(though not necessarily linear, i.e. they are not limited to one 

recursive call in the body). A loop can, in most cases, be wtit- 

ten schematically using two clauses: a nonrecursive clause 

giving the termination conditions, and a recursive clause con- 

taining the body of the loop: 

loop(X) :- loop-term(X). 

loop(~) :-loop-body@, Y), loop(Y). 

We will follow Edinburgh Prolog syntax and write vari- 

able names starting with upper case letters, and non-variable 

names (i.e. functor and predicate names) starting with lower 

case letters. In addition, “anonymous” variables will be writ- 

ten as underscores. We will adopt the following notation for 

lists: the empty list will be written as ‘[I’, while a list with 

head H and tail L will be written ‘[HIL]‘. 

2.2. Unfold/Fold Transformations 

Unfold/fold transformations, introduced by Burstall and 

Darlington in the context of functional languages [6], are 

based on a very simple idea: that of replacing equals by 

equals. Unfolding refers to the replacement of a procedure 

call by the appropriate instance of the procedure body, and is 

essentially an inline expansion of the call. For example, given 

the program 

p(X, Y) :- q(X, Z), r(Z, Y). 

q(U, V) :- s(U, WI, W), t(W, u2, V). 

we can unfold the literal for q in the clause for p, to obtain 

p(X, Y) :- s(X, Xl, WI), t(W1, X2, Y), r(Z, Y). 

q(U, V) :- s(U, UI, W), t(W, u2, V). 

In general, given the definitions 

p(X) :- Lifs,, q(T), Lifs, 

q(Y) :- BodyI. 

. . . 

q(Y) :-Body,. 

let 8 be a substitution such that T = e(Y) (after renaming the 

variables in the clauses, if necessary, so that no two clauses 

have any variables in common). Then, we can unfold the 

literai for 4 in the clause for p to obtain 

p@(f)) :- B(Lits,, ( Body1 ; . . . ; Body, ), Lirs,). 

If the predicates called from Lits, are free of metalanguage 

constructs such as var and nonvar, and free of side effects, 

then this unfolded clause can in fact be used to replace the 

original clause for p that was unfolded. 
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One point to note here is that of variable renaming when 

clauses are invoked. For technical reasons beyond the scope 

of this paper (but see [16]), when a procedure is activated for a 

call in a logic program, i.e., when a literal is unified with the 

head of a clause, the variables in the invoked clause are 

renamed so that it does not contain any variable used upto that 

point in the computatiou. Since unfolding is essentially an 

inline expansion of a literal, this sort of variable renaming is 

necessary during unfolding as well. In the remainder of the 

paper, we will assume that variables in clauses are renamed 

whenever necessary to satisfy this requirement, and not state it 

explicitly. 

Folding refers to the replacement of an instance of a pro- 

cedure body by a call to the procedure. For example, given 

the predicate definitions 

P(X y> :-PIK a, em), s(h(Z, y>>, p,(K a. 

SW, v) :- W), SW>. 

we can fold the literals for r and s in the clause defining p, to 

yield 

PK Y) :-vpL a, dkm, w, mP*K 9. 

In general, given a clause 

p(X) :- Lirs,, (L, ; . . .; L, ), Lit.s,. 

and a predicate 4 defined as 

q(Y) :-Body, ; . . . ; Body,. 

if there is a substitution 8 such that, after renaming variables 

as necessary so that the two clauses do not share variables, we 

have B(Bodyi) = L, 1 < i I m, then the clause for p can be 

folded to yield 

p(X) :- Lits,, q@(Y)), Lits,. 

That unfold/fold transformations preserve partial correct- 

ness in functional languages follows from the fact that thev 

replace equals by equals; however, total correctness may have 

to be proved separately. Things are a little more complicated 

in logic programming languages because the underlying 

theory is one of implication rather than equality. It can be 

shown that unfold transformations still preserve partial 

correctness,’ but fold transformations are applicable only if 

we assume that the definition of a predicate in a program is an 

if-and-only-if definition rather than a one-way implication. 

