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Abstract 

This paper compares eight commercial parallel processors along several di- 
mensions. The processors include four shared-bus multiprocessors (the Encore 
Multimax, the Sequent Balance system, the Alliant FX series, and the ELXSI Sys- 
tem 6400) and four network multiprocessors (the BBN Butterfly, the NCUBE, the 
Intel iPSC/2, and the FPS T Series). The paper contrasts the computers from the 
s t a n d p o i n t  of in t e rconnec t ion  s t ruc tu res ,  m e m o r y  conf igura t ions ,  and 
interprocessor communication. Also, the shared-bus multiprocessors are com- 
pared in terms of cache-coherence strategies, and the network multiprocessors are 
compared in terms of node structure. Where possible, price and performance in- 
formation has been included. The reader is cautioned that  this survey is based 
largely on information submit ted by manufacturers;  the authors  have not per- 
formed any independent  evaluation. 

D i s c l n l m e r  

This report  is condensed from a class 
project written by two of the authors under 
the direction of the third. The material has 
been drawn almost entirely from manu-  
facturer-provided information available to 
the general public. In many areas, there is 
insuff icient  detai l  to make  meaningfu l  
comparisons between systems. In addi- 
tion, some of the data may be less up-to-date 
than others, al though in almost all cases, 
the information was obtained from manu- 
facturers in 1988. Some machines, for ex- 
ample, Ametek's  2010 and Internat ional  
Parallel Machines' IP-1, have been omitted 
due to lack of sufficient information. De- 
spite these shortcomings, we hope this paper 
will be useful to computer architects inter- 
es ted  in the  cu r r e n t  capabi l i t ies  of 
commercial multiprocessors.  

1. Overview 

Over 30 companies have designed or 
marke ted  parallel processing computers.  
Many of the computers have not yet been 
configured with their  maximum number of 
nodes. Manufacturers often boast that  their 
computers  offer supercompute r  perfor- 
mance at one-fifth to one-tenth the cost. It is 
difficult to take these performance num- 
bers at face value, because they are usually 
derived by mult iplying the peak perfor- 
mance of one processing node by the num- 
ber of nodes in the computer. 1 This does not 
account  for in ter-node communica t ion ,  

1Manufacturers, of course, realize that a single 
number is not an adequate measure of a computer's 
performance. But, as two manufacturers mentioned 
in reviewing this paper, it is the customers that often 
insist on a single number to make a first-order 
comparison between systems. Only after that do more 
realistic measures come into play. 
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which limits the actual performance of the 
computer. 

The multiprocessors discussed in this 
paper all have at least eight computational 
processors. They can be classified into two 
broad groups: shared-bus and network 
multiprocessors. We discuss four comput- 
ers that use the bus architecture: the Encore 
Multimax, the Alliant FX/80, the Sequent 
Balance and Symmetry, and the ELXSI 
6400. Among the network-based computers 
we consider, one of them, the BBN Butter- 
fly TM Parallel Processor, uses a switching 
network for communication between the 
processing nodes. The other three network 
computers use the hypercube architecture: 
the Intel iPSC/2 line, the NCUBE/n, and the 
Floating Point Systems (now FPS Comput- 
ing) T Series. Because of the limitations of 
bus contention, none of the bus-based com- 
puters has more than 32 nodes. 1 However, 
a future release by Encore promises a 
maximum of 128 processors. Among net- 
work-based machines, the BBN Butterfly 
can have up to 256 processors. NCUBE, 
whose processing node consists of only 7 
chips, is selling the NCUBE/ten computer, 
which has 1024 nodes. Thinking Machines 
Corporation's Connection Machine [TR 
8/88] can have up to 65K processors, but as 
the storage per processor is quite limited 
(no more than 64K bits~processor), it is not 
strictly comparable to the machines cov- 
ered in this survey. 

This paper is divided into sections that  
deal with the different components of a 
parallel  computer: the interconnection 
structure, the memory structure, the node 
structure (for network-based computers), 
cache coherence (for bus-based architec- 
tures), communication and synchroniza- 
tion, performance, and price. In each sec- 
tion, shared-bus computers are considered 
first.  

1For the ELXSI, the true limiting factor is that the bus 
runs on a 25 ns. cycle time, limiting the maximum 
length of the bus. That in turn limits the number of 
cards that can be physically attached to the bus, as it is 
necessary to have clearance for heat sinks, cables and 
such. 

