
A Survey of Commercial Paral le l Processors

Edward F. Gehringer
Janne Abullarade
Michael H. Gulyn

Computer Systems Laboratory
North Carolina State University

Raleigh, NC 27695-7911

Abstract

This paper compares eight commercial parallel processors along several di-
mensions. The processors include four shared-bus multiprocessors (the Encore
Multimax, the Sequent Balance system, the Alliant FX series, and the ELXSI Sys-
tem 6400) and four network multiprocessors (the BBN Butterfly, the NCUBE, the
Intel iPSC/2, and the FPS T Series). The paper contrasts the computers from the
s t a n d p o i n t of in t e rconnec t ion s t ruc tu res , m e m o r y conf igura t ions , and
interprocessor communication. Also, the shared-bus multiprocessors are com-
pared in terms of cache-coherence strategies, and the network multiprocessors are
compared in terms of node structure. Where possible, price and performance in-
formation has been included. The reader is cautioned that this survey is based
largely on information submit ted by manufacturers; the authors have not per-
formed any independent evaluation.

D i s c l n l m e r

This report is condensed from a class
project written by two of the authors under
the direction of the third. The material has
been drawn almost entirely from manu-
facturer-provided information available to
the general public. In many areas, there is
insuff icient detai l to make meaningfu l
comparisons between systems. In addi-
tion, some of the data may be less up-to-date
than others, al though in almost all cases,
the information was obtained from manu-
facturers in 1988. Some machines, for ex-
ample, Ametek's 2010 and Internat ional
Parallel Machines' IP-1, have been omitted
due to lack of sufficient information. De-
spite these shortcomings, we hope this paper
will be useful to computer architects inter-
es ted in the cu r r e n t capabi l i t ies of
commercial multiprocessors.

1. Overview

Over 30 companies have designed or
marke ted parallel processing computers.
Many of the computers have not yet been
configured with their maximum number of
nodes. Manufacturers often boast that their
computers offer supercompute r perfor-
mance at one-fifth to one-tenth the cost. It is
difficult to take these performance num-
bers at face value, because they are usually
derived by mult iplying the peak perfor-
mance of one processing node by the num-
ber of nodes in the computer. 1 This does not
account for in ter-node communica t ion ,

1Manufacturers, of course, realize that a single
number is not an adequate measure of a computer's
performance. But, as two manufacturers mentioned
in reviewing this paper, it is the customers that often
insist on a single number to make a first-order
comparison between systems. Only after that do more
realistic measures come into play.

7 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F54331.54338&domain=pdf&date_stamp=1988-09-01

Gehringer et al. Commercial Parallel Processors

which limits the actual performance of the
computer.

The multiprocessors discussed in this
paper all have at least eight computational
processors. They can be classified into two
broad groups: shared-bus and network
multiprocessors. We discuss four comput-
ers that use the bus architecture: the Encore
Multimax, the Alliant FX/80, the Sequent
Balance and Symmetry, and the ELXSI
6400. Among the network-based computers
we consider, one of them, the BBN Butter-
fly TM Parallel Processor, uses a switching
network for communication between the
processing nodes. The other three network
computers use the hypercube architecture:
the Intel iPSC/2 line, the NCUBE/n, and the
Floating Point Systems (now FPS Comput-
ing) T Series. Because of the limitations of
bus contention, none of the bus-based com-
puters has more than 32 nodes. 1 However,
a future release by Encore promises a
maximum of 128 processors. Among net-
work-based machines, the BBN Butterfly
can have up to 256 processors. NCUBE,
whose processing node consists of only 7
chips, is selling the NCUBE/ten computer,
which has 1024 nodes. Thinking Machines
Corporation's Connection Machine [TR
8/88] can have up to 65K processors, but as
the storage per processor is quite limited
(no more than 64K bits~processor), it is not
strictly comparable to the machines cov-
ered in this survey.

This paper is divided into sections that
deal with the different components of a
parallel computer: the interconnection
structure, the memory structure, the node
structure (for network-based computers),
cache coherence (for bus-based architec-
tures), communication and synchroniza-
tion, performance, and price. In each sec-
tion, shared-bus computers are considered
first.

1For the ELXSI, the true limiting factor is that the bus
runs on a 25 ns. cycle time, limiting the maximum
length of the bus. That in turn limits the number of
cards that can be physically attached to the bus, as it is
necessary to have clearance for heat sinks, cables and
such.

2. In terconnec t ion s tructures

2.1. Shared-bus architectures

A problem faced by shared-bus systems
is performance degradat ion caused by
contention for the bus and for memory. Bus
latency is the time for the bus and the
shared memory to complete an average
transaction. It consists of two parts, bus
arbitration and usage, and memory-access
time. Shared-bus systems use different
approaches to reduce bus traffic. The Mul-
timax system divides the global bus into
three independent buses: one for addresses,
one for data, and one for vectors. The
Balance system has a one-bit data path
called the System Link and Interrupt Con-
troller (SLIC) Bus which connects all ma-
jor components in the system and allows
them to exchange interrupts, other low-
level control signals, and error informa-
tion independently of the system bus. The
Alliant system divides the system bus into
two data buses and an address bus. It also
contains a concurrency control busma
high-speed inter-element communication
path that is independent of the program's
data and instruction paths. The ELXSI Gi-
gabus TM is a single l l0 -b i t wide bus,
clocked at 25 ns. and arbitrated by a Bus
Control Unit. Memory data, memory ad-
dresses and control data are multiplexed
on the Gigabus.

Encore's Mul t imax . The Multimax's
Nanobus interconnects one System Control
card, eight memory cards and eleven re-
questor cards (advanced dual-processor
cards, Ethernet/Mass storage card, etc.).
The Nanobus has an usable throughput of
100M bytes per second, which cannot be
achieved by a single bus. Therefore, the
Nanobus consists of three buses: the 32-bit
address bus, the 64-bit data bus, and the in-
terrupt-vector bus, which carries 14 lines to
distribute interrupts through the system.
See Figure 1.

7 6

Gehringer et al.

16"l'wmim)$ TapiDrivn ? ? Di~Drwm

n d Ethernet I
' I and 1 Dual
t l M e s s Storagel Processor,.__,

Figure 1: The Multimax System [Sc 11/86]

At least one of each of the following card
types should be connected to the Nanobus:

• An Advanced Dual Processor card
(APC), which contains two 32-bit Na-
tional Semiconductor 32332 processors
in the Multimax 320 (or 32032s in the
Multimax 120), each with a private 64K-
byte write-through cache. Optional
Wytek f loat ing-point co-processors
have a peak floating-point rate of 1 DP
megaflop. Each processor is connected
to a m e m o r y - m a n a g e m e n t un i t
(MMU). Earlier versions of the Encore
also used an extended memory man-
agement unit (XMMU), but it is no
longer needed with. the 32332's 32-bit
virtual address space. A new, much
faster processor will be announced
soon.

Commercial Parallel Processors

The System Control Card (SCC), whose
main element is a National 32016 mi-
croprocessor with 64K bytes of ROM and
128K bytes of RAM. The SCC performs
bus arbitration, initializes the system,
diagnoses all cards, monitors the
environment and reports status when-
ever another card fails, and communi-
cates with an operator and a remote
console.

A Shared memory Card (SMC), which
has 16M bytes of interleaved memory
with error detection and correction
codes.

An Ethernet/Mass Storage Card (EMC),
which provides an Ethernet interface
and a connection to storage devices via
the Small Computer System Intercon-
nect (SCSI). Each EMC card has a Na-
tional 32032 to manage input/output
transfers, diagnostics, and DMA en-
gines.

The Nanobus is a pended (or "split-
transaction") bus with an 80-ns. cycle.
After the address of a read operation is
transferred to memory, the bus is released.
This action makes the bus available for
other transactions while the requesting
processor waits for the data read from
memory. When memory is ready to send
the data to the requester, it has already re-
leased the bus. Therefore, all data trans-
ferred on the Nanobus contains a tag which
identifies the requester. The tag is gener-
ated by the requestor and consists of a 4-bit
requester ID [Sc 11/86, Bi 7/87] and 2 re-
served bits. The reserved bits specify
which processor within a module requested
the data. The tag is latched by the ad-
dressed module and is returned with the
requested data.

The Nanobus insures fair access to the
address and data buses by using two ar-
biters: a centralized and distributed ar-
biter. Requests for the bus are send to the
arbiters at the beginning of a clock cycle
and grants are issued at the end of the same
clock cycle.

7 7

Gehringer et al. Commercial Parallel Processors

The central arbiter is responsible for
guaran tee ing equal access for all re-
questors. It achieves this goal by using a
round-robin scheme to rotate the highest
priority among the modules [Sc 11/86, Bi
7/87].

A distributed arbiter is found on each
module and consists of a state sequencer
which determines whether the module may
request the address bus. The individual
distributed arbiters can modify the bus ar-
bitration in certain situations. For exam-
ple, if one of the modules is trying to access
memory and is rejected several times over
a short time interval, it asserts a special
"priority" control line. The address-bus
arbiter stops accepting any new bus re-
quests into the round-robin queue until all
the outstanding requests have been ser-
viced [Bi 7/87].

The Sequent Balance. The Balance sys-
tem is built around the system bus, which
links the system's CPUs, memory and I/0
subsystems. The system bus operates at 10
MHz (1 cycle = 100 ns.), and can carry 64
bits of data multiplexed in time with 32-bit
addresses. Currently, Balance systems
only use 32-bit data and 28-bit addresses.
However, the new Sequent Symmetry ma-
chine [LT 12/87] uses all 64 bits of the
datapath. The system bus reads from and
writes to memory data packets of 1, 2, 3, 4,
and 8 bytes.

The bandwidth of the bus data path is op-
t imized by the use of a split re-
quest/response protocol. In this protocol,
memory read and memory write requests
are stored in separate request pipelines
(queues), and individual requests and re-
sponses are interleaved in sequential bus
cycles. The bus is only busy only during
the cycles needed to transfer information
since requests and responses are serviced
separately. Continuous use of 8-byte reads
and 8-byte writes produce an effective data
transfer rate of 26.67M bytes per second. If
the full 64-bit bus were used, the bus would
have an estimated data transfer rate of 64M
bytes per second [Se 11/86, Th 2/88].

The system bus uses a central ized
multilevel arbiter. The access of the bus is
granted as follows. The first priority is
given to an I/O controller responding to a
read request, the second priority is given to
a memory board responding to a read re-
quest, the third priority to Multibus adapter
boards, SCSI/Ethernet/Diagnostic boards,
and dual-channel disk controllers, and the
last priority is given to the dual-processor
boards. Among the two lowest-priority
modules, arbitration is done by a round-
robin scheduling discipline [Se 11/86].

The Balance system uses a distributed
control-flow mechanism to avoid bus con-
gestion. Each requestor keeps status in-
formation about the read and write queues
and does not request access to the bus unless
space is available in the corresponding
queue [Th 2/88].

The following circuit boards are con-
nected to the system bus (see Figure 2):

One to fifteen dual-processor boards in
the 21000 (one to six in the Balance
8000). Each board has two NSC Series
32000 CPUs. Each CPU has a 8K-byte
memory cache, a floating-point ac-
celeration coprocessor, an NS32082
Memory Management Unit, and a
System Link and Interrupt Controller
(SLIC) chip. Each CPU also has a
small local memory to store frequently
used kernel routines.

One to four memory controller boards.
Each board has 2M bytes of RAM and
error checking correction (ECC) logic.

Memory expansion boards. A 2M-byte
or 6M-byte memory expansion board
can be connected to a memory con-
troller board to give a total of 4 or 8M
bytes per controller.

One to four Small Computer System
Interface (SCSI)/Ethernet/Diagnostics
(SCED) boards. Each board serves as
host adapter on a SCSI bus and super-
vises system startup, diagnostics, and
access to an Ethernet local area net-
work.

7 8

Gehringer et al. Commercial Parallel Processors

Terminal
multiplexer(s)

Parallel
printer

interface(s)

I
0 Special- 0
n purpose ~
0 devices n L.

...........!
: : : : : : : : : : : : !
:.:.:.:..:~

. . . . , . . . =
: , : . : . : . : . : !
: : : . : . . . , ; ,,

i . l O ~

MultJbus
interface

board

Disk
controller(s)

Tape
controller(s)

Synchronous
comm.

controller(s)

.... i

Ethernet

adapter disk SCED
board(s) controller(s) board(s) !ii!:i:i!ii i

I I I i iii',i i i .: ,.......
S sie " !13

. ,~ i (D

I !' Two-30 Memory t Special- i
t purpose a •

32-b i tCPUs 2-28M bytes , dev ce , iiiiiii ili

X.25 network

[i :::t:o= II
! i

Tape target I
adapter

Disk target i
adapter

(Balance 8000

Figure 2: The Balance System Architecture [Th 2/88]

A maximum of four MULTIBUS
adapter boards which connect the sys-
tem bus to a MULTIBUS system.