This does not pose a problem in practice, since logic program- 

ming languages usually make this assumption. It turns out, 

however, that further restrictions are necessary if the 

transformed programs are to have the same least-model 

semantics as the original ones [21], i.e. if total correctness is 

to be guaranteed with respect to SLD-resolution. The restric- 

tions are essentially that (i) the substitution 8 used in the fold- 

ing should substitute distinct variables for the internal vari- 

ables of the literals Body,, . . ., Body,, and that these internal 

variables should not occur in the head p(x) or in the other 

literals in the body, Lits, and Lits,; and (ii) a clause is not 

used to fold itself. Our experience has been that these con- 

straints, while necessary, are not overly restrictive in practice. 

3. Recursion Removal 

In languages lacking explicit constructs for iteration, 

loops are usually expressed as tail recursive procedures. It is 

well known that tail recursion can be replaced by iteration (see 

[5, 15,221). There are many problems, however, that are 

strongly iterative in flavor, but whose natural specifications 

are not tail recursive. This is exemplified by the factorial 

function: 

fact(x) = if x = 0 then 1 elsex *fact(x-1). 

In Prolog, this might be coded as 

fact(0, 1). 

fact(N, F) :- N > 0, Nl is N-l, fact(N1, Fl), F is N * Fl. 

Recursion removal refers’ to the transformation of such 

definitions to tail recursive form using operator properties 

such as associativity [2]. Once tail recursion has been 

achieved, iteration may be obtained in a relatively straightfor- 

ward manner. This optimization can result in substantial sav- 

ings in space and time. The problem has been studied in the 

case of functional languages by several researchers [6,15,20]. 

In the case of logic programming languages, the situation is 

somewhat different in that there is no notion of function appli- 

cation and composition: rather, relations are computed using 

unification. Moreover, these relations may be computed in 

any order, in principle, and computations may be nondeter- 

ministic, making it difficult to predict statically the structures 

of expressions that might have to be evaluated. 

3.1. An Example 

We first illustrate our approach by a simple example. 

Consider a predicate to compute the length of a list: 

(1) ML 0). 
(2) len([HIL], N) :- len(L, Nl), N is Nl + 1. 

While the computation essentially involves traversing a list 

and incrementing a counter at each step, the natural 

specification of the problem above is not tail recursive, and 
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hence, for a list of length N, requires O(N) stack space. We 

apply unfold/fold transformations, together with knowledge 

about the associativity of the operator ‘+‘, to transform this 

specification to tail recursive form. The first step involves 

generalization. Here, an auxiliary predicate is generated, 

whose purpose is to make the recursive call and the tail com- 

putation “N is Nl + 1”. Our aim will be to optimize this aux- 

iliary predicate. The clauses resulting from the auxiliary 

predicate definition are 

(3) W[l,O). 

(4) len([HIL], N) :- len-l(L, N, 1). 

(5) len-l(L, N, M) :- len(L, Nl), N is Nl + M. 

The next step is to remove mutual recursion between these 

predicates by unfolding the call to fen in clause (5): 

(6) len-l([], N, M) :-N is 0 + M. 

(7) len-l([HIL], N, M) :- len-l(L, Nl, l), N is Nl + M. 

This (with the obvious simplification of (6)) is the basic 

dejinition of the auxiliary predicate. While this looks similar 

to the original definition, the crucial difference is that an extra 

argument (the generalization argument) is now available. The 

remainde; of the transformation focuses on collapsing the 

basic definition to obtain tail recursion. Collapsing consists of 

an unfolding, followed by a simplification step, and finally a 

folding step. The first step is to unfold (7) using the initial 

definition (5), yielding 

(8) len-l([HIL], N, M) :- 

len(L, N2), Nl is N2 + 1, N is Nl + M. 

Using properties of the arithmetic predicate is and the associa- 

tivity of +. (8) is transformed to 

(9) len-l([HIL], N, M) :- len(L, N2), N is N2 + (1 + M). 

The computation of the subexpression l+M is independent of 

the call to len, and can be pulled forward to give 

(10) len-l([HIL], N, M) :- 

K is 1 + M, len(L, N2), N is N is N2 + K. 

The final step is to fold (10) using (5) (which had been used in 

the most recent unfolding step). This yields the clause 

(11) len-l([HIL], N, M) :- K is 1 + M, len-l(L, N, K). 

which is tail recursive. The final tail recursive definition, 

equivalent to the original program, is therefore 

len([lLO. 
len([HIL], N) :- len-l(L, N, 1). 

len-1 ([I, M, W 
len-l([HIL], N, M) :- K is 1 + M, len-l(L, N, K). 