2. In terconnec t ion  s tructures  

2.1. Shared-bus architectures 

A problem faced by shared-bus systems 
is performance degradat ion caused by 
contention for the bus and for memory. Bus 
latency is the time for the bus and the 
shared memory to complete an average 
transaction. It consists of two parts, bus 
arbitration and usage, and memory-access 
time. Shared-bus systems use different 
approaches to reduce bus traffic. The Mul- 
timax system divides the global bus into 
three independent buses: one for addresses, 
one for data, and one for vectors. The 
Balance system has a one-bit data path 
called the System Link and Interrupt Con- 
troller (SLIC) Bus which connects all ma- 
jor components in the system and allows 
them to exchange interrupts,  other low- 
level control signals, and error informa- 
tion independently of the system bus. The 
Alliant system divides the system bus into 
two data buses and an address bus. It also 
contains a concurrency control busma  
high-speed inter-element  communication 
path that  is independent of the program's 
data and instruction paths. The ELXSI Gi- 
gabus TM is a single l l0 -b i t  wide bus, 
clocked at 25 ns. and arbitrated by a Bus 
Control Unit. Memory data, memory ad- 
dresses and control data are multiplexed 
on the Gigabus. 

Encore's Mul t imax .  The Multimax's 
Nanobus interconnects one System Control 
card, eight memory cards and eleven re- 
questor cards (advanced dual-processor 
cards, Ethernet/Mass storage card, etc.). 
The Nanobus has an usable throughput of 
100M bytes per second, which cannot be 
achieved by a single bus. Therefore, the 
Nanobus consists of three buses: the 32-bit 
address bus, the 64-bit data bus, and the in- 
terrupt-vector bus, which carries 14 lines to 
distribute interrupts through the system. 
See Figure 1. 
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Figure  1: The Multimax System [Sc 11/86] 

At least one of each of the following card 
types should be connected to the Nanobus: 

• An Advanced Dual Processor card 
(APC), which contains two 32-bit Na- 
tional Semiconductor 32332 processors 
in the Multimax 320 (or 32032s in the 
Multimax 120), each with a private 64K- 
byte write-through cache. Optional 
Wytek f loat ing-point  co-processors 
have a peak floating-point rate of 1 DP 
megaflop. Each processor is connected 
to a m e m o r y - m a n a g e m e n t  un i t  
(MMU). Earlier versions of the Encore 
also used an extended memory man- 
agement unit  (XMMU), but it is no 
longer needed with. the 32332's 32-bit 
virtual address space. A new, much 
faster  processor will be announced 
soon. 

Commercial Parallel Processors 

The System Control Card (SCC), whose 
main element is a National 32016 mi- 
croprocessor with 64K bytes of ROM and 
128K bytes of RAM. The SCC performs 
bus arbitration, initializes the system, 
diagnoses all cards, monitors the 
environment and reports status when- 
ever another card fails, and communi- 
cates with an operator and a remote 
console. 

A Shared memory Card (SMC), which 
has 16M bytes of interleaved memory 
with error detection and correction 
codes. 

An Ethernet/Mass Storage Card (EMC), 
which provides an Ethernet  interface 
and a connection to storage devices via 
the Small Computer System Intercon- 
nect (SCSI). Each EMC card has a Na- 
tional 32032 to manage input/output 
transfers, diagnostics, and DMA en- 
gines.  

The Nanobus is a pended (or "split- 
transaction") bus with an 80-ns. cycle. 
After the address of a read operation is 
transferred to memory, the bus is released. 
This action makes the bus available for 
other transactions while the requesting 
processor waits for the data read from 
memory. When memory is ready to send 
the data to the requester, it has already re- 
leased the bus. Therefore, all data trans- 
ferred on the Nanobus contains a tag which 
identifies the requester. The tag is gener- 
ated by the requestor and consists of a 4-bit 
requester ID [Sc 11/86, Bi 7/87] and 2 re- 
served bits. The reserved bits specify 
which processor within a module requested 
the data. The tag is latched by the ad- 
dressed module and is returned with the 
requested data. 

The Nanobus insures fair access to the 
address and data buses by using two ar- 
biters: a centralized and distributed ar- 
biter. Requests for the bus are send to the 
arbiters at the beginning of a clock cycle 
and grants are issued at the end of the same 
clock cycle. 
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The central arbiter is responsible for 
guaran tee ing  equal access for all re- 
questors. It achieves this goal by using a 
round-robin scheme to rotate the highest 
priority among the modules [Sc 11/86, Bi 
7/87]. 