• A maximum of four dual-channel disk
controllers (DCCs) per Balance 21000
system. A Balance 8000 system only
has one DCC.

The Balance system contains a 1-bit
data path called the System Link and
Interrupt Controller (SLIC) Bus which in-
terconnects all the SLIC chip in the system.
A SLIC chip is coupled with each processor,
memory controller, I/0 controller and other
major components in the system. The SLIC
chips provide support for interrupt distribu-
tion, low-level mutual exclusion, and con-
figuration and error control. One of the
goals of the SLIC bus is to simplify the sys-
tem bus and to allow the CPUs and other
subsystems to exchange interrupts and
other low-level control signals, and con-
figuration and error information.

One of the most important tasks of the
SLIC subsystem is the interrupt control and
distribution. Every SLIC on the SLIC bus

responds to interrupts directed to its SLIC
ID' number. Also, each SLIC coupled with a
processor responds to a destination group
ID number. When there is an interrupt in
the system, all the SLICs in the specified
processor group number arbitrate among
themselves to decide which one will accept
the interrupt. The SLIC which accepted the
interrupt is masked out of the group, which
means that this SLIC will not arbitrate for
another interrupt until the current interrupt
is completed. A SLIC arbitrates for an in-
terrupt based on its local priority register.
The idea is to have the idle processors and
the processors running the least important
tasks handle most of the interrupts [Se
11/86, Be 10/87, Th 2/88].

AUiant FX/80. The Alliant FX/80 is
built around the memory bus, a syn-
chronous memory access bus that consists
of two 72-bit data paths (64 bits of data, 8 bits
for single-bit error detection and correction
and double-bit error detection), a 28-bit ad-
dress bus, and a control bus. The data
buses are bidirectional and are connected
to memory modules, the computational

7 9

Gehringer et al. Commercial Parallel Processors

caches, and the interact ive processor
caches.

Data is always transferred as four eight-
byte words, which is the size of a cache
block. The first word is t ransferred on
data bus A, and subsequent data alternates
between data bus A and data bus B for four
cycles. Another transfer request can be
interleaved with the first transfer to allow a
maximum of eight 8-byte words to be trans-
ferred in four cycles. The data-bus cycle
time is 85 nanoseconds, and provides a
maximum total bus bandwidth of 188M
bytes per second. The data buses use a pro-
tocol called "convenient word first" to speed
up accesses which may not be to the first
word of a cache block [A1 10/86].

The Alliant FX/80 contains up to eight
processors called computational elements
(CEs) used for computational work. The
CEs are connected to the memory bus

through a computational processor cache
(CPC). Up to eight computational elements
are connected dynamically to up to four
cache ports through a crossbar intercon-
nection that provides a data bandwidth of
376M bytes per second, provided that the re-
quested data is in the cache. In addition to
the CEs, the FX/80 has up to twelve interac-
tive processors (IPs) which execute inter-
active user jobs, input/output, and other op-
erat ing system activities. The IPs are
connected to the memory bus via the inter-
active processor caches (IPCs) and to pe-
ripheral devices via the VME bus (or op-
tionally, a Multibus), which is IEEE 796
compatible. The FX/80 contains up to four
IPCs, each of which connects one, two or
three interactive processors. Figure 3
shows how the computational elements and
the interactive elements are connected to
the memory bus.

CONC
CONT
BUS

Figure 3: The Alliant FX/80 System Architecture [A1 10/86]

8 0

Gehringer et al. Commercial Parallel Processors

Each computational element is a micro-
programmed pipelined processor with
integrated floating point and vector in-
struction sets. The CE has four main func-
tional systems: a pipelined instruction
unit, a pipelined vector and floating point
unit, a CE switch and a concurrency con-
trol unit [Pe 5/86, A1 10/86].

• The instruction unit is a five-level
pipelined processor and includes the
instruction cache, control section, in-
struction processor, and address trans-
lation unit. The instruction cache
contains 64K bytes of 85-nanosecond
RAM and is addressed with virtual ad-
dresses. The instruction cache has a
copy of the current instruction stream
and initiates a load when an instruc-
tion fetch operation results in a miss.

The control section consists of an in-
struction parser, a microsequencer,
and a RAM-based control store. The
instruction parser decodes the opcodes
from the data path and generates con-
trol-store microaddresses, checks for
dependencies between instructions,
and prevents a new instruction from
executing if dependencies exist, and
uses a branch-prediction unit to antici-
pate the flow of the program and
prefetch instructions. The microse-
quencer and control-store memory ar-
ray delay the execution of certain fields
of a microword, decode delayed fields
and control microtraps and unaligned
memory references.

The instruction processor consists of
the address unit and the integer/logic
unit. The address unit contains two
identical 16-bit slices. The address
unit contains the instruction buffer,
which receives the output of the in-
struction caches, latches it and rotates
16-bit words to align the fields of the in-
struction.

The address translation unit translates
virtual addresses into physical ad-
dresses. It has a virtual address regis-
ter and a translation cache.

The floating point and vector unit con-
tains eight 64-bit floating point data
registers, each of which holds a 32-bit or
a 64-bit floating-point number, eight
vector registers each of which contains
thirty-two 64-bit wide elements and
floating-point status and control regis-
ters. These control registers support
condition codes to handle the results of
floating point comparison-and-test in-
structions, and various exception code.
Floating-point operations are provided
for arithmetic, conversion, testing and
branching, and a hardware imple-
mentation of square root.

The CE switch is a four-by-eight ad-
dress and data switch, connecting up to
eight CEs with the four cache ports on
two CP caches. It consists of twenty-
four 2,600-gate gate arrays, and pro-
vides a peak bandwidth of 376M
bytes/second, when data is in the cache
[St 6/87].

The concurrency control unit (CCU) is
a gate array which connects CEs via a
concurrency control bus. The CCU is
connected to the instruction unit of a
computational element and to up to
seven other CCUs, thereby controlling
up to eight CEs running concurrently.

The Interactive Processor is an indus-
try-standard Multibus card that contains a
Motorola MC68020 microprocessor, an ad-
dress-translation unit, an I/O map, and
parity-protected RAM. Multibus devices
are able to perform direct memory accesses
via a direct memory access channel, oper-
ating through the I/O map. IPs are gen-
eral-purpose processors; they can execute
interactive applications such as editors and
operating-system tasks such as paging,
scheduling, and I/O. Up to twelve IPs can
be used for these purposes, freeing the CEs to
concentrate on computation. Each IP has
4M bytes of local dRAM for caching fre-
quently used OS pages.

One such IP, the system interactive pro-
cessor, is connected to the system console
and remote diagnostic port. Some of its
functions are to bootstrap the system, to

8 1

Gehringer et al. Commercial Parallel Processors

execute diagnostic software, to control the
system diagnostic bus, and to handle other
system bookkeeping tasks.

The ELXSI System 6400. The ELXSI
System 6400 interconnection is the Gigabus
(Figure 4). This bus is 110 bits wide, in-
cluding 64 bits of data, 35 bits of control and
11 bits of parity. All functional units at-
tach directly to the Gigabus, including up to
12 proprietary ECL CPUs, 8 memory con-
trollers, 4 I/O processors, a Service Proces-
sor and a Bus Control Unit. The bus clocks
at 40 MHz (25 ns.) for an aggregate data
transfer rate of 320M bytes/s., exclusive of
control and parity. Both in terprocess
communication and memory accesses oc-
cur over the Gigabus.

The bus is arbitrated by a request/grant
mechanism based on slot priority. Every
functional uni t that wishes to transfer re-
quests control from the Bus Control Unit.
The BCU grants the bus to the highest prior-
ity functional uni t for use on the next bus
cycle. Someone else can be using the bus
during this arbitration. On the cycle after
the transfer the receiving functional uni t

acknowledges on a separate bus. Thus it is
possible to sustain the 320M byte/s, data
transfer rate of the Gigabus.

Eleven of the control bits are used for the
m a n a g e m e n t of the Gigabus itself. In-
cluded in these bits are the request for the
bus, the grant of the bus and the acknowl-
egement bus, as well as power-fail warn-
ing, the bus clock signal and a variety of
other housekeeping signals.

The remaining 88 bits make up the Bus
Information Quantum (BIQ). The 24 bits of
the BIQ control field identify the source
functional unit , the destination functional
unit, the BIQ (operation) type, whether this
is the last BIQ of this operation, a tag field,
and some housekeeping and escape func-
tions. Five bits are currently allocated for
the functional unit address, hence the lim-
itation of 32 functional units on the Giga-
bus. The format of the other 64 bits of the
BIQ is dependent on the BIQ type. The two
classes of BIQs are data operations and
message operations.

F igure 4: The ELXSI System 64000 [0185]

8 2

Gehringer et al. Commercial Parallel Processors

• Data BIQs (that is, memory operations)
current ly include Read, Write, Ex-
change Or, Exchange And, Exchange
Write, and Two Word Read. The ex-
change operations are atomic opera-
tions against memory, allowing the
i m p l e m e n t a t i o n of locks and
semaphores.

• Message BIQs include Message Send,
Small Message Send, Small Hardware
Send, Received and Released Buffer,
and Received and No Buffer Release.
Thus the messaging protocols and the
concept of the process are part of the
machine archi tecture at its lowest
levels.

Data BIQs include a process ID, an oper-
ation code and the physical memory ad-
dress. If it is a Write request, then the data
for memory follows in the next BIQ. For
operations requiring a response, such as a
Read, the memory controller will respond
with one or two BIQs when the data is
ready. The tag field in the control bits is
used to relate responses to requests. It is
possible for functional units to have multi-
ple operations in progress at once. For ex-
ample, filling a cache block might result in
four outstanding two word reads. The re-
sponses might come back in any order, ne-
cessitating the use of the tag field to sort
things out. The bus is not held between re-
quest and response.

Message BIQs contain a sending-pro-
cess ID, an operation code, a destination
process ID, the physical memory address of
the message body (in most cases) and some
information which helps the receiving
functional uni t to assess the software
priority of this message. If appropriate, the
functional unit will reschedule to allow the
receiving process to execute immediately.
There are provisions in the protocol to redi-
rect messages in the event that a process
has migrated to a different CPU. On heav-
ily loaded systems, load-leveling process
migrations occur every few seconds, so this
is an important part of the Gigabus protocol.

Three different models of CPU are cur-
rently supported. The original CPU, intro-

duced in 1984, is roughly 4 VAX MIPs and
has a 16K-byte write-back cache. The 1986
CPU is a reworked version of the 1984 CPU
with faster floating-point operations and
br{mching and a 64K-byte cache. It gener-
ally performs at 7 VAX MIPs. The 1988
CPU is a complete ly new design.
Pipelined, nearly all instructions execute
in a single cycle (~ la RISC). The cache is
1M byte and is split between code and data.
Cache-to-CPU bandwidth is 640M bytes/s.
This is the first ELXSI CPU to introduce
vector instruct ions and also contains
many innovations specific to ELXSI's real-
t ime market . The CPU performs at
roughly 25 VAX MIPs and will perform at
10 MFLOPs on the standard 100×100 64-bit
Linpack benchmark. A notable feature of
the ELXSI system is that all three genera-
tions of CPU can execute in the same
frame. Thus upgrades consist of adding
whatever is the current generation of CPU
to the existing hardware, rather than dis-
carding any existing hardware.

Each CPU contains sixteen complete
process contexts called "register sets." The
CPU always runs the highest-priori ty
ready process that is in a register set. The
combination of such a simple scheduling
algorithm with hardware support results in
extremely fast context switches, on the or-
der of ten microseconds in the earlier two
CPUs and around three microseconds in
the current CPU. Extremely fast context
switches are very important in the real-
time marketplace.

At the architectural level, Input Output
Processors (IOPs) are similar to CPUs.
Specifically, I/O controllers genera l ly
have on-board CPUs which run the device
driver. Communication between the oper-
ating system and the controller is via mes-
sages rather than the more traditional in-
terrupts. During I/O operations the IOP
supervises the DMA of data between the
controller and main memory. These I/O
operations occur over the Gigabus. CPUs
and IOPs look the same from the perspec-
tive of a Memory Controller.

Each Memory Controller (MC) supports
up to 256M bytes of memory. This memory

8 3

Gehringer et al. Commercial Parallel Processors

is organized into interleaved Memory Ar-
ray Boards. The MC itself runs at 25 ns.
and has deep buffering to allow it to service
many requests simultaneously. There can
be up to eight Memory Controllers per sys-
tem, yielding a maximum physical mem-
ory size of 2 GB. Lifting the limit on the
maximum amount of physical memory is
mostly a software problem and is currently
being investigated.

The Service Processor performs diag-
nostic and bootstrap functions. From the
end user's perspective the most interesting
function it performs is to monitor the health
of the CPUs, deconfiguring them if they
fail. This include migrat ing processes
from the failed CPU.