3.2. The Transformation Strategy and its Applicability 

We refer to the class of predicates we are interested in as 

almost-tail-recursive. Define a clause to be almost-tail- 

recursive if it the goals following the last recursive literal in 

the body involve only primitive computations. A predicate is 

almost-tail-recursive if every recursive clause for it is either 

tail-recursive or almost-tail-recursive, and there is at least one 

almost-tail-recursive clause. An almost-tail-recursive clause 

will be written as 

p :- 41. f . ., 4,. p, evaW1 0 T2, X>. n 2 0. 

where eval is a pseudo-evaluable-predicate, denoting that the 

result of evaluating T, 0 T2 is unified with X. The “goal” 

eval(T1 o Tz, X) will be referred to as the tail computation. 

The transformation strategy follows the example above 

quite closely. The procedure for carrying out the various steps 

of the transformation is described in [lo]. The steps involved 

are the following: 

(1) Define the auxiliary predicate. This is done as follows: 

consider an almost-tail-recursive predicate with tail com- 

putations (eval(Tll o T,,, X1), . . . . eval(Tnl o T,,, X,)). 

Corresponding to each tail computation eval(Tjl o Tj2, 

Xi), let Cj = (Cjl, . . . . cinj) be a tuple of all maximal 

ground subtrees of Tjl and T,2. Let N = max 

( length(cj) ). Then, if the arity of the original predicite 

is k, then that of the auxiliary predicate is k + N. 

Consider the jfh tail computation, eval(Tj, o Tj2. X;), with 

Fj being (ci,, . . . . cjnj ). Corresponding to each Cjk , let vk 

be a new variable, and let v be the tuple (v 19 ***9 Vjnj ). 

Let TT1, TTz be the expressions obtained by replacing 

each cjk by vk in Tjl and Tjz. 

Replace each almost-tail-recursive clause by a pair of 

clauses, one for the original predicate and one for the 

auxiliary predicate, defined as follows: if the original 

clause is 

P@O) :- q@& p(fd, evaVl 0 T2, X). 

and the auxiliary predicate is p,. then the corresponding 

pair of clauses is 
-- 

P&> :- q&)JqZ, c>. 
- - 

pl(Z, C) :-p(zz), evaf(T; OT;,X). 

If y is the set of variables fz together with the variables 

appearing in the tail computation eval(T1 o T2, X), then 2 
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= (x0 u xl) n y corresponds to the variables in the 

almost-tail-recursive call and tail computation that 

appear elsewhere before it in the original clause, and c, 

v, T; and Tl are as defined above. 

(2) Unfold the auxiliary predicate to remove mutual recur- 

sion with the original predicate. This yields the basic 
definition of the auxiliary predicate. Simplify the nonre- 

cursive clauses of the basic definition using algebraic 

identities where possible. 

(3) Use colfupsing to transform the auxiliary predicate to tail 

recursive form. This involves an unfolding step, fol- 

lowed by some arithmetic manipulation using operator 

properties such as associativity and distributivity, and 

finally a folding step that achieves tail recursion. 

The example above, illustrating the transformation, was 

extremely simple in that the predicate involved had only one 

recursive clause, was deterministic, and used only one kind of 

arithmetic operator. Our transformation is also applicable, 

however, to predicates that involve multiple recursive clauses, 

use more than one kind of operator (provided that the opera- 

tors satisfy certain simple algebraic properties), or are non- 

deterministic. For example, our transformation can deal with 

[he !iondeterministic computation described by 

1 
Iifx=O 

f(x) = 2*f(x-1)ifx (>O>is even 
3*f(x-1)-l or 2*f (x-l)+1 ifx (> 0) is odd 

Given an almost-tail-recursive clause 

P(G) :- (11. . . ., 4,. p(.ft), eval(T, 0 T2, X> 

the tail computation eval(T1 o T2, X) will be referred to as 

left-independent (respectively, right-independent) if T, 

(respectively, T.J is independent of the recursive literal p(x1). 