A distributed arbiter is found on each 
module and consists of a state sequencer 
which determines whether the module may 
request the address bus. The individual 
distributed arbiters can modify the bus ar- 
bitration in certain situations. For exam- 
ple, if one of the modules is trying to access 
memory and is rejected several times over 
a short time interval, it asserts a special 
"priority" control line. The address-bus 
arbiter stops accepting any new bus re- 
quests into the round-robin queue until all 
the outstanding requests have been ser- 
viced [Bi 7/87]. 

The Sequent Balance. The Balance sys- 
tem is built around the system bus, which 
links the system's CPUs, memory and I/0 
subsystems. The system bus operates at 10 
MHz (1 cycle = 100 ns.), and can carry 64 
bits of data multiplexed in time with 32-bit 
addresses. Currently,  Balance systems 
only use 32-bit data and 28-bit addresses. 
However, the new Sequent Symmetry ma- 
chine [LT 12/87] uses all 64 bits of the 
datapath. The system bus reads from and 
writes to memory data packets of 1, 2, 3, 4, 
and 8 bytes. 

The bandwidth of the bus data path is op- 
t imized by the use of a split re- 
quest/response protocol. In this protocol, 
memory read and memory write requests 
are stored in separate request  pipelines 
(queues), and individual requests and re- 
sponses are interleaved in sequential bus 
cycles. The bus is only busy only during 
the cycles needed to transfer information 
since requests and responses are serviced 
separately. Continuous use of 8-byte reads 
and 8-byte writes produce an effective data 
transfer rate of 26.67M bytes per second. If 
the full 64-bit bus were used, the bus would 
have an estimated data transfer rate of 64M 
bytes per second [Se 11/86, Th 2/88]. 

The system bus uses a central ized 
multilevel arbiter. The access of the bus is 
granted as follows. The first priority is 
given to an I/O controller responding to a 
read request, the second priority is given to 
a memory board responding to a read re- 
quest, the third priority to Multibus adapter 
boards, SCSI/Ethernet/Diagnostic boards, 
and dual-channel disk controllers, and the 
last priority is given to the dual-processor 
boards. Among the two lowest-priority 
modules, arbitration is done by a round- 
robin scheduling discipline [Se 11/86]. 

The Balance system uses a distributed 
control-flow mechanism to avoid bus con- 
gestion. Each requestor keeps status in- 
formation about the read and write queues 
and does not request access to the bus unless 
space is available in the corresponding 
queue [Th 2/88]. 

The following circuit boards are con- 
nected to the system bus (see Figure 2): 

One to fifteen dual-processor boards in 
the 21000 (one to six in the Balance 
8000). Each board has two NSC Series 
32000 CPUs. Each CPU has a 8K-byte 
memory cache, a floating-point ac- 
celeration coprocessor, an NS32082 
Memory Management  Unit,  and a 
System Link and Interrupt  Controller 
(SLIC) chip. Each CPU also has a 
small local memory to store frequently 
used kernel routines. 

One to four memory controller boards. 
Each board has 2M bytes of RAM and 
error checking correction (ECC) logic. 

Memory expansion boards. A 2M-byte 
or 6M-byte memory expansion board 
can be connected to a memory con- 
troller board to give a total of 4 or 8M 
bytes per controller. 

One to four Small Computer System 
Interface (SCSI)/Ethernet/Diagnostics 
(SCED) boards. Each board serves as 
host adapter on a SCSI bus and super- 
vises system startup, diagnostics, and 
access to an Ethernet  local area net- 
work. 
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Figure  2: The Balance System Architecture [Th 2/88] 

A maximum of four MULTIBUS 
adapter boards which connect the sys- 
tem bus to a MULTIBUS system. 

• A maximum of four dual-channel disk 
controllers (DCCs) per Balance 21000 
system. A Balance 8000 system only 
has one DCC. 

The Balance system contains a 1-bit 
data path called the System Link and 
Interrupt Controller (SLIC) Bus which in- 
terconnects all the SLIC chip in the system. 
A SLIC chip is coupled with each processor, 
memory controller, I/0 controller and other 
major components in the system. The SLIC 
chips provide support for interrupt distribu- 
tion, low-level mutual exclusion, and con- 
figuration and error control. One of the 
goals of the SLIC bus is to simplify the sys- 
tem bus and to allow the CPUs and other 
subsystems to exchange interrupts  and 
other low-level control signals, and con- 
figuration and error information. 