2.2. Network Multiprocessors

The BBN Butterfly Parallel Processor
has an interconnection network unique
among the machines considered in this
paper. Its "butterfly" switching network is
an indirect binary n-cube packet-switch-
ing network, that connects from 2 to 256
processing nodes [Br 4/87]. According to
BBN, the advantages of the Butterfly switch
over other interconnection architectures
include performance, cost, and flexibility.

The Butterfly switch connects different
processing nodes, each consisting of a pro-
cessor and memory. Figure 5 shows a But-
terfly switch for a 64 processor system [BB
3/86]. The figure would more accurately
represent the switch if it were in the shape of
a cylinder, so that both the upper left input to
the switch and the upper right output from
the switch would be connected to the same
processing node. As a result, any message
going from one processor to any other pro-
cessor is delayed by passing through log n
stages.

The Butterfly is a shared-memory ma-
chine, while the hypercubes are message-
passing machines. One Butterfly proces-
sor can reference memory in any other
processor, through the switch. Instead of a
switch, the other network processors pro-
vide hardware assistance for message
passing. The Butterfly can do message

passing too, but does it via software, using
message buffers in shared memory.

The Butterfly switch is also more easily
scalable than a single-bus in ter -
connection. Bus architectures are limited
to a few dozen processing elements; at this
point, contention for the bus becomes so
great that adding more processors will not

F igure 5: A 64-Node Butterfly Switch
[BB 3/86]

8 4

Gehringer et al. Commercial Parallel Processors

improve per formance . However, the
bandwidth of the Butterfly switch grows
with the number of processors, so a Butter-
fly can take advantage of a very large
number of processors. The interconnection
bandwid th can be increased f u r t h e r
through the use of r edundan t switching
nodes, which decrease contention on the
Butterfly switch.

Compared with a s tandard hypercube
in te rconnec t ion , the But te r f ly switch
achieves lower latency. In first-genera-
tion hypercubes, 1 a message directed to a
non-neighbor node mus t be forwarded by
other processors along the way. This
causes the other processors' applications to
be interrupted, and therefore reduces per-
formance. As a result, programmers try to
program an application so tha t message
passing need only be done between imme-
diate neighbors [BB 87]. This often re-
quires extra p rogrammer effort. Also,
since the processing nodes do not share
memory, they require a copy of the program
on each processing node. This necessitates
larger memories at each node [BB 87].

A disadvantage of the Butterfly switch is
tha t in order to avoid switch and memory
contention, data and instructions must be
distributed among the memory modules in
a balanced way. This is facilitated by the
Uniform System software library routines
for memory m a n a g e m e n t [Re 12/86].
Switch contention (but not memory con-
tention) can also be reduced by placing re-
dundan t switches in the switching net-
work. Redundant switches also improve
fault tolerance. For clarity's sake, these
redundant paths are not shown in the 64-
node Butterfly switch in Figure 5 .

1The Intel i.PSC/2's "direct-connect" routing [In 9/87]
uses a multistage interconnection network which is
isomorphic to a Butterfly interconnection. It
eliminates the need to interrupt processors along the
route. However, the Butterfly still achieves much
lower latency than the iPSC/2. In a sense, this
comparison is of apples (shared-memory references)
and oranges (message passing). There is reason to
believe that the Butterfly would not be faster at message
passing than the iPSC/2. The lowest process-to-process
message latency in the Butterfly is 1.80 ms. [SC 87] ;
while for the iPSC/2 it is 0.58 ms. Both of these times
are dominated by software.

The other network computers considered
in this paper use the hypercube architecture,
which was originally developed at Caltech.
A hypercube is well suited to science and
engineer ing applications because it con-
tains many different topologies, such as the
ring, various meshes, and FFT, tha t are
encountered in these disciplines. The hy-
percube archi tecture is also being pro-
grammed for AI applications as they begin
to require faster computing resources.

The three hypercube computers covered
in this survey are the Intel iPSC/2, the
NCUBE/n, and the FPS T Series. The
largest Intel system sold to date contains
only 128 nodes. The NCUBE architecture
allows up to 1024 nodes, which is the size the
NCUBE/ten (210 nodes). The FPS T series
has been discontinued by the manufac-
turer. It was constructed out of modules
containing 8 processing nodes each. These
modules can be aggregated into hypercubes
of hp to dimension 14, but the largest prod-
uct was the FPS T200, which had 128 nodes.

All three hypercube computers have un-
shared local memory, and use message
passing to communicate between nodes.
The processing nodes of all three have
floating-point accelerators. However, the
process ing-node boards differ signifi-
cantly in size. While Intel and FPS use
one or two large boards per node, NCUBE
managed to put 64 processing nodes one
board 16" by 22" [NC 88]. NCUBE provides
only 512K of memory per node, though,
while FPS provided 1M byte and Intel pro-
vides 4M bytes in each node.

3. Node Structure

A prominent feature of a network archi-
tecture is its node structure. A processing
node usua l ly consis ts of one control
p rocessor , one or more n u m e r i c a l
coprocessors, local p rogram and da ta
memory, and hardware to communicate
with other nodes. To minimize initial en-
gineer ing costs and facil i tate program-
ming , all the p rocess ing nodes in
commercial parallel architectures have the
same basic design. Some processing nodes

8 5

Gehringer et al. Commercial Parallel Processors

can be enhanced by either adding daughter
boards or connecting full-size enhance-
ment boards.

The key issues designers face when de-
signing a processing node include--

• Should custom VLSI or off-the-shelf
components be used?

• How much numer ica l processing
power is needed, and what processor
should be used?

• How much memory should be provided
per node?

• What kind of communication hard-
ware should be provided?

All the processing nodes except NCUBE's
were constructed from off-the-shelf compo-
nents. NCUBE designed all of the process-
ing node except the memory onto one VLSI
chip. Off-the-shelf components allow the
node to be configurable and reduce the ini-
tial engineering investment. Advantages
of NCUBE's design include improved
reliability, lower size and power consump-
tion, and lower cost in mass production.
NCUBE's decision to use one custom VLSI
CPU is based on the belief that high perfor-
mance in scientific applications can best be
achieved with several hundreds of process-
ing nodes [NC 88]. NCUBE has sold several
NCUBE/tens, with 1024 nodes, the largest
configuration covered in this survey.

Designed to perform numerical opera-
tions quickly, NCUBE's nodes have 32-bit
processors and floating-point execution
units that can process 64-bit floating-point
quantities [Ha 10/86]. Intel and FPS also
offered pipelined vector units to increase
each node's performance to the minicom-
puter range.

All the hypercube nodes have only local
memory, while the Butterfly Parallel Pro-
cessor offers shared as well as local mem-
ory. A strictly local-memory architecture
requires some data and code to be repli-
cated, and therefore demands more mem-
ory than a shared-memory machine. Con-
sequently, nodes in all the hypercubes ex-

cept NCUBE's contain several megabytes of
memory. Although the NCUBE nodes have
only 512K, the 4M-byte host can run larger
computations [Ha 10/86]. This is useful in
the common case where the pre- or post-pro-
cessing for a large numeric application
requires much more memory than the in-
dividual processes of the parallel computa-
tion.

On first-generation hypercubes, "store-
affd-forward" message t r a n s m i s s i o n
caused intermediate processors to be inter-
rupted and thus degraded performance.
Some hypercubes now have hardware as-
sistance for message forwarding. The
iPSC/2 series nodes have routing hardware
on the Direct-Connect routing board which
rece ives and t r a n s m i t s m e s s a g e s
independent of the processor [In 9/87]. The
Direct-Connect routing board creates a
connection from the source node to the des-
tination node and then sends the message
at 2.8M bytes/s. The Butterfly has a mul-
tistage routing network, removing the need
for shared-memory references to traverse
intermediate nodes [BB 3/86].

Butterfly Node Structure. Each Butterfly
processing node (Figure 6 [BB 87]) is iden-
tical except for I/O options. Each node is
capable of a peak performance of 2.5 MIPS.
Its CPU is a 16 MHz 32-bit Motorola 68020
microprocessor, which can off-load float-
ing point arithmetic to a Motorola 68881
floating-point coprocessor (IEEE 754 stan-
dard). Each node also has a 68851 paged
memory- management unit (PMMU) and
up to 4M bytes of memory [BB 87].

The Butterfly processing node has a sep-
arate communication processor to allow
uninterrupted application processing. The
communication processor is actually a
microcoded coprocessor called the Process-
ing Node Controller (PNC). The PNC, in
combination with the 68851 PMMU, trans-
lates virtual addresses into physical ad-
dresses for both local and remote memory,
so that a program need not distinguish be-
tween local and remote addresses [BB 3/86].
The PNC's microcode also provides opera-
tions that enhance the functionality of the
MC68020 for parallel processing. For ex-

8 6

Gehringer et al. Commercial Parallel Processors

I 4-Megaby'te Random I Access Memory

MC68020
Processor
and
MC68881
Cp-Processor

32-Bit Data Bus

M068851 ~ . ~
Memory

Management Bootstrap
Unit EEPROM

Special
Function
Decoder

DuaJ
UART

I
Control

Memory Controller

|

Node Switch
Controller Interface

I
Biolink
tO

Adapter

Figure 6: Block Diagram of Butterfly Node [BB 87]

ample, it has a test-and-set operation that
guarantees "atomic" access to a memory
location. The PNC can insure mutual ex-
clusion because it handles all memory ref-
erences made by its processor and by re-
mote processors to its memory via the
switch.

N C U B E Node Structure. The NCUBE
processing node is generic for all models of
NCUBE parallel processor and consists of
seven chips, six DRAMs, and the custom
processor. Designed over a 2-year period
exclusively for parallel processing, the
custom processor contains 160,000 HMOS
transistors. It contains a 32-bit integer
ALU and shifter, 16 general-purpose reg-
isters, a 64-bit IEEE standard floating-
point unit, and an instruction cache [Ju
6/86]. A 64-bit floating point multiply oper-
ation takes 2.0 Its. at 10 MHz. This com-
pares with 9.5 ~s. for the same operation on
an Intel 80287 math coprocessor running at
10 MHz. A large part of this speedup "can

be attributed to the fact that the floating-
point hardware has been fully integrated
with the rest of the processor" [Ju 6/86]. This
eliminates the time-consuming interface
protocol between the processor and the
floating-point unit. The custom processor
has a total of 11 bidirectional serial DMA
channels. Ten bidirectional channels are
for connections to neighboring processing
nodes and one is for system I/O [Pa 5/86].
(This is what limits the NCUBE hypercube
to 210 nodes.) Each channel has a peak
transfer rate of 8M bits/s, in each direction
(2M bytes/sec overall). Message passing
is done via DMA, allowing the processor to
resume computing while a message is be-
ing transferred. When a DMA transfer is
completed, the DMA channel interrupts the
processor, so that no processor polling is
required to determine which DMA channel
just finished [Pa 5/86].

i P S C / 2 Node Structure. While NCUBE
used a custom processor, Intel took the

8 7

Gehringer et al. Commercial Parallel Processors

opposite approach and constructed a pro-
cessing node out of off-the-shelf compo-
nents to make their processing nodes con-
figurable and upgradable [In 10/87]. The
computat ional processor is Intel 's most
powerful 32-bit microprocessor, the 80386.
The companion 80387 numeric coprocessor
provides 64-bit IEEE-compatible scalar
f loat ing-point precision at 0.3 MFLOP.
Using the instruction t iming to rate float-
ing-point speed, the iPSC/2-SX takes 0.81
~s. to perform a 64-bit multiply. Four DMA
channels are found on each processing
board for transfer of large blocks of data [In
88]. Two channels allow for data transfer
to other processing nodes through the rout-
ing hardware, one channel for each direc-
tion. The other two channels are used by
software for transfers within the process-
ing node.

Flexibility is achieved in memory con-
f igurat ion, rou t ing hardware , and en-
hancement options. The memory for the
processing node is located on a daughter
board which is laid on top of the processing
node board. This gives the processing node
the abil i ty to expand i ts memory as
technology makes memory cheaper and
more compact. The processing node can
hold up to 16M bytes of DRAM. Since the
Direct-Connect ha rdware for rout ing is
also on a daughter board, the customer can
upgrade the routing capabilities of the node
w i t h o u t r ep l ac ing the en t i re node.
Presently, the only routing daughter board
available is the Direct-Connect board.