A simple case of independence that is encountered relatively 

often is when either T, or T2 is a ground term, as in the len 

example above. Independence may be inferred via static 

analysis methods described in [7,12]. We have the following 

sufficient conditions for this transformation to be applicable: 

Proposition 3.1: The transformation is applicable if, for every 

tail computation eval(T, o T2, X) in the definition, o is associa- 

tive, and either every tail computation is left-independent, or 

every tail computation is right-independent. 0 

If the operator o is also commutative, the requirement can be 

relaxed somewhat: 

Proposition 3.2: The transformation is applicable if, for every 

tail computation eval(T, 0 T2, X) in the definition, o is associa- 

tive and commutative, and every tail computation is either 

left-independent or right-independent. I7 

If more than one kind of operator is involved, they must 

satisfy certain distributivity requirements: 

Proposition 3.3: Let F be the set of operators appearing in the 

tail computations of an almost-tail-recursive predicate. A 

sufficient condition for the transformation to be applicable is 

that (i) each tail computation contains all the operators in F 

(or can be modified to incorporate them with the appropriate 

identity elements, which must exist); (ii) each operator in F is 

associative; (iii) F can be totally ordered so that givenfi,f2 in 

F,fi 5 f2 if and only iff, is right (left) distributive overf2; and 

(iv) each such operator in each tail computation operates over 

a left (right) independent expression. 0 

The modification of this proposition to incorporate operator 

commutativity, to relax the requirements given, is straightfor- 

ward. 

The benefits accruing from recursion removal include 

space savings (since the tail recursive predicates can usually 

execute in O(1) space, compared to the O(N) space require- 

ments of the recursive definitions2), as well as improvements 

in speed resulting from the elimination of the recursive calls. 

The reduced space usage also improves locality of reference 

on the runtime stack. Preliminary experiments indicate that 

apart from the space savings, program speeds can improve 

from 12% to over 45%, even for code written by experienced 

Prolog programmers. 

4. Loop Fusion 

Loop fusion, also known as loop jamming, refers to the 

merging of the bodies of two loops. Amongst the benefits of 

loop fusion are (i) repeated traversals of data structures may 

be avoided; (ii) the tests of one loop disappear; and (iii) the 

construction of intermediate data structures may be avoided. 

In traditional languages, two loops may be fused only if 

both have the same number of iterations. A sufficient condi- 

tion for loop fusion to be legal is that no quantity is computed 

by the second loop at iteration i if it is computed by the first 

* Nondcterministic almost-tail-recursive predicaies still require O(N) 
space after transformation to tail recursive form, but the space 
rcquircments of the transformed program are smaller than those of the 

original almost-tail-recursive one. 
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loop at iteration i 2 i, and no value is used by the second loop 

at iteration i if it is computed by the first loop at iteration j 2 i. 

In our approach, the properties of unification and logical vari- 

ables can be exploited to weaken these conditions for logic 

programming languages. For example, loop fusion can some- 

times be effected even the two loops do not have the same 

number of iterations; because of unification and the once-only 

nature of “assignment” in logic programming languages, it is 

not necessary to require that no quantity be computed by the 

second loop at iteration i if it is computed by the first loop at 

iteration j 2 i; and logical variables can sometimes be used as 

placeholders to effect loop fusion even when a value is com- 

puted by the first loop at iteration j but “used” by the second 

loop at iteration i I j. On the other hand, because loops are 

typically written as recursive procedures, the detection of 

situations where two loops are candidates for fusion is some- 

what more complicated than in traditional languages.. 

4.1. An Example 

We first illustrate our basic approach to loop fusion via 

fold/unfold transformations using a simple example. Consider 

a program that computes the combined length of two lists: 

(1) len2(Ll, L2, N) :- 

append(L1, L2, L3), length(L3, N). 

(2) qpm-K[l, L L). 
(3) append([HiLl], L2, [HIL3]) :- append(L1, L2, L3). 

(4) lewhUO>. 

(5) length([HIL], N) :- length(L, Nl), Nis Nl + 1. 

The predicate len2 consists of two loops, each of which 

traverses a list once. The transformation begins by unfolding 

the call to append in (1): 

(6) len2([], L2, N) :- length(L2, N). 