One of the most important tasks of the 
SLIC subsystem is the interrupt control and 
distribution. Every SLIC on the SLIC bus 

responds to interrupts directed to its SLIC 
ID' number. Also, each SLIC coupled with a 
processor responds to a destination group 
ID number. When there is an interrupt in 
the system, all the SLICs in the specified 
processor group number arbitrate among 
themselves to decide which one will accept 
the interrupt. The SLIC which accepted the 
interrupt is masked out of the group, which 
means that  this SLIC will not arbitrate for 
another interrupt until the current interrupt 
is completed. A SLIC arbitrates for an in- 
terrupt based on its local priority register. 
The idea is to have the idle processors and 
the processors running the least important 
tasks handle most of the interrupts  [Se 
11/86, Be 10/87, Th 2/88]. 

AUiant FX/80. The Alliant FX/80 is 
built around the memory bus, a syn- 
chronous memory access bus that  consists 
of two 72-bit data paths (64 bits of data, 8 bits 
for single-bit error detection and correction 
and double-bit error detection), a 28-bit ad- 
dress bus, and a control bus. The data 
buses are bidirectional and are connected 
to memory modules, the computational 
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caches, and the interact ive processor 
caches. 

Data is always transferred as four eight- 
byte words, which is the size of a cache 
block. The first word is t ransferred on 
data bus A, and subsequent data alternates 
between data bus A and data bus B for four 
cycles. Another transfer request can be 
interleaved with the first transfer to allow a 
maximum of eight 8-byte words to be trans- 
ferred in four cycles. The data-bus cycle 
time is 85 nanoseconds, and provides a 
maximum total bus bandwidth of 188M 
bytes per second. The data buses use a pro- 
tocol called "convenient word first" to speed 
up accesses which may not be to the first 
word of a cache block [A1 10/86]. 

The Alliant FX/80 contains up to eight 
processors called computational elements 
(CEs) used for computational work. The 
CEs are connected to the memory bus 

through a computational processor cache 
(CPC). Up to eight computational elements 
are connected dynamically to up to four 
cache ports through a crossbar intercon- 
nection that  provides a data bandwidth of 
376M bytes per second, provided that the re- 
quested data is in the cache. In addition to 
the CEs, the FX/80 has up to twelve interac- 
tive processors (IPs) which execute inter- 
active user jobs, input/output, and other op- 
erat ing system activities. The IPs are 
connected to the memory bus via the inter- 
active processor caches (IPCs) and to pe- 
ripheral devices via the VME bus (or op- 
tionally, a Multibus), which is IEEE 796 
compatible. The FX/80 contains up to four 
IPCs, each of which connects one, two or 
three interactive processors. Figure 3 
shows how the computational elements and 
the interactive elements are connected to 
the memory bus. 

CONC 
CONT 
BUS 

Figure  3: The Alliant FX/80 System Architecture [A1 10/86] 
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Each computational element is a micro- 
programmed pipelined processor with 
integrated floating point and vector in- 
struction sets. The CE has four main func- 
tional systems: a pipelined instruction 
unit, a pipelined vector and floating point 
unit, a CE switch and a concurrency con- 
trol unit [Pe 5/86, A1 10/86]. 

• The instruction unit  is a five-level 
pipelined processor and includes the 
instruction cache, control section, in- 
struction processor, and address trans- 
lation unit. The instruction cache 
contains 64K bytes of 85-nanosecond 
RAM and is addressed with virtual ad- 
dresses. The instruction cache has a 
copy of the current instruction stream 
and initiates a load when an instruc- 
tion fetch operation results in a miss. 

The control section consists of an in- 
struction parser, a microsequencer,  
and a RAM-based control store. The 
instruction parser decodes the opcodes 
from the data path and generates con- 
trol-store microaddresses, checks for 
dependencies between instructions,  
and prevents a new instruction from 
executing if dependencies exist, and 
uses a branch-prediction unit to antici- 
pate the flow of the program and 
prefetch instructions. The microse- 
quencer and control-store memory ar- 
ray delay the execution of certain fields 
of a microword, decode delayed fields 
and control microtraps and unaligned 
memory references. 