Each node also provides an iLBX (local
bus) interface so that optional boards can be
connected directly to the processing node to
enhance the node. Presently, Intel has two
enhancement boards, the Vector Extension
(VX) and Scalar Extension (SX) numerical
accelerators. The VX numerical acceler-
ator is a full size board which resides be-
side the processing node board and is con-
nected directly to the processing node
through a ribbon cable. The relationship
between the processing node and the VX
numerical accelerator is t ha t of t ightly
coupled (shared memory) processors where
the memory located on the VX board can be
accessed and used by the processing node

as if it were its own memory [In 88]. Its
pipelined floating-point processor consists
of a floating point adder and multiplier .
Tl~e addition is done by an Analog Devices
Inc. 3220 floating-point mul t ip l ier chip,
and the multiplication is done by an Ana-
log Devices 3210 floating-point adder chip
[El 4/86]. The board also performs 32-bit
fixed point and logical functions. The
h a r d w a r e is op t im ized for m a t r i x
mult ipl icat ion, and f loating-point opera-
tions are compatible with the IEEE-754
f loat ing-point s tandard . Theoret ical ly,
double-precision f loa t ing-point calcula-
tions are sped up by two orders of magni-
tude over the non-VX version of iPSC/2
computer.

The SX numerical accelerator approxi-
mately triples the power of the 80387 copro-
cessor. The SX uses a 1167 Weitek fast
floating-point unit and is most effective in
heavily scalar computations and computa-
tions with short vectors. The SX is not a
full-size board, but a daughter board to the
node board.

FPS Node Structure. The FPS T Series
processing node is called the Vector node
and is claimed by the manufacturer to be a
high-performance vector computer which
has a peak performance of 12 MFLOPS [FP
11/87a]. Figure 7 shows a block diagram of
the node structure. The node controller is
the T414 Transputer , an integrated micro-
computer, which can operate at least 3 times
the speed of the Motorola 68020 [Fr 8/86].
The vector processor unit operates at 8 MHz,
but to achieve peak performance, data must
be aligned on 128-doubleword boundaries
[Re -]. The node can contains 1M byte of
memory [FP 11/87a]. Data within the node
can be transferred either by the control pro-
cessor or by the vector processor [Re -]. The
vector processor is much faster than the
control processor at t r ans fe r r ing da ta
within the processor, but requires data
a l ignment [Re -].

8 8

Gehringer et al. Commercial Parallel Processors

~ ii~iii!i!~iii~i~i~i~i!~!@iiii~iii!i!i!!i~!~i~i~i~i@!iiiiiiiiiiiiiii~iii!i!ii!!!!iiiii!i!i!i@i!i!i!i!i~ii~iiiiiiiii~ii~iiiii!ii!!iiiiiiiiiiiiii ii!iii!ii!!iiiiii iiiiiiiii~iiiiii!i~iiiii~i~i~i~iii~iii~iii~ii!iiiii!iii!ii~!i~!!~!iiiiiiiiiiiiiii!i~i!~ii!ii~iiii~
|iiiiii : :~,~ iS@i!!!iiii" ~ :SliI
~i::~!i:::;:: ~ . . B ~ ; ~ : iiiiii!i~:/:i::i::ii!iii!i~. " - " . . . ~ ~ Ill . . = " :.!ii£:

.l!~! :' • : ~- . Hi!ji!iiii~iH!] :.w .. " : iii:: ~!~H!i!!H:::::ii [!i~;

::~,~,iiii!i',iiiiii::i::i::iii~i::i::iii~iii~iiiiiii~ i~,i~:i~i~il ii~iii::i::i~i::iiiiiiiiiiii':i',iiiiiiiiiiiiiiiiiiiiii~i~,',iiiii ii iii i i iiiiii~ ii~i li.i~i::iiiiiii::ii~iiii!ii':'~i!i!!iii',',i!!iiiiiiiiill i i'~: !
2 . " : " t . : : - < - : - : . : , : . ' - ' - ' . : : < . - , - : . - ' . ' . ' . ' . ' .

I~ I t i t
e3eo ~ sseJppv

o0

COQ

I::l.

Z
o

0
E~

i,.,.l o

.. iiiiiii!iiiiii
"'::::8 8~: :i ::i:i:::: S 8i:!8~8K
::

i~iiiiiiiiiiiiii!i!!t!i@ili!ili!iiii!!iiii!iiii
i!!iiiiiiiiiiiii:i!iiiiiiiiiiiiiiiiiiii~iiiiiiiiiiiiiiii
i~i!!iiiiiiii!iii!!ili!iiiiiiiiiiiiii~i~i~iiiiiiiii!!ii~ ~

~i~!ii~iiiiiiii!iiiii!~ii!ii!!i!iiii~!iiiii!i@i o

l~i!l
I f - - - -

8 9

Gehringer et al. Commercial Parallel Processors

4. Memory structures

4.1. Shared-bus architectures

One problem faced by designers of
tightly coupled multiprocessor systems is
minimizing the interference between pro-
cessors sharing main memory. In a
shared-bus architecture, contention for the
bus and memory can slow down the entire
system. Even with a fast bus, reasonably
priced dynamic RAM memories are not
fast enough to satisfy all processors' re-
quests. A solution to this problem is to place
a cache built from fast static RAM between
the processor and main memory. The
cache intercepts many of the CPU's re-
quests for main memory. Consequently,
bus traffic is reduced and more processors
can share memory with less contention.

The Multimax, the Balance system and
the ELXSI System 6400 have a distributed
cache architecture, that is, a cache on each
processor. The Alliant system has two
types of caches: the computational proces-
sor cache (CPC), and the interact ive
processor cache (IPC). A CPC can be
shared by up to four computational ele-
ments, and a IPC cache can be shared by up
to three interactive processors. Each pro-
cessor in the Balance system has 8K bytes
of local DRAM to store a copy of the most
commonly used operating system's kernel
to reduce bus traffic further. The ELXSI's
register sets serve as a context cache, with
the same effect.

Encore's Multimax. The Multimax
memory subsystem is made up of several
cards, each of which has its own controller.
Each controller has four rows of RAM
chips. The Multimax system can contain
up to eight shared-memory cards. Each
memory card has sixteen megabytes of
memory organized into two independent
banks with four-way interleaving across
card pairs, and two-way inter leaving
across banks on each card. The memory
access rate can be as high as 100M bytes per
second. In the Multimax system, two pro-
cessors share a common 32-kilobyte cache.

The memory subsys tem and the
Nanobus function as a single synchronous
unit. The memory cards derive their in-
ternal clock signals from the Nanobus,
and consequently they run synchronously
with the bus [Sc 11/86]. The memory sub-
system and the Nanobus have a pipelined
interface which improves the speed of the
bus operations. Each Nanobus memory
controller can accept the next request from
the bus while it is still processing the previ-
ous one. The new request is buffered, al-
lowing the bus-transfer timing to be as fast
as the time needed to load a register [Bi
7/87].

Sequent Balance System. The Balance
system can contain up to four memory
modules. Each module contains a memory
controller board with 2M bytes of RAM and,
optionally, a memory expansion board of
2M or 6M bytes. To support the high band-
width of the system bus, a memory module
can respond to a read request in 3 cycles
(300 ns), and to a four- or eight-byte request
in 2 cycles. If there is a pair of memory
modules of equal size, alternate eight-byte
address blocks can be interleaved between
the two modules. The interleaving of ad-
dress blocks allows two or more modules to
process write or read requests in the same
memory area concurrently.

The memory subsystem is pipelined and
contains a request queue, a response queue,
an error-checking and correction con-
troller, and a system link and interrupt
controller. The pipelined operation allows
a single memory controller to support a
memory transfer rate of eight bytes per 300
nanoseconds [Se 11/86, Th 2/88].

The 8K bytes of local DRAM in each pro-
cessor hold a copy of the operating system
(DYNIX) kernel's interrupt and trap vec-
tors, the module table, the first-level page
table, and other frequently used kernel
routines. Each processor also has a 8K-
byte, 2-way set-associative cache. The data
in the cache is organized into 512 rows,
each of which has two eight-byte blocks.
Bits 3-11 of the data address determine the
row in which the data is stored in the cache
[Se 11/86, Th 2/88].

9 0

Gehringer et al.

Alliant FX/80. The global physical
memory in Alliant systems uses 256K dy-
namic RAMs and is field expandable in
8M-byte increments to a maximum of 64M
bytes. Each memory module is four-way
interleaved and can supply the full bus
bandwidth of 188M bytes per second for se-
quential read accesses and 80% of this
bandwidth for write accesses. The memory
modules check the address-bus parity.

Each CPC (see above) is a high-speed
global memory buffer for the computational
elements. A CPC module can serve as a
two-way interleaved 256K-byte cache for up
to four computational elements. If eight
computational elements are used, two CPCs
provide a four-way interleaved 512K-byte
cache with a maximum bandwidth of 376M
bytes per second. The CPC supports multi-
ple cache accesses in parallel. If one pro-
cessor has to stop due to a cache miss, the
CPC continues to service the requests of the
other processors connected to it [A1 10/86].
One of the advantages of the CPC architec-
ture, as opposed to a distributed cache ar-
chitecture is that data can be passed very
quickly among the processors connected to
a CPC. This is particularly useful when
processing data-dependent loops.

Each IPC is a 32K-byte module which
can connect a maximum of three IPs to the
memory bus at a bandwidth of 94M bytes per
second. The IPCs are capable of providing
each IP a continuous bandwidth of 5M bytes
per second, for a maximum bandwidth of
60M bytes per second when the system con-
tains 12 IPs. The IPCs block and unblock
global memory, maintain maximum bus
efficiency, increase interactive processor
performance by speeding program code
fetches and I/O transfers.

ELXSI System 6400. In the ELXSI sys-
tem, each memory module on the bus con-
tains 256 megabytes. A maximum of eight
memory modules can be connected to the
25-ns. bus, providing up to 2 gigabytes of
physical memory in a system. All mem-
ory accesses on the ELXSI are virtual; that
is, they are relative to a process-specific
data s t ructure (the process's page-map
table) which bears no particular resemb-

Commercial Parallel Processors

lence to physical memory. Physical ad-
dresses are known only to the Memory
Manager, which is responsible for the page-
map tables, and to the hardware. There are
no addressing modes tha t allow an in-
struction to access particular locations in
physical memory. Thus, a page of data
must be in a process's page map table if it is
to reference it. Operating system processes
are restricted to their address spaces in ex-
actly the same fashion as user processes.

Processes can share memory if shared
page is in the page-map table of each pro-
cess. When created, a process does not
share memory with any other process;
hence there can be no concurrency control
problems due to shared memory. Specific
system calls allow two processes to agree to
share some portion of their address space.
Multiple pieces can be shared, and there is
no requirement that they be shared at the
same virtual address in each process. The
Memory Manager arranges this by placing
the same physical memory addresses in
each process's page-map table.

Shared memory-management facilities
include system calls and instructions to
control the residency of data in the cache.
Pages of data can be marked as non-
cacheable. References to data in such
pages always result in a cache fault. The
data will always be returned from main
memory and be wri t ten back to main
memory. Such references can be on arbi-
trary byte boundaries [O1 5/86, Sh 2/87].

It is the programmer's responsiblity to
deal with concurrency control. A variety
of hardware and software facilities are
provided to assist in this. However, con-
currency control is generally expensive,
as it requires the use of the bus and physical
main memory, defeating the performance
advantages of the cache. ELXSI's philoso-
phy, like RISC principles, maintains that
hardware should do the simple things and
software should avoid doing expensive
things. Because accesses to cache are so
much faster than accesses to main mem-
ory, ELXSI usually encourages users to
consider organizing their programs to
minimize the number of synchronization

9 1

Gehringer et al. Commercial Parallel Processors

points. However, the system will support
even the simplest shared memory models.

4.2. Network Multiprocessors

B B N Butterfly. Each Butterfly process-
ing node has 4M bytes of memory. This
memory accepts both local and remote
reads, but all reads must pass through the
Processing Node Controller. Therefore, if
only message passing is used and no re-
mote memory reads/writes are made, the
memory is considered unshared and local.
On the other hand, if remote memory
reads/writes are used, then the memory is
considered shared. The time required for a
local memory reference on any size
Butterfly Parallel Processor is about 500
ns., while the time for a remote memory
reference is 5 ~ts.

NCUBE. Each NCUBE node has a 16-bit
data path to 512K bytes of local DRAM.
which corrects all single-bit errors and
detects any double-bit errors [NC 88]. The
program and data for the node are located
in the 512K bytes of memory.

NCUBE processors are found on proces-
sor boards and I/O boards. A processor
board has 64 processors, each with 512K
bytes of unshared memory. An I/O board
has 16 processors, which also have 512K
bytes each; but in addition, a host I/O board
has 2M bytes for the use of an Intel 80286
host processor. The host processor can ac-
cess all 4M bytes, and so the memory on a
host board is, in a sense, shared memory.

Intel iPSC/2 . All memory in the iPSC/2
series computer is local to the processing
nodes. Presently, processing nodes can be
equipped with 1M to 16M bytes of memory
[In 88]. Each node also has a 64K SRAM
zero-wait-state cache.