(7) len2([HIL], L2, N) :- 

append(L, L2, L3), length([HIL3], N). 

Thi: second step is to unfold the call to lengfh in (7): 

(8) len2([HILl], L2, N) :- 

append(L1, L2, L3), length(L3, Nl), N is Nl + 1 

Finally, (8) is folded using the original definition of len2, 

given by clause (l), to yield 

(9) len2([HILl], L2, N) :- 

len2(Ll, L2, Nl), N is Nl + 1. 

The final definition of len2, therefore, is: 

len2([], L2, N) :- length(L2, N). 

len2([HILl], L2, N) :- len2(Ll, L2, Nl), N is Nl + 1. 

Since the transformed program avoids traversing the fist input 
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list twice, and also does not construct an intermediate list by 

concatenating the two input lists, it is both faster (by about 

12%) and more space efficient than the original program. The 

reader can see also that this could be further optimized using 

the recursion removal techniques discussed in the previous 

section. 

4.2. The Transformation Strategy and its Applicability 

The transformation follows the example above. For sim- 

plicity of exposition, we assume that there is a predicate 

whose sole function is to execute the loops we intend to 

merge, i.e. which is defined by a single clause whose body 

consists simply of calls to the respective loops. We refer to 

this predicate as the loop driver. Assume we begin with 

definitions of the form 

(1) loopdriver :- loop,(Y), loop.&). 

(2) loopt :- loop-termt(X). 

(3) loop,(x) :- loop-body,@, L), loop,(Y). 

(4) loop,(X) :- loop-term@). 

(3 loop,(x) :- loop-body@, Y), loop,(Y). 
- - 

In clause (l), it is assumed that X , Y and 2 may overlap. The 

steps involved in the transformation are the following: 

(1) Unfold the calls to the recursive predicates in the clause 

for the loop driver. This yields the clauses 

(6) loop-driver(X) :- loop-term,(Y), loop-term,(Z). 

(7) loopdriver :- 
-- 

loop-bodyt(Y, U ), loopt( loop-term.@). 

63) loopdriver :- 

loop-ten-n,(Y), loop-body,@, ?). loop,(v). 

(9) loopJriver(X ) :- 
-- 

loop-body,K U ), loopI( 

loop-body&F, v), loop@>. 

(2) Rearrange independent computations in the resulting 

recursive clause (9), such that the calls to the loops being 

folded are adjacent. The clause resulting from this is: 

(10) loop-driver(X) :- 
-- -- 

loop-bodylO’, U >, loop-body&Z, V 1, 

loop,(U), loop2(V,. 

(3) Fold the resulting clause using the original definition of 

the loop driver. The resulting clause is: 

(11) loopdriver :- 
-- 

loop-body,@, fi), loop-bodyz(Z, V), 

loop-driver (W ). 



The transformed definition, where the loops have been fused, 

consists of clauses (6), (7), (8) and (11). 

We next consider conditions under which the transforma- 

tion is applicable. Our basic aim is to first try and transform 

the recursive clause (9), resulting from the unfolding, to the 

form in (lo), where the literals for loop, and loop2 are adja- 

cent. Once this has been achieved, the folding step can be car- 

ried out. For the first step to be possible, it may be necessary 

to rearrange the literals in the clause, from 

loopJriver(X) :- 

loop-bo$$? h,loop,(%, 

loop-body@, v), loop& 

to 

loopdriver :- 
-- - - 

loop-body, (Y, U >, loop-body2(Z, V >, 

loop,(U), loopz(V). 

This requires that “loopt( and “loop-body.@, v)” be 

independent, i.e. not share variables at runtime (data depen- 

dence analysis may be used to determine this, see [7, 121). In 

general, however, the rearrangement of literals in a clause can 

affect computational aspects of programs such as termination, 

the order in which solutions are generated, etc. We must be 

able to guarantee that the rearrangement in this case will not 

adversely affect the computational behavior of the program. 

While this is difficult to determine in general, it is relatively 

straightforward in some cases, e.g. where, in addition to the 

independence criterion stated, (i) the loops are deterministic 

or functional (see [ll, 17]), so that solution order is not an 

issue; (ii) the termination of loop-body;! is guaranteed (e.g. 

when it consists only of simple tests, or involves no recur- 

sion); and (iii) loop, is free of side-effects. (Notice that loop, 

may be nonterminating, but in this case delaying its execution 

by reordering literals cannot adversely affect the termination 

behavior of the program.) 