The instruction processor consists of 
the address unit and the integer/logic 
unit. The address unit  contains two 
identical 16-bit slices. The address 
unit  contains the instruction buffer, 
which receives the output of the in- 
struction caches, latches it and rotates 
16-bit words to align the fields of the in- 
struction. 

The address translation unit translates 
virtual addresses into physical ad- 
dresses. It has a virtual address regis- 
ter and a translation cache. 

The floating point and vector unit con- 
tains eight 64-bit floating point data 
registers, each of which holds a 32-bit or 
a 64-bit floating-point number, eight 
vector registers each of which contains 
thirty-two 64-bit wide elements and 
floating-point status and control regis- 
ters. These control registers support 
condition codes to handle the results of 
floating point comparison-and-test in- 
structions, and various exception code. 
Floating-point operations are provided 
for arithmetic, conversion, testing and 
branching, and a hardware  imple- 
mentation of square root. 

The CE switch is a four-by-eight ad- 
dress and data switch, connecting up to 
eight CEs with the four cache ports on 
two CP caches. It consists of twenty- 
four 2,600-gate gate arrays, and pro- 
vides a peak bandwidth  of 376M 
bytes/second, when data is in the cache 
[St 6/87]. 

The concurrency control unit (CCU) is 
a gate array which connects CEs via a 
concurrency control bus. The CCU is 
connected to the instruction unit  of a 
computational element and to up to 
seven other CCUs, thereby controlling 
up to eight CEs running concurrently. 

The Interactive Processor is an indus- 
try-standard Multibus card that contains a 
Motorola MC68020 microprocessor, an ad- 
dress-translation unit, an I/O map, and 
parity-protected RAM. Multibus devices 
are able to perform direct memory accesses 
via a direct memory access channel, oper- 
ating through the I/O map. IPs are gen- 
eral-purpose processors; they can execute 
interactive applications such as editors and 
operating-system tasks such as paging, 
scheduling, and I/O. Up to twelve IPs can 
be used for these purposes, freeing the CEs to 
concentrate on computation. Each IP has 
4M bytes of local dRAM for caching fre- 
quently used OS pages. 

One such IP, the system interactive pro- 
cessor, is connected to the system console 
and remote diagnostic port. Some of its 
functions are to bootstrap the system, to 
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execute diagnostic software, to control the 
system diagnostic bus, and to handle other 
system bookkeeping tasks. 

The ELXSI System 6400. The ELXSI 
System 6400 interconnection is the Gigabus 
(Figure 4). This bus is 110 bits wide, in- 
cluding 64 bits of data, 35 bits of control and 
11 bits of parity. All functional units  at- 
tach directly to the Gigabus, including up to 
12 proprietary ECL CPUs, 8 memory con- 
trollers, 4 I/O processors, a Service Proces- 
sor and a Bus Control Unit. The bus clocks 
at  40 MHz (25 ns.) for an aggregate data 
transfer rate of 320M bytes/s., exclusive of 
control and parity.  Both in terprocess  
communication and memory accesses oc- 
cur  over the Gigabus. 

The bus is arbitrated by a request/grant 
mechanism based on slot priority. Every 
functional uni t  that  wishes to transfer re- 
quests control from the Bus Control Unit. 
The BCU grants the bus to the highest prior- 
ity functional uni t  for use on the next bus 
cycle. Someone else can be using the bus 
during this arbitration. On the cycle after 
the transfer  the receiving functional uni t  

acknowledges on a separate bus. Thus it is 
possible to sustain the 320M byte/s, data  
transfer rate of the Gigabus. 

Eleven of the control bits are used for the 
m a n a g e m e n t  of the  Gigabus itself. In- 
cluded in these bits are the request  for the 
bus, the grant  of the bus and the acknowl- 
egement  bus, as well as power-fail warn- 
ing, the bus clock signal and a variety of 
other housekeeping signals. 

The remaining 88 bits make up the Bus 
Information Quantum (BIQ). The 24 bits of 
the BIQ control field identify the source 
functional unit ,  the destination functional 
unit, the BIQ (operation) type, whether this 
is the last BIQ of this operation, a tag field, 
and some housekeeping and escape func- 
tions. Five bits are currently allocated for 
the functional unit  address, hence the lim- 
itation of 32 functional units  on the Giga- 
bus. The format of the other 64 bits of the 
BIQ is dependent on the BIQ type. The two 
classes of BIQs are data  operations and 
message operations. 