FPS T Series. All the memory in the
FPS T Series was local memory. The
memory structure of the node is shown in
Figure 7. The Transputer contains 1K byte
of 50 ns. SRAM [FP 11/87a]. Because the
FPS vector processor could only move data
on 128-byte doubleword boundaries [Re -],
the location of data within the node was
much more critical for the FPS T Series

than other parallel computers [Fr 8/86]. A
unique feature of the FPS T Series was that
each module of 8 nodes (arranged in a hy-
percube) had a separate system board. This
system board interfaced the modules to the
operating system and also had its own
256M-byte hard disk [Re -, FP 11/87a].
This allowed fast program and data input
for any size hypercube.

5. Cache coherence

Caches improve per formance in a
shared-bus multiprocessor system by de-
c reas ing memory access t imes and
diminishing bus traffic. A private cache
can be provided for each processor
(distributed cache architecture) or a single
cache can service a group of processors
(shared cache architecture).

However, the use of caches may create a
cache coherence problem if multiple copies
of main memory locations can exist in
different caches. If a CPU changes the
value of a shared memory location, it is
necessary for all caches that contain that
location to either invalidate or update it to
contain the modified value. There are two
basic types of memory-update policies:
write-through and write-back. In a write-
through policy, every time a cache's copy of
a location is modified by its processor, the
new data is immediately t ransmit ted to
main memory. In a write-back policy, a
cache only updates the local cache copy and
delays sending the modified copy to main
memory until it is removed from the cache.

The ELXSI System 6400 and the Alliant
FX/80 and FX/1 use a write-back policy.
While new products by Sequent (the Sym-
meflry) and Encore (the ultramax project's
future machine) use a write-back scheme,
Sequent's Balance system uses a non-allo-
cating write-through policy, and the cur-
rent Multimax also uses write-through.
Each cache in the Balance system contains
a write buffer to keep the processor from
waiting for the completion of a bus write
cycle. When a processor needs to send
modified data to memory, it temporarily
stores the data and address in the buffer.

9 2

Gehringer et al. Commercial Parallel Processors

The buffer completes the write operation to
main memory independent ly . For
successive writes, the second write waits
until the first one is completed.

The Multimax, the Alliant systems and
the Balance system contain hardware at
each cache to monitor all bus transactions
for coherence purposes. This "bus watcher"
examines every transaction on the system
bus. When a write cycle is detected, it
checks the address to see if the location be-
ing modified is present in the local cache.
If so, the bus watcher makes the local cache
invalidate its copy of the data. In the Bal-
ance system, if a processor attempts to read
invalidated data, it gets a cache miss and
fetches the valid copy from main memory
[Th 2/88]. Sequent's Symmetry processor
[LT 12/87] uses a cache-coherence protocol
similar to the Illinois cache coherence
scheme [PP 84]. In the Multimax and A1-
liant systems, if a cache x requests some
data from main memory and a modified
copy of the data is in cache y, then cache y
intercepts the read operation requested by
cache x and sends a copy of its modified
data to both cache x and main memory. If
cache x has requested a writable copy of the
data, cache y will invalidate its local copy.

In the ELXSI System 6400, processes
usually interact via messages, not via
shared data. Processes can share read-
only data and cannot modify another pro-
cess's space except by using special system
services. Therefore, there are no bus
watchers, since a cache does not need to
know the contents of the other caches. The
caches update main memory when a modi-
fied location in the cache is replaced by a
new location [O1 85]. Since the operating
system is written entirely without shared
memory, the operating system data can be
cache resident. In busy systems, this sig-
nificantly improves the overall perfor-
mance of the operating system.

Encore Computer Corporation's ultra-
max project is presently working on a new
system (not yet named) which contains up
to 128 processors and 2048M bytes of physi-
cal memory. Such large configurations
are achieved by tightly coupling Multimax

systems through a hierarchical cache
structure, as is shown in Figures 8 and 9.
In Figure 8, references to remote memories
go through Mc2, and then are picked off by
Sr at the appropriate cluster and sent down
to the referenced memory card. Besides the
caches that connect each CPU with the
Nanobus, another cache level buffers each
group of processors from the rest of the sys-
tem. The second-level caches have to be an
order of magnitude larger than the sum of
the sizes of all the first-level caches that are
connected to them. The idea is that any
memory locations for which there are
copies in the first-level caches will also
have copies in the associated second-level
cache [Wi 6/87]. Therefore, the second-
level cache (and its associated routing
switch) acts as multicache coherence mon-
itor for the first-level caches connected to it.

An example of how multicache coher-
ence control is done in a hierarchical
shared bus multiprocessor using the Good-
man cache coherence control is given by
Drew Wilson in [Wi 6/87]. Other shared-
bus cache coherence protocols can also be
modif ied to be imp lemen ted in a
hierarchical multiprocessor system.

Although the ul t ramax programming
model presents main memory as a large
address space residing on the global bus,

._i__ ¢[f

6 <

Global Nanobus

r. ° • , |

Nanobuses " " "

)
Key:

P Processor ~ Main Memory

MCl Processor Private Cache S R Routing Switch

Me2 Optional Cluster Cache

Figure 8: Hierarchical Cache Structure
[Wi 7/87]

9 3

Gehringer et aL Commercial Parallel Processors

Ultra interface i System control
card

I

l

Global
switch

Nanobus

card 1

i
I O,tr::::aco]

Figure 9: Encore's New

the memory is physically dis t r ibuted
among groups of processors connected to a
Nanobus. Data and code are kept largely
local to a particular Nanobus and its pro-
cessors in order to decrease the global data
traffic at the higher levels of the system.
Remote requests for local memory are
transferred via the local shared bus, using
a special adapter board to maintain coher-
ence. This architecture is called cluster
architecture since each Nanobus in the
system forms a multiprocessor cluster with
access to a bank of cluster local memory
[Wi 6/87].

The clustered design is implemented by
adding two new modules to the commercial
Multimax system, the Ultra Interface Card
(UIC) and the Ultra Cache Card (UCC). A
UIC is connected to each Nanobus and
communicates with a corresponding UIC
installed in the global bus. The global bus
is another Nanobus backplane without pro-
cessors or memory cards connected to it.
The UCC is installed next to the UIC in each
local Nanobus and is used to locally cache
data from remote Nanobuses [Bi 7/87].

Wilson did some simulation experi-
ments and constructed an analyt ical
model to analyze the performance of
medium- and large-scale hierarchical ly
clustered multiprocessors [Wi 6/87]. The
results of the simulations showed that a hi-
erarchical multiprocessor computer struc-
ture achieves good speedup if suitable par-

Architecture [Wi 7/87]

allel algorithms are used. The analytical
model indicated that using 64M byte cluster
caches and 13 MIPS processors, which will
be available in the near future, it will be
possible to construct a shared memory
multiprocessor of over 1000 MIPS.

6. Proces sor C o m m u n i c a t i o n and
Synchronization

Synchron iza t ion is n e c e s s a r y for
multiprocessor systems to execute parallel
operations and to insure that no more that
one process has write access to a sharable
resource at the same time. Most multipro-
cessor systems use locks and semaphores
for this purpose. In some systems such as
Encore and the Balance, synchronization
is done by the hardware, while in the ELXSI
System 6400 it is done by software. Inter-
processor communication is necessary in
several situations:

• to tell a processor to remove itself from
service,

• to initiate low-priority in terrupt ser-
vices, or

• to deliver a software signal.

In the Alliant and Balance systems, pro-
cesses communicate via interrupts; in the
ELXSI System 6400 they use messages.

9 4

Gehringer et al. Commercial Parallel Processors

6.1. Shared-bus architectures

Encore's Multimax. The Multimax uses
semaphores to synchronize processors' ac-
cesses to shared resources. The Nanobus
memories implement atomic test-and-set
operations at the memory-chip level. The
memory chip executes the atomic test-and-
set function without locking the bus or the
memory controller, and also without re-
stricting the software in the number, loca-
tion, or use of semaphores, each of which
occupy a byte [Sc 11/86].

The Sequent Balance System. The Bal-
ance System synchronizes processors by
using the System Link and Interrupt Con-
troller (SLIC). The SLIC performs this
function with a set of 64 single-bit gates.
These gates are logically equivalent to a
test-and-set primitive. The CPUs use the
SLIC Request Gate and Release Gate oper-
ations to insure that only one CPU at a time
has access to a shared data structure. A
gate is acquired via a single atomic opera-
tion. When a gate is acquired by a CPU, a
SLIC first verifies that the gate is free, then
sends a Request Gate command on the SLIC
bus. The successful transmission of Re-
quest Gate insures exclusive ownership of
the gate [Be 10/87, Th 2/88].

At any time, each gate is either in a free
or in an occupied state. When a process
needs to use a gate, it loops requesting the
gate until it acquires it. Since each SLIC
keeps track of the status of each gate, the
busy-waiting is done checking the status
register of the local SLIC, not across the
SLIC bus.

The DYNIX operating system uses three
kinds of mutual exclusion primitives built
from gates: the direct use of the gates, spin
locks, and counting semaphores. The di-
rect use of gates is the fastest, but this is
only employed in the most time-critical
sections, since there are only 64 gates. A
lock is a byte in memory which can be in
one of two states: locked or unlocked. A
single gate can synchronize accesses to
many locks, and therefore, there can be an
unlimited number of locks. When a pro-
cessor needs to access a shared data struc-

ture, it has to wait until the associated lock
is unlocked. Then it changes the lock state
to locked, to indicate other CPUs that the
data structure is in use. Locks are used to
protect data structures for a short amount of
time, because a CPU can not perform any
other operations while another CPU is us-
ing a lock that it needs. The Counting
Semaphores are the highest level mutual
exclusion primitive and are used to block
waiting for an event, or to guard a very
long critical region. When a process tries
to acquire a semaphore which is being used,
the process is placed on a waiting queue,
associated with the semaphore, and the
CPU is freed to be used by another process.
When a semaphore is released, the first
processor in the waiting list is given access
to the critical region.

Communication between processors is
implemented with programmed interrupts
via the SLIC. A processor can send another
processor a normal maskable interrupt, a
non-maskable interrupt, or a software in-
terrupt.

Alliant FX/80. Synchronizat ion be-
tween processors in the Alliant FX/80 is
provided by the Concentrix operating sys-
tem, which uses priority-level locking and
a hierarchy of global test-and-set locks.
Global test-and-set locking is used to
manage multiprocessor interactions. Each
global lock consists of an access location, a
processor tag, a priority identifier, and a
recursion counter. The access location is
used for atomic test-and-set operations by
processors trying to access a lock. The
processor tag holds the identification num-
ber of the processor which currently owns
the lock. The priority identifier is used to
implement a linear ordering of the types of
sharable resources for deadlock avoid-
ance. The recursion count keeps track of
how many times a lock has been acquired
recursively.

Concentrix keeps track of the lock states
of processes by using a lock-stack per pro-
cess. Locks are pushed into the stack as
they are acquired by processes and popped
from the stack as they are released by pro-
cesses. Each process's lock stack is stored

9 5

A

Gehringer et a t Commercial Parallel Processors

in its kernel user-area and is preserved
through process sleeps. The locks owned by
a process are released when it goes to sleep
and are re-acquired when it wakes up.

communication path between the CCUs.
C o n c e n t r i x c o o r d i n a t e s t he CE
(computational element) complex during
the execution of concurrent processes.

Processes in the Alliant architecture
communicate via a cross-processor-inter-
rupt (CPI) facility. The CPI allows any
processor in the system to interrupt any
other process in the system. A CPI can be
directed to a single processor or to a group of
processors through a selective broadcast.
Concentrix uses the CPI facility to activate
remote procedure calls (RPC) on other pro-
cessors, to initiate remote asynchronous
system traps on other processors, and to
synchronize the processors in the system.
Remote procedure calls are mainly used to
activate routines that modify remote pro-
cessor or device states. RPCs can be asyn-
chronous or synchronous and are imple-
mented using a global mailbox facility to
pass arguments . Asynchronous RPCs
suspend the calling processor until all tar-
get processors have sent a software inter-
rupt to perform the RPC. Synchronous
RPCs suspend the calling processor until
all the target processors have executed the
RPC [Te -].

The most powerful feature of the Alliant
architecture is the ability to use multiple
computational elements concurrently in
the execution of a user application in a way
that is t ransparent to the user. This is
called Alliant Concurrency and is con-
trolled at execution time by the Concur-
rency Control Unit, an 8000-gate CMOS ar-
ray that connects the processors through a
concurrency-control bus. The concur-
rency-control bus provides an independent

Alliant concurrency uses the program
loop control as the source of parallel in-
struction streams. At compilation time, the
FX/Fortran compiler inserts special con-
currency control instructions whenever it
detects loops which can be executed in par-
all~l by multiple CEs.