Once this rearrangement of literals has been carried out, it is 

necessary to fold the resulting clause, 

(4 loop-driver(f) :- 
-- - - 

loop-body,K U >, loop-body&Z, V 1, 

loop&U), loop2(V). 

using the original definition of loop-driver, given by 

(W loop-driver(R) :- loopl(S), loop&T). 

For this to be possible, it is necessary that for some substitu- 

tion 8, 

(i) the literals “Ioop,(@), /oop&~)” in (A) be an instance of 

the literals “loop,(s), foop2(~)” in (B) via the substitu- 

tion 8, i.e. ?? = 3(.?) and v = e(f); and 

(ii) 8 substitutes distinct variables for the internal variables 

of (B), i.e. the set of variables 

V = (vars(S) u van(F)) - vars(R) 

and further, for no variable v in V is e(v) a variable 
- - - 

occurring in (U, V, X ) in clause (A). 

If these conditions are satisfied, the transformation can be car- 

ried through and loop fusion accomplished (condition (ii) is 

essentially that due to Tamaki and Sato for preserving 

equivalence, and referred to in Section 2.2). 

In some cases these conditions can be weakened further, 

using the properties of unification and logical variables. This 

enables us to generalize the loop fusion conditions for tradi- 

tional languages, by using logical variables as placeholders in 

some situations where a value is computed by the first loop at 

iteration j but “used” by the second loop at iteration i 5i. This 

is illustrated by the following example. Consider the follow- 

ing program, where the predicate llasr is defined so that 

Ilast(L,, LJ is true if and only if L, and L, are lists of the 

same length, with each element of L, equal to the last element 

of L,: 

llast([l ,[I). 
llast([EILl], L2) :- lastelt(L1, E, M), mklist([EILl], M, L2). 

lastelt([],X,X). 

lastelt([ElIL], -, X) :- lastelt(L, El, X). 

mkW[l, _, [I). 
mklist([- ILl], E, [EIL2]) :- mklist(L1, E, L2). 

Given a query “llast([1,4,2], X)“, it can be seen that last& 
produces the value of the last element of the input list on its 

third iteration, but this value is used by mklist on its first itera- 

tjon. Ordinarily, therefore, these two loops would not be 

fusible. Indeed, if the transformation steps are applied, it can 

be seen that the last folding step fails, and the transformation 

cannot be carried through. However, we can exploit logical 

variables to make loop fusion possible, by incorporating an 

extra generalization step. The idea is to introduce an addi- 

tional logical variable whose value will be that of the last ele- 

ment of the list. This is used as a placeholder while building 

the output list, whose elements are not known until the last 

element of the input list is encountered in the iteration. At this 

point, all the elements of the output list are filled in at the 

same time via unification. Details of the transformation are as 

follows: first, we redefine llast in terms of an auxiliary predi- 
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cate Ilast- 1, incorporating a generalization variable: 

llast(L1, L2) :- Ilast- l(L1, L2, -). 

Ilast- 1 ([I, [I, - 1. 
IIast- I ([EILI], L2, M) :- 

lastelt(L1, E, M), mklist([EILl], M, L2). 

From this point the transformation proceeds as before. After 

unfolding the literals for lastelt and mklist in llast-1, we get 

its definition as 

llast- 1([1, [I, -1. 
llast- l([E], [EIL], E) :- mklist([], E, L). 

llast- l([El, E2lLl], [EIL2], E) :- 

lastelt(L1, E2, E), mklist([E2ILl], E, L2). 

The final folding step of the transformation, applied to the last 

clause, then yields the desired definition: 

Ilast(L1, L2) :- llast- 1 (Ll, L2, -). 

llast- IUI, [I, -h 
llast- l([E], [EIL], E) :- mklist([], E, L). 

Ilasr- l([El, E21Ll], [EIL2], E) :- Ilast- 1([E2lLl], L2, E). 