Initially, code is executed serially by
one computational element while the others
wait. Concurrent execution starts when the
active CE reaches a concurrency control
instruction inserted by the FX/Fortran
compiler. At that point, the complex as-
signs to each CE a value for the loop index
according to a global counter. Concur-
rency-control data is t ransmit ted via the
concurrency-control bus. When a CE
completes an iteration of the loop, the com-
plex assigns it another index value, and it
restarts the loop. When all the iterations
are finished, the CEs go idle except for the
last CE executing a loop iteration, which
continues executing sequentially [Pe 5/86,
A1 10/86].

The following example shows how the
Alliant executes a do loop containing data
dependencies [Pe 5/86]:

12

X(0) = 0

DO 12 I = 0, N

Y(I) = SIN(A(I))*COS(B(I))

Y(I) = (Y(I)-C(I))/B(I)

X(I+I) = X(I)+Y(I)

+ C(I)

CE0 ¢EI ¢E2
sequential code idle idle
Y(0) = SIN(A(0)) etc. Y(1) = SIN(A(1) etc.) Y(2) = SIN(A(2) etc.)

Y(0) = (Y(0) etc.) Y(1) = (Y(1) etc.) Y(2) = (Y(2) etc.)

X(1) = X(0) + X(0) s t a l l s t a l l
Y(3) = SIN(A(3) etc. X(2) = x(1) + Y(1) stall

x(3) = Y(3) etc. x(4) = SIN(A(4) etc.) X(3) = X(2) + Y(2)

X(4) = X(3) + Y(3) Y(4) = (Y(4) etc. X(5) = SIN(A(5) etc.)

... X(5) = X(4) + Y(4) Y(5) = (Y(5) etc.)

... x(6) = x(5) + Y(5)
o • o

Figure 10: A DO Loop Containing Dependencies as Executed on the Alliant

t

9 6

Gehringer et al.

The above code runs in paral lel over
mul t ip le computa t iona l e lements on the
Alliant as shown in Figure 10.

The instruction s t reams of the different
CEs are offset by ini t ial ly s ta l l ing the
s t reams on CE1 and CE2 until x (I) is cal-
culated by the CE executing the previous it-
eration. Besides synchronizing loops with
da ta dependencies , Al l iant concurrency
can execute loops tha t contain conditional
branches, loop exits, and potent ia l feed-
back .

In order to manage a process wi th
mult iple ins t ruct ion s t reams, Concentr ix
replicates a number of kernel da ta struc-
tures, such as kernel stacks and processor-
control blocks. The number of replicated
kernel s tructures depends on the number of
CEs needed to execute the code s treams.
Sequential processes only need one kernel
stack, while concurren t processes on a
four-CE complex need four kernel stacks.

ELXSI System 6400. The System 6400
uses a message-based system to assure that
only one process at a t ime has access to a
pa r t i cu la r ins tance of shared resource.
When a resource is allocated to a processor,
all s ta te information relat ive to tha t re-
source is kept in the process's private ad-
dress space, and is accessible to another
process only via reques ts in message form.
The system does not have supervisor mode,
since it does not need supervisor calls to
allow a processor to write or directly read
state information of a resource belonging to
another process.

The opera t ing sys t em provides spin
locks, b ina ry and count ing semaphores ,
and Sleep and Wakeup services to syn-
chronize mult iple processes. These func-
tions insure an atomic exchange between a
register and a memory location in the re-
ques t ing process 's address space. The
Sleep and Wakeup services queue and de-
queue processes, allowing a CPU to service
ano the r process while a semaphore is
locked.

As noted above, ELXSI's Sys tem 6400
processors communicate via messages. In

Commercial Parallel Processors

data communications terminology, ELXSI
processes are in terconnected via explicit
virtual circuits [O1 5/86]. This means that
a point-to-point connection has to be estab-
lished before two processes can communi-
cate. Once the connection is established,
many messages can be t r ansmi t t ed in ei-
ther direction. Each connection coming out
of a process is called a link, and points to a
queue of m e s s a g e s cal led a "funnel ."
Many links may point into a funnel. The
messages on a determined funnel are sent
to 'the consumer in FIFO o r d e r . The con-
sumer is able a to receive messages from a
specific funnel, a set of funnels, or all fun-
nels. There are a variety of instructions to
send and receive messages and links and
to manipulate the communication structure
[O1 85].

I/O is also done th rough messages .
When a message is sent to the I/O subsys-
tem, the receiving process is an I/O con-
troller. The microcode is in charge of
r o u t i n g m e s s a g e s , i nc lud ing k e e p i n g
t rack of the migration of a process to an-
other CPU or the transmission of a message
to an I/O control ler . The l inks are
capabilit ies which mus t be created by the
process tha t performs the operat ion and
must be sent to the process which wants to
execute the operation [O1 85, O1 5/86, Sh
2/87].

The operat ing system consists of multi-
ple object-manager processes which com-
munica te only through messages . Func-
tions such as memory management , pro-
cess and CPU scheduling, and facilities to
allow a process to create other processes, are
per formed by the "Sys tem Foundat ion ."
The System Foundation consists of a series
of processes which provide the ment ioned
services to all processes and also to all op-
erating systems which run on the computer
[O185, O15/86, Sh 2/87].

6.2. C o m m u n i c a t i o n in N e t w o r k Archi -
t~ tures

A shared-bus architecture has no need to
make rou t ing decisions; all processor-
memory references s imply t r ave r se the
shared bus. Network mult iprocessors use

9 7

Gehringer et al. Commercial Parallel Processors

oD
4Z)
8D

12~)
1D

9~
~3~
2~
6D

lOD
14~

3D
7~

11~
15~

various strategies to route messages from
source to destination.

B B N Butterf ly. The Butterfly switch op-
erates much like a packet-switching net-
work. Figure 11 [BB 3/86] shows how a
packet is sent through the switch. The
message is being sent from processing
node 5 to processing node 14. As the mes-
sage passes through each switching node,
two bits of the address packet are used to de-
cide which of the node's four outputs the
message should be directed to. A switching
node can send messages through all four
outputs at the same time. Should two mes-
sages require the same output, however, one
of the messages will be delayed by the
switching node until the other message has
been sent. An example of a remote memory
read operation follows:

"When the MC68000 makes a read
reference, its local Processor Node
Controller gains control and uses its
memory management hardware to
transform the supplied virtual ad-
dress into a physical address, which

corresponds to memory on another
Processor Node. To read the refer-
enced location, the PNC sends a
packet addressed to the remote Pro-
cessor Node through the switch re-
questing the contents of that physical
memory address. The remote PNC
receives the packet, reads the refer-
enced memory location, and sends a
reply packet containing the value
through the switch back to the source
Processor Node. When it receives the
reply, the source PNC satisfies the
MC68000's read request with the value
obtained from the reply." [BB 3/86]

After this document was released, BBN
replaced the MC68000 by the MC68020. The
round-trip t ime for a remote memory
reference is about six microseconds for any
size Butterfly switching network [BB 87].
Each path through the switch has a peak
performance of 32M biffs. The Butterfly
switch can also transfer blocks at the full
32M bitJs, rate of the switch.

Co
C 4
C8
C12
C1
Cs
C9
C12
C 2
C 6
Clo
~14

(~3
C7
C11
C15

Figure 11: Operation of Butterfly Switch [BB 3/86]

9 8

Gehringer et al.

NCUBE. In a hypercube, each node must
be able to communicate bidirectionally
with several other nodes (the number of
such nodes equals the dimension of the hy-
percube) and pass along messages whose
destinations are at other nodes. As men-
tioned in Section 3, each NCUBE processing
node has 11 bidirectional synchronous bit-
serial DMA channels--connected to ten
neighboring nodes and one I/O board. The
internode channels include parity check-
ing and run at 8 MHz for a rate of 1M byte/s
in each direction, full duplex [Pa 5/86]. The
11 DMA channels are on the custom VLSI
processor chip. Each channel has two
write-only 32-bit registers: one for the ad-
dress of the message buffer and one for the
number of bytes left to be sent or received.
Each channel can interrupt the processor
upon completion, or the processor can poll
each channel's ready flag. If the destina-
tion node is more than one node away, the
node's system kernel (VERTEX) routes the
message by forwarding it.

Intel iPSC. A major shortcoming in the
original iPSC series was the time required
to transmit message whose destination was
several nodes removed from its source.
The iPSC/2 addresses this problem with a
communication daughter board called a
Direct-Connect routing module. This
routing hardware creates a communica-
tion path to the destination node at a cost of
"a few microseconds per node in the path"
[In 88]. Once the communication path is
created, the message is transferred at a rate
of 2.8M bytes/s, without the interaction of
either the source, destination, or interme-
diate node processors. The typical time for
a message transmit and acknowledge re-
ceive is about 290 ~s. Intel claims that its
iPSC/2 series can send short messages
three times faster and long messages ten
times faster than the iPSC/1 [In 10/87]. Be-
cause message delays are all about the
same, process and data placement has little
influence on program speed, which "makes
programming easier."

FPS T Series. The FPS T Series node
had 15 channels, of which 14 were allotted
for communica t ing with neighbor ing
nodes, and one was connected to the system

Commercial Parallel Processors

board. The 15 channels were multiplexed
from the four synchronous YO channels of
the Transputer by a switching network (see
Figure 7); each Transputer channel could
connect to any node channel. To change
one connection in the switch (i.e., to point
one of the four Transputer I/O channels to a
different node's I/O channel) required 1
ms. [Re -]. As a result, communication
between nodes was time consuming, and
an internode data transfer of 256 words re-
quired 21 times the time needed for a vector
add operation.

Communication between T Series nodes
was coordinated by the control processor
(Section 3) rather than by a separate com-
munication processor. Therefore, mes-
sages to non-adjacent nodes were divided
into packets and forwarded from one
Transputer to another. Each Transputer
along the path had to be interrupted to for-
ward each packet; however, given the
Transputer's very fast context-switch time
of 2.5-6.25 ~s., the store-and-forward
overhead was not extremely large.

7. P o w e r and p e r f o r m ~ m c e

Encore's Multimax. The original Mul-
timax offered 1.5 to 15 MIPS. The current
Multimax 320 can contain from 2 to 20 Na-
tional 32332 processors, providing 4 to 40
MIPS of computing power. An APC-based
Multimax with Wytek floating-point ac-
celerator can achieve 1.57 DP Whetstones
per processor.

Sequent's Balance System. The Balance
8000 system can contain two to twelve Na-
tional Semiconductor 32032 processors with
an aggregate performance of 1.5 to 8.4
MIPS. The Balance 21000 system contains
four to thirty NS32032 processors with an
aggregate performance of 3 to 21 MIPS.

The Balance system was measured by
comparing each CPU with other micropro-
cessors using the Dhrystone benchmark.
The results show that the performance of
each CPU in a Balance system is about 1.4
times the performance of the VAX 111750 for
a single-stream CPU-bound integer appli-

9 9

Gehringer et al. Commercial Parallel Processors

cation, or approximately 0.8 MIPS [Th
2/88].

Another measure of Balance system
performance is the speedup of a single ap-
plication program using multiple proces-
sors. In one of the applications, Linpack,
the parallelization of a standard floating-
point program, resulted in improvement by
a factor of 27.4 with a 30-processor system
[Th 2/88].

Studies have also been done for the Bal-
ance 8000 cache and bus protocols. The
single-thread cache performance demon-
strated that the cache can achieve a hit rate
of 95% in integer applications. This rating
results from the high locality in the appli-
cations and the 8-byte line size, which al-
lows implicit prefetching of instructions
and 32-bit data. The double-precision
floating-point applications attained a cache
hit rate of only 85%, because accessing 64-
bit-word data breaks the implicit prefetch-
ing strategy [Th 2/88].

A study of Multibus utilization for mul-
ti thread applications showed that the bus
utilization is under 25% for an eight-pro-
cessor system. The multiuser benchmark
showed that the bus was less of a limiting
factor, and that potentially the number of
processors used in the Balance 21000 can be
increased with a write-back cache-coher-
ence protocol if the UO capability is ex-
tended [Be 10/87].

All iant FX/ser ies . The Alliant archi-
tecture supports up to twenty processors, in
two categories: computational elements
and interactive processors. The computa-
tional elements are 14.9M-Whetstone sin-
gle-precision (32-bit) and 13.9M-Whetstone
double-precision (64-bit) Motorola 68020
general-purpose microprocessors. In vec-
tor mode, each CE executes floating-point
instructions at a peak rate of 23.6 MFLOPS
in single precision and 11.8 MFLOPS in
double precision. The interactive proces-
sor module is a VME card which contains a
Motorola microprocessor, a virtual-mem-
ory address-translation unit, an I/O map,
local par i ty-protected RAM, power-up
EPROMs, and two serial ports.

By the Whetstone benchmark, the A1-
liant CE is about five times the VAX 8600 or
twelve times a VAX 11/780 in double preci-
sion.

The following application shows the ad-
vantages that detached CEs have in com-
puter environments where the application
mix is dynamic and consists of a large
number of codes. While multiple copies of
a NASA fluid dynamics code, FL022, were
being run in the background, on a FX/80
system with eight CEs, the time to perform
an additional copy was measured. With up
to seven copies running in the background,
the eighth job takes only slightly longer
than on an unloaded system [TM -].

E L X S I Sys tem 6400. The System 6400
contains I to 12 CPUs which are imple-
mented with ECL gate-array technology.
On a single 6420 CPU (the medium-speed
processor), the Livermore kernels execute
at 1.1 megaflops (harmonic mean of 24
kernels, vector length 167, 64-bit floating
point), and on a 12-processor system they
execute at 13 megaflops. The Cray XMP-1
achieved 8.1 megaflops on the same
benchmark. The company recently an-
nounced their high-performance 6460 CPU,
which will perform from three to six times
faster than the 6420 CPU, depending on the
application. Each 6460 CPU will run at 25
times the speed of the VAX 11/780 on run-of-
the-mill scalar code. In floating-point in-
tensive applications the 6460 CPU will be
even faster than that.

John Sanguinetti ran a series of experi-
ments to fmd out whether the ELXSI System
6400 could achieve, or maybe exceed, linear
performance improvement. The work-
loads he used in the experiments were
multiple-job workloads, like the ones used
in general-purpose scientific applications.
The results of the experiments showed that
as CPUs are added, the power of the ma-
chine grows linearly [Sa 9/86].

Studies showed that the message system
is fast compared to many software-con-
trolled interprocess communication mech-
anisms. To send a message from one pro-
cess to another, including process switch

1 0 0

Gehringer et al. Commercial Parallel Processors

and receipt by the second processor, takes
approximately 115 ns. plus 450 ~s. per byte
on the 6420 CPU [O1 5/86]. (The 6460 CPU
should reduce these t imes by about half.)
The message-sys tem overhead in three
real t ime-shar ing workloads was mea-
sured to be 2.5, 0.3 and 4.7 percent of the to-
tal CPU cycles. The time included some of
the tasks performed by the kernel in a typi-
cal t ime-sharing operating system . Ex-
per iments done with different configura-

tions indicate that the proportion of CPU
cycles consumed by the message system is
not affected by the number of CPUs. The
effective bandwidth of the message system
is around 2M bytes per second, which is not
adequate for bulk data transfer. Therefore,
the I/O controllers use DMA for block
transfers but still use messages to indicate
the completion of a task [O1 5/86].

Jack J. Dongarra compared the performance of about 100 computer systems while
solving dense systems of l inear equations using the Linpack software in a For t ran
environment [Do 3/88]. The following data was obtained using Linpack to solve a system
of linear equations of order 100. In the tables below, "BLAS" means "basic linear-algebra
subprograms," "coded BLAS" refers to the use of assembly language coding of the BLAS,
and "rolled BLAS" refers to a Fortran version with single s ta tement and simple loops [Do
3/88].

"Ratio" is the number of times faster or slower a particular computer configuration is
when compared to the CRAY-1S using a Fortran coding for the BLAS in full precision [Do
3/88].

• Solving a system of linear equations with LINPACK in full precision using all Fortran:

C.omDuter OS/Compiler Ratio MFLOPS Time
(secs.)

CRAY-1S CFT (Rolled BLAS) 1 12 0.056
Alliant FX/80 (8 CEs) FX Fortran v3.1.33 (Rolled BLAS) 1.4 8.5 0.0805
Alliant FX/1 (1CE) FX Fortran v3.1.33 (Rolled BLAS) 7.5 1.6 0.572
ELXSI 6420 Unix 5.3, f77-Oskm 6.9 1.8 0.385
ELXSI 6420 Fortran 5.14, opt=10 9.2 1.3 0.516
Encore Multimax (w/FPA) f77 52 0.24 2.9*
Sequent Balance 8000 DYNIX Fortran 2.4.4 208 0.059 11.7

• Solving a system of linear equations with LINPACK in Full Precision using Coded
BLAS:

Comouter

Cray-lS
Alliant FX/80 (8 CEs) 1
Sequent Balance 8000

OS/Compiler Ratio MFLOPS Time
(secs.)

CFT (Coded BLAS) 0.54 23 0.030
FX Fortran v3.1.33 (Coded BLAS) 1.1 10.9 0.0631
DYNIX Fortran 2.4.4 (Coded BLAS) 185 0.066 10.4

1The Dongarra benchmarks measured the Alliant FX/8; Alliant has updated the measurements for the FX/80.

1 0 1

Gehringer et al. Commercial Parallel Processors

• Solving a system of Linear Equations with LINPACK in Half Precision using all
For t ran :

Comnuter O$/Comviler Ratio

Alliant FX/80 (8 CEs)
Alliant FX/1 (1CE)
ELXSI 6420
Encore Multimax (w/FPA)
Sequent Balance 8000

FX Fortran v3.1.33 (Rolled BLAS) 1.2
FX Fortran v3.1.33 (Rolled BLAS) 8.0
Fortran 5.14, opt=10 (Coded BLAS) 6.1
f77 36
DYNIX Fortran 2.4.4 162

MFLOPS Time
(secs.)

10.6 0.0649
1.5 0.465
2.0 0.342
0.34 2.0*
0.075 9.10

• Solving a System of Linear Equations with LINPACK in Half Precision using coded
BLAS:

.~omputer

Alliant FX/80 (8 CEs)
Alliant FX/1 (1 CE)
ELXSI
Sequent Balance 8000

.0S/Compiler Ratio MFLOPS Time
(secs.)

FX Fortran v3.1.33 (Rolled BLAS) .86 14.0 0.070
FX Fortran v3.1.33 (Rolled BLAS) 7.0 1.7 0.340
FTN MOD 2 (Coded BLAS) 7.5 1.6 0.418
DYNIX Fortran 2.4.4 (Coded BLAS) 148 0.083 8.31

Further results can be found in [Do 3/88]; note especially Table 7 in that paper.

Butterf ly Parallel Processor. The
Butterfly uses 16-MHz Motorola 68020/68881
processors with floating-point hardware.
Each node has a peak performance of 2.5
MIPS; thus the largest configuration of 256
nodes has a peak performance in excess of
600 MIPS. The results of several applica-
tion programs show that a 256-node Butter-
fly Para l le l Processor can achieve a
speedup of 190 to 230 over the performance of
a single node [Re 12/86].

NCUBE. NCUBE's processing node and
I/O processor both consist of the same cus-
tom 160,000 transistor one-chip CPU. The
CPU operates at 8 MHz and executes non-
math instructions at 2 MIPS, single-preci-
sion operations at 0.5 MFLOPS, and dou-
ble-precision operations at 0.3 MFLOPS [Ju
6/86]. For the 1024-node NCUBE/ten, this
means a peak performance of 500 MFLOPS
or 2000 MIPS. In benchmark tests running
Fortran Dhrystone code, the NCUBE VLSI
processor (8 MHz) was compared with the
Intel 80286/80287 (8 MHz) and the VAX-
11/780 with the floating-point accelerator
[Ha 10/86]. The results in Dhrystones/s.
were 1249 for NCUBE, 510 for 80286/80287,
and 741 for 11/780. The NCUBE processor
did well in Benchmark tests using Fortran
Whetstones, too. The Whetstone code sim-

ula ted scientific applications with many
double-precision floating-point operations.
The results in kWhetstones/s are 476 for
NCUBE, 101 for the 286, and 426 for 111780.
Unfo r tuna te ly , b e n c h m a r k s for ent i re
systems are not available.

Intel iPSC/2 . The control processor of
the iPSC/2 series processing node is the 32-
bit 80386 processor [In 10/87]. This proces-
sor, along with a new node operating sys-
tem called NX/2, provides 3 to 5 times the
performance of the original iPSC. The
80387 also provides a five-fold performance
increase over its predecessor, the 80287,
used on the first generat ion iPSC. The
peak performance for a 64-node Basic Sys-
tem (without numerical accelerators) is 16
MFLOPS for 32-bit precis ion and 13
MFLOPS for 64-bit precision [In 88]. The
peak performance for a 64 node VX system
(vector accelerator) is 1280 MFLOPS for 32-
bit precision and 424 MFLOPS for 64-bit
precision [In 88]. For both systems, the peak
instruction execution rate is 256 MIPS. The
iPSC/2 performs 8064 Dhrystones (1.1) per
second; 1,331K Whetstones/sec. with the
80387 option, and 2,192K Whetstones/sec.
with the SX (1167) option. The 2D wave
equation is solved on a 64-node iPSC/2-VX
at 454 megaflops with 32-bit precision.

Per processor. 1 0 2

o cQ

i

i
m

Q;

<

~o

co

C

co
~o

I

0

01

~o

I

i

E~

o

o

Q;

0

g,

~ ,

0

o

g ~
~ a

N
e,f

,

0~

00

°~

m

U~

0

0
o

0

r~

0
r~

0

r~

0

>

0

0

0

1 0 3

Gehringer et al. Commercial Parallel Processors

The Linpack benchmark uses the Gaus-
sian Elimination algorithm for matr ix
factorization and requires high communi-
cation between nodes and long messages
[In 88]. Running this benchmark, the 32-
node iPSC/2 VX achieved a performance of
55 MFLOPS, the 64-node iPSC/2 VX
achieved a performance of 86 MFLOPS,
while the Cray XMP achieved a perfor-
mance of 100 MFLOPS. A 2-dimensional
Fast Fourier Transform, was run on the 32
node and 64 node iPSC/2 VX computers.
The FFT requires row and column data
exchanges ; t h u s each node m u s t
communicate with other nodes at about the
same time. Running this benchmark on a
1024 x 1024 matrix, the 32-node iPSC/2 VX
achieved a performance of 154 MFLOPS,
the 64-node iPSC/2 VX achieved a perfor-
mance of 158 MFLOPS, while the Cray
XMP achieved a performance of 100.3
MFLOPS[In 88].

FPS T Series. Two processors were used
in FPS T Series nodes, the Transputer
(control processor) and a vector processor.
The Transputer operates at 16 MHz and "as
a 32-bit processor ... is at least 3 times the
speed of the Motorola 68020" [Fr 8/86]. The
vector processor was a Weitek VLSI float-
ing-point chip which operates at 8 MHz [Fr
8/86, FP 11/87a]. The two chips combined to
give the processing node a peak perfor-
mance of 12 MFLOPS and 8 MIPS [FP
11/87a].

FPS lists benchmarks for processing
done on the T100 [FP 11J87b]. The T100
contains 64 processing nodes and had a
peak performance of 1168 MFLOPS.
Benchmarks were programmed in three
languages: Occam, C, and Fortran. For 3D
N-body simulation, the results for the three
languages respectively were: 268, 269, and
171 MFLOPS. For 2D convolution using a
SD mesh topology, the results were: 579, 607,
and 381 MFLOPS. Several other bench-
marks are listed in [FP 11/87b].

8. P r i c e

Price information was not available on
all computers. Relative prices for many

computers are shown in Table 1. Some
specific price calculations are discussed
below:

All iant F X Series. The FX/1 has a base
price of $59,900, including one CE, one IP,
32M bytes of main memory, one disk drive
and a cart tape drive. The FX/4 has a base
price of $99,900 and includes one CE, one
IP, 32M bytes of main memory, a 256K-byte
CE cache, one IP cache, one disk drive, and
cart tape. The FX/80 has a base price of
$299,000, and includes sixteen terminal
lines, two CEs, two IPs, 32M bytes of main
memory, one disk drive and a 50 ips. tri-
density tape drive. All systems include
operating system, Fortran, and parallel
scientific and mathematical libraries.

Butterf ly Parallel Processor. The base
cost of the Butterfly Parallel Processor is
approximately $11,000 per node, and the
computer can be expanded one node at at
time (except for the switching network).
This price includes switch hardware and
cabinetry, but is exclusive of YO devices. A
128-node Butterfly GP1000 including 500
MBytes of disk storage and UNIX TM soft-
ware with a peak performance of approxi-
mately 300 MIPS would cost $1.8 million.
The cost per MIP of such a system is $6000.

E L X S I Sys tem 6400. Prices s tar t at
$295,000 for a complete packaged entry
system, including peripherals and soft-
ware. A packaged configuration with ten
25-MIP CPUs, 512M bytes of memory, 5G-
byte disk, a couple of operating systems and
other software, plus the usual peripherals,
has a list price of $3,999,000. ELXSI offers a
"very attractive" grant program for Uni-
versities interested in doing research in
cooperation with ELXSI.

N C U B E . The price for a complete
NCUBE/ten system is $1.5 million. As-
suming a peak per formance of 500
MFLOPS and 2000 MIPS, the performance
prices are $3000/MFLOP and $750/MIP.
An application article mentioned the price
of a NCUBE/six (64 nodes) as around
$200,000 [Ma 2/87]. Assuming a peak per-
formance of 31 MFLOPS and 125 MIPS, the

1 0 4

Gehringer et al. Commercial Parallel Processors

performance prices for the NCUBE/six are
$6500/MFLOPS and $1600/MIPS [HT 2/87].