In general, the requirement that the literals “loop,(6)” and 

“loop-body,@, v)” be independent can be relaxed, if 

loop-body2 consists entirely of unifications, as long as loop, is 

free of metalanguage constructs such as Prolog’s var, nonvar 

and ‘==’ predicates. The intuition here is that if loop, is free 

of side effects (as required earlier) and also free of 

metalanguage constructs such as these, then it consists of pure 

code, and in this case moving some unifications forward will 

not affect the semantics of the program. Moreover, as illus- 

trated by the llast example above, the requirement that the 

literals 

loop@), 100P*(v) 

be an instance of the body of the original definition of 

loop-driver can also be weakened similarly in some cases by 

using an additional generalization step. Together, these show 

that the requirement that the loop fusion conditions for tradi- 

tional languages can sometimes be generalized using logical 

variables and unification. 

The transformation described here is not limited to linear 

tail recursive predicates. For example, the predicate tmarmin 

(defined below), which computes the maximum and minimum 

leaf values in a nonempty tree, can be transformed from 

tmaxmin(T, Max, Min) :- tmax(T, Max), tmin(T, Min). 

tmax(leaf(X), X). 

tmax(tfee(X,Y), 2) :- 

tmax(X, Zl), tmax(Y, Z2), max(Zl,Z2, Z). 

tmin(leaf(X), X). 

tmin(tree(X,Y), 2) :- 

tmin(X, Zl), tmin(Y, Z2), min(Zl,Z2, Z). 

to the following, which avoids repeated traversals of the same 

data structure: 

tmaxmin(leaf(X), X, X). 

tmaxmin(tree(X,Y), Max, Min) :- 

tmaxmin(X, Maxl, Minl), tmaxmin(Y, Max2, Min2), 

max(Max 1, Max2, Max), min(Min 1, Min2, Min). 

Notice that the associativity of mar and min can be used to 

transform this to a nonlinear tail recursive definition using the 

recursion removal techniques discussed earlier, resulting in a 

more space-efficient program. 

5. Code Motion out of Loops 

There may be computations in a loop whose results are 

independent of the number of times the loop is executed. 

Since these computations are loop invariant, there is no need 

to perform them repeatedly. Instead, they may be moved to a 

point just before the start of the loop. This is referred to as 

code motion out of loops. 

As mentioned in Section 2.2, it is necessary to rename 

variables in clauses when carrying out unfold/fold transforma- 

tions. Sometimes, however, it is also necessary to keep track 

of the identities of variables across such renamings. To this 

end, we have the following proposition: 

Proposition 5.1: Consider a clause 

p(x) :- Lits,, X = T,, Lits,, X = T2, Lits,. 

where T, and Tz are alphabetic variants. Then, the clause is 

equivalent to 

p(x) :- Lits,, X = T,, Lits,, X = T,, e(Lits,). 

where 8 is a substitution that renames T2 to TI. IJ 

It is, in fact, possible to strengthen this proposition 

significantly, e.g., by eliminating the requirement that T, and 

T2 be alphabetic variants. In this case, 8 becomes the most 

general unifier of T, and T2, and the clause we obtain is 

p(f) :- Lits,, X = Q(T,), Lits,, X = B(T,), Lits,. 

In this case, however, it is more difficult to argue that the two 

clauses are necessarily equivalent operationally, since the 

unification of X with O(T,) instead of TI may change the 

behavior of the program if Lits2 has side effects or contains 

metalanguage constructs. It can also affect the termination 

304 



beh:ivior of Lits2. For our purposes, the Weak Version given in 

Proposition 5.1 is adequate, so we choose to avoid the compli- 

cations of the more general statement. 

In logic programs, loop invariant computations can often 

be detected simply by using unfold/fold transformations at the 

source level. This is illustrated by the following example. 

Consider the program 

process-vars([], J 

process-vars( [X I L], Table) :- 

Table = table(VarTab, CTab), 

proc-var(X, VarTab), process-vars(L, Table). 

The first step in detecting loop invariant computations is to 

unfold the tail recursive literal. This gives the clause 

process-vars([], J 

process-vars([X], Table) :- 

Table = table(VarTab, CTab), proc-var(X, VarTab). 

process-vars([XIL], Table) :- 

Table = table(VarTab, CTab), proc-var(X, VarTab), 

L = [Y ILl], Table = table(VarTrabt, CTabt), 

proc-var(Y, VarTab,), process-vars(L1, Table). 