Intel iPSC/2. The least expensive
iPSC/2 system is the 16-node Basic System
with 1M byte of memory per node at a total
cost of $165,000 [In 88]. A 32-node version of
the iPSC/2 VX system with 8M bytes of
memory on each node costs $796,000, and
the 64-node version costs $1,572,000. Each
development station costs $20,000, and an
iPSC/2 simulator runs $495. All system
and development stations include exten-
sive software packages. Us i ng the peak
performance MFLOPS, the 32-node VX
system costs $4700/MFLOP (64-bit preci-
sion) and the 64-node sys tem costs
$5700/MFLOP (64-bit precision). Using the
2-D FFT benchmark performance results,
the 32-node iPSC/2 VX sys tem costs
$5200/MFLOP and the 64-node version
costs $9900/MFLOP [In 88].

Sequent Symmetry. An entry-level
configuration includes two Intel 80386 pro-
cessors, 8M bytes of ECC RAM, 150M byte
SCSI disk, a cartridge tape drive, 16 asyn-
chronous ports, the DYNIX operating system
and C compiler, E therne t interface and
TCP/IP software, and sells for $89,500. A
typical large system includes 30 Intel 80386
processors, 80M bytes RAM, 4.3 gigabytes of
SMD disk storage, a 6250 bpi tape drive, 64
asynchronous ports, the DYNIX operating
system and C compiler, Ethernet interface
and TCP/IP software, with a price of
$870,000. Sequent Balance systems range
in price from $49,500-$500,000.

FPS T Series. The FPS T series ma-
chines are no longer being sold.

9. Summary

This paper has focused on eight com-
mercial parallel processors, four shared-
bus machines and four network multipro-
cessors. The shared-bus archi tec tures
studied in this paper were the Encore Mul-
timax, the Sequent Balance System, the A1-
liant FX series, and the ELXSI System 6400.

One problem with a shared-bus archi-
tecture is the degradation of the perfor-
mance as multiple processors compete for
access to the bus and memory space. Dif-
ferent approaches have been taken by mul-
tiprocessor systems to reduce the traffic on
the system bus. The Multimax system di-
vides the global bus into three independent
buses: one for addresses, one for data and
one for vectors. The Balance system has a
one-bit data path called the System Link
and In ter rupt Controller Bus which inter-
connects all major components in the sys-
tem and allows them to exchange interrupts
and other low-level control signals, and
error informat ion independent ly of the
system bus. Its processors have a private
memory which holds the most commonly
used kernel routines to fur ther reduce bus
traffic. The All iant system divides the
system bus into two data buses, and an ad-
dress bus. It also contains a concurrency-
control bus which allows the computational
elements to exchange data when perform-
ing concurrent operations. The ELXSI
System 6400 caches non-shared data at each
processor; since opera t ing-sys tem pro-
cesses do not share memory, and user pro-
cesses tend to use shared memory spar-
ingly due to its expense, bus traffic is rea-
sonably low.

Memory access t ime can be reduced by
the use of cache memories. They can con-
siderably reduce the bus traffic, because
they allow most memory references to be
satisfied without a bus transaction. How-
ever, the use of caches may create a cache
coherence problem if mult iple copies of
main memory locations can be stored in
different caches. The Mult imax system,
the ELXSI System 6400 and the Alliant sys-
tem use a write-back update policy, and the
Balance system uses a write-through pol-
icy.

So far, no commerc ia l ly avai lable
shared-bus computer has had more than 30
processors, owing to bus-bandwidth limi-
tations. Encore is presently testing a new
shared-bus system with up to 128 proces-
sors. This is done by tightly coupling Mul-
t imax sys tems th rough a h ierarchica l
cache structure.

1 0 5

Gehringer et al.

Among network architectures, this paper
has discussed the BBN Butterfly Parallel
processor which uses a "butterfly" switch-
ing network for interprocessor communi-
cation. The Butterfly switch allows com-
munication via message passing or shared
memory. "Shared-memory" communica-
tion is t ransparent to the program because
all data access to the memory of other nodes
is performed by a control processor. Some
other advantages of the Butterfly switch are
that it is expandible by one node at a time,
and that it provides redundant paths to de-
crease contention. One disadvantage of the
Butterfly switch is tha t data mus t be dis-
t r ibu ted uniformly over the processing
nodes to decrease contention. In many ap-
plications, the Butterfly switching network
has achieved more than 80% of its peak
performance. The cost of the Butterfly
computer is higher per node than most other
parallel processing computers, but the per-
formance and flexibility may offset the
price.

The other ne twork archi tectures dis-
cussed have been three hypercubes: the
NCUBE, the Intel iPSC/2, and the FPS T Se-
ries. Although hypercube interconnections
are well suited to many scientific and en-
g ineer ing problems, cur ren t hypercubes
restrict the computer to unshared memory
and therefore message passing. The major
problem a hypercube design must solve is
t r a n s f e r r i n g messages be tween nodes
which are not neighbors. Both the NCUBE
nodes and the FPS nodes use the "store-
and-forward" approach. The Intel iPSC/2,
however, has a Direct-Connect rout ing
board which creates a channel between any
two nodes in the hypercube, and then trans-
fers the message packet at 2.8M bytes/s.
This ha rdware resu l t ed in a ten-fold
speedup in the transfer of long messages.

To be attractive to engineering and sci-
entific applications, the hypercubes include
special numerical computat ion hardware.
The Intel iPSC/2 offers a scalar numerical
accelerator board which increases the
power of the floating point coprocessor three
to five times. Intel offers a pipelined vector
processor (and the FPS nodes included

Commercial Parallel Processors

one) to boost the performance of one node to
several MFLOPS.

Acknowledgments

This paper would have been far less
accurate and up-to-date without the assis-
tance of our contacts at the manufacturers:
Carl Howe at BBN, Ike Bunn of Alliant
Compute r Systems, Bill Richardson of
NCUBE, Len Shar and Robert Olson of
ELXSI, Brian Whitney of FPS, J u s t i n
Rattner of Intel Scientific Computers, Drew
Wilson of Encore Computer Corporation,
and S h r e e k a n t "Ticky" T h a k k a r of
Sequent Compute r Systems. Their co-
operation under our t ight t ime constraints
is 'gratefully acknowledged.

References

[A1 10/86] =FX/Series Product Summary," Alliant
Computer Systems, Acton, MA, October,
1986.

[A185] Almasi, G. S., "Overview of Paral le l
Processing," Parallel Computing, 1985, pp.
191-203.

[BB3/86] BBN Laboratories, =Butterfly Para l le l
Processor Overview," BBN Report no.
6148, BBN Laboratories, Inc., Version 1,
March 6, 1986.

[BB87] BBN Advanced Computers, Inc. "The
Butterfly GP 1000 Paral lel Processor, ~
BBN Advanced Computers, Inc.

[Be10/87] Beck, Bob, Kasten, B., and Thakkar,
S.,"VLSI ass i s t for a mult iproces-
sor,"Proceedings of the Second Interna-
tional Conference on Architectural Sup-
port for Programming Languages and
Operating Systems, October 1987, pp. 10-20.

[Bi 7/87] Billig, Richard R. "A fast backplane
cluster heralds a 1000-MIPS computer,"
Electronic Design, July, 1987, pp. 81-66.

[Br 4/87] Brooks, Eugene D. IH, =A Butterfly pro-
cessor-memory interconnection for a
vector processing environment, ~ Parallel
Computing, April, 1987, pp. 103-110.

[Do3/88] Dongarra, Jack J., =Performance of
various computers using standard linear
equations software in a For t ran en-
vironment, ~ ACM Computer Architecture
News, March 1988, pp. 47-69.

[E14/86] =Vector processing boosts hypercube's
performance," Electronics, April, 1986, pp.
30-31.

1 0 6

Gehringer et al. Commercial Parallel Processors

[FP 11/87a1 Floating Point Systems, "The FPST se-
ries--a parallel vector supercomputer,"
FPS, Beaverton, OR, Nov., 1987.

[FP 11/87b] FPS, "Analysis of Fortran and C perfor-
mance on the FPS T Series parallel su-
percomputer," FPS, Inc. Beaverton, OR,
Nov. 1987. [Re-]

[Fr8/86] Frenkel, Karen A., "Evaluating two
massively parallel machines," Com- [Sa 9/86]
munications of the ACM, August, 1986, pp.
752- 758.

[I-Ia 10/86] Hayes, John P., ~A microprocessor-based
hypercube supercomputer," IEEE Micro,
October 1986 pp. 6-17.

[HT2/87] High Technology Business magazine,
"Representative parallel/multiprecessing [SC 87]
computers," Feb. 1987.

[In9/87] "Direct-Connect TM routing solves node
communications challenge," iSCurrents,
Fall-Winter 1987, Intel Scientific
Computers, Beaverton, OR, pp. 5--6.

[In 10/87] Intel Scientific Computers, ~The INTEL
iPSC/2 System product-information", Intel
Scientific Computers, Beaverton, OR.

[In88] Intel Scientific Computers, " iPSC
(brochure), Intel Scientific Computers,
Beaverton, OR. [St 6/87]

[LT 12/87] Lovett, Tom and Thakkar, Shreekant,
"The Symmetry multiprocessor system,"
Sequent Computer Systems, Inc., to be [Te-]
published.

[Ju6/86] Jurasek, David, ~Microprocessor design
in custom VLSP, VLSI Systems Design,
June 1986, pp. 26-30.

[Th 2/881
[Ma2/871 Martin, W.R. "Monte Carlo Photon

transport on shared memory and dis-
tributed memory parallel processors", [TM-1
University of Michigan, Feb. 1987.

[NC88] NCUBE Corporation, "NCUBE/10, an
overview" (brochure), NCUBE, Beaverton,
OR.

[O185] Olson, Robert, "Parallel Processing in a
message-based operating system," IEEE
Software,/1985, pp. 39-49.

[O15/861 Olson, Robert, "Real-time response on a
message-based multiprocessor," IEEE
Software, May 1986, pp. 28-35.

[Pa5/86] Palmer, John F., "The VLSI parallel
computer," Proe. COMPCON, May 1986,
pp. 397-401.

[Pe 5/86] Perron, Robert, "The architecture of the
Alliant FX/8 computer," Proc. COMP-
CON, May, 1986, pp. 390-396.

[PP84] Papmarcos, M. and Patel, J., "A low
overhead coherence solution for multi-
processors with private cache memories,"
Proceedings of the 11th International

~Rel~8~

[Sc 11/861

[Se lY861

[Sh 2/87]

[TR 8/881

[Wi 6/87]

Symposium on Computer Architecture,
June 1984, pp. 348--354.

Rettberg, Randall, "Contention is no ob-
stacle to shared-memory multipro-
cessing," Communications of the ACM,
December, 1986, pp 1202-1212.

Reeves, Anthony P., ~Parallel Pascal and
the FPS I-Iypercube supercomputer."

Sanguinetti, John, "Performance of a
message-based multiprocessor," IEEE
Computer, September, 1986, pp. 47-55.

Schanin, David, "The design and de-
velopment of a very high speed system
bus--The Encore Multimax Nanobus,"
Proc. FJCC, November 1986, pp. 410-418.

Scott, Michael and Cox, Alan, "An em-
pirical study of message-passing over-
head," Proceedings of the 7th International
Conference on Distributed Computing
Systems, Berlin, Sept. 21-25, 1987, pp. 536-
543.

"Balance Technical Summary," Sequent
Computer Systems, Inc., Nov. 1986.

Shar, Leonard E., ~Designing a multiple
processor environment," P r o c .
COMPCON, February, 1987, pp. 110-113.

Steinberg, Jeffrey A., gA new twist: vectors
in parallel," Digital Review, June 29, 1987,
pp. 63-66.

Test, Jack A., "Multiprocessor Man-
agement in the Concentrix operating
system," Alliant Computer Systems
Corporation, Acton, MA, pp. 35-43.

Thakkar, Shreekant, "The Balance
Multipmcessor System," IEEE Micro, Feb.
1988, pp. 57-69.

Test, Jack A., Myszewski, M., Swift,
Richard C., "The Alliant FX/Series:
Automatic parallelism in a multipro-
cessor mini-supercomputer."

Tucker, Lewis W. and Robertson, George
G., "Architecture and applications of the
Connection Machine," IEEE Computer,
21:8, August 1988, pp. 26-38.

Wilson, Andrew W. Jr. , "Hierarchical
Cache/Bus Architecture for shared
Memory Multiprocessors," Proceedings of
the 14th International Symposium on
Computer Architecture, June, 1987, pp. 244-
252.

1 0 7