Notice that the unfolding step, after the application of Proposi- 

tion 5.1, results in the duplication of the literal “Table = 

table(VarTab, CTab)” in the recursive clause. It follows, from 

a straightforward inductive argument, that this computation is 

invariant in the loop and hence may be moved out of the body 

of the loop. The resulting code is 

process-vars(L, Table) :- 

Table = table(VarTab, CTab), process-varsl(L, VarTab). 

process-varsl([], J. 

process-varsl([XlL], VarTab) :- 

proc-var(X, VarTab), process-varsl(L, VarTab). 

The transformation strategy follows this example. Consider a 

loop written as 

loop(X) :- loop-term(X). 

loop(X) :- proc,(U), q(L), proc.&V), loop(Z). 

The first step is to unfold the tail recursive clause and examine 

the recursive clause that results for duplicate literals intro- 

duced as a result of unfolding. Suppose the clause resulting 

from unfolding and applying Proposition 5.1 is 

loop(X) :- 

pm,@>, q(C proc2(b, 

proct(U’), q(Y), proc2(V’), loop(z’). 

The literal “q(Y)” is duplicated by the unfolding step, and 

hence is a candidate for motion out of the loop. Before it can 

actually be moved, however, we have to ensure that the reord- 

ering of literals this entails will not adversely affect the com- 

putational behavior of the program. The conditions under 

which the reordering can be carried out are similar to those for 

loop fusion: (i) procl and 4 are deterministic or functional, so 

that solution order is not an issue; (ii) “procl(~>” and “q(y)” 

are independent; (iii) 9 is guaranteed to terminate (e.g. when it 

consists of simple tests or arithmetic computations); and (iv) 

proct and q are free of metalanguage predicates and side 

effects. 

Once the loop-invariant computation has been identified 

and the conditions above have been checked, the transforma- 

tion proceeds as follows: first, literals in the original definition 

are reordered so that the loop-invariant computation is at the 

head of the clause: 

loop(X) :- loop-term(X). 

loop(X) :-q(Y), proct(U), proc@), loop(Z). 

An auxiliary predicate loop-l is now introduced, whose 

definition resembles that of the original predicate, except that 

the loop-invariant computation has been deleted. The 

definition of the loop is modified to refer to this auxiliary 

predicate: 

loop(X) :- loop-term(X). 

loop(X) :- q(Y), proct(Cr), proc2(V), loop-l(Z). 

loop-l(X) :- loop-term(X). 

loop-1 (2) :- proc,(ll), proc.@), loop-l(Z). 

In order for this program to be equivalent to the original one, 

it is also necessary that 4 be free of side effects. This is easy 

to guarantee if q consists of simple tests and arithmetic com- 

putations. 

In effect, what this does is to move the loop-invariant 

computation to the preheader for the loop, Traditionally, the 

plausibility of code motion out of loops has rested on the 

assumption that the loop will be executed at least once on the 

average. We do not have to make this assumption here 

(though we expect that loops will typically be executed at 

least once): notice that the code for loop termination is 

repeated, once in the predicate loop and once in loop-l. What 

this achieves is that the loop-invariant computation q(Y) is 

performed only if the loop body is executed at least once; and 

further, it is performed at most once for any call to that loop. 

In this sense, therefore, the code achieved above is optimal. 

Of course, not all loop invariant computations may be 
detected using this scheme. 
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6. Conclusions 

Since programs typically spend much of their time in 

loops, the generation of efficient code for loops is essential for 

good performance. Loop optimization in logic programming 

languages is complicated by the fact that such languages lack 

iterative constructs, such as for and while, that are available in 

traditional languages. Instead, logic programming languages 

express loops using recursion. In this paper, we examine the 

application of unfold/fold transformations to the optimization 

of loops in logic programming languages. Specifically, we 

examine three loop optimizations: recursion removal, loop 

fusion, and code motion out of loops. We give simple 

unfold/fold transformation sequences to carry out the loop 

optinnzations in these cases, and describe the conditions under 

which the transformations are applicable. In the process, we 

show how the properties of unification and logical variables 

can be used to generalize the conditions of applicability of 

these optimizations from traditional languages. 
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