F igure  4: The ELXSI System 64000 [0185] 
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• Data BIQs (that is, memory operations) 
current ly  include Read, Write, Ex- 
change Or, Exchange And, Exchange 
Write, and Two Word Read. The ex- 
change operations are atomic opera- 
tions against memory, allowing the 
i m p l e m e n t a t i o n  of locks and  
semaphores. 

• Message BIQs include Message Send, 
Small Message Send, Small Hardware 
Send, Received and Released Buffer, 
and Received and No Buffer Release. 
Thus the messaging protocols and the 
concept of the process are part  of the 
machine archi tecture  at its lowest 
levels. 

Data BIQs include a process ID, an oper- 
ation code and the physical memory ad- 
dress. If it is a Write request, then the data 
for memory follows in the next BIQ. For 
operations requiring a response, such as a 
Read, the memory controller will respond 
with one or two BIQs when the data is 
ready. The tag field in the control bits is 
used to relate responses to requests. It is 
possible for functional units to have multi- 
ple operations in progress at once. For ex- 
ample, filling a cache block might result in 
four outstanding two word reads. The re- 
sponses might come back in any order, ne- 
cessitating the use of the tag field to sort 
things out. The bus is not held between re- 
quest and response. 

Message BIQs contain a sending-pro- 
cess ID, an operation code, a destination 
process ID, the physical memory address of 
the message body (in most cases) and some 
information which helps the receiving 
functional uni t  to assess the software 
priority of this message. If appropriate, the 
functional unit will reschedule to allow the 
receiving process to execute immediately. 
There are provisions in the protocol to redi- 
rect messages in the event that  a process 
has migrated to a different CPU. On heav- 
ily loaded systems, load-leveling process 
migrations occur every few seconds, so this 
is an important part of the Gigabus protocol. 

Three different models of CPU are cur- 
rently supported. The original CPU, intro- 

duced in 1984, is roughly 4 VAX MIPs and 
has a 16K-byte write-back cache. The 1986 
CPU is a reworked version of the 1984 CPU 
with faster floating-point operations and 
br{mching and a 64K-byte cache. It gener- 
ally performs at 7 VAX MIPs. The 1988 
CPU is a complete ly  new design. 
Pipelined, nearly all instructions execute 
in a single cycle (~ la RISC). The cache is 
1M byte and is split between code and data. 
Cache-to-CPU bandwidth is 640M bytes/s. 
This is the first ELXSI CPU to introduce 
vector instruct ions and also contains 
many innovations specific to ELXSI's real- 
t ime market .  The CPU performs at 
roughly 25 VAX MIPs and will perform at 
10 MFLOPs on the standard 100×100 64-bit 
Linpack benchmark. A notable feature of 
the ELXSI system is that  all three genera- 
tions of CPU can execute in the same 
frame. Thus upgrades consist of adding 
whatever is the current generation of CPU 
to the existing hardware, rather  than dis- 
carding any existing hardware. 

Each CPU contains sixteen complete 
process contexts called "register sets." The 
CPU always runs the highest-priori ty 
ready process that  is in a register set. The 
combination of such a simple scheduling 
algorithm with hardware support results in 
extremely fast context switches, on the or- 
der of ten microseconds in the earlier two 
CPUs and around three microseconds in 
the current CPU. Extremely fast context 
switches are very important in the real- 
time marketplace. 

At the architectural level, Input Output 
Processors (IOPs) are similar to CPUs. 
Specifically, I/O controllers genera l ly  
have on-board CPUs which run the device 
driver. Communication between the oper- 
ating system and the controller is via mes- 
sages rather  than the more traditional in- 
terrupts. During I/O operations the IOP 
supervises the DMA of data between the 
controller and main memory. These I/O 
operations occur over the Gigabus. CPUs 
and IOPs look the same from the perspec- 
tive of a Memory Controller. 

Each Memory Controller (MC) supports 
up to 256M bytes of memory. This memory 
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is organized into interleaved Memory Ar- 
ray Boards. The MC itself runs at 25 ns. 
and has deep buffering to allow it to service 
many requests simultaneously. There can 
be up to eight Memory Controllers per sys- 
tem, yielding a maximum physical mem- 
ory size of 2 GB. Lifting the limit on the 
maximum amount of physical memory is 
mostly a software problem and is currently 
being investigated. 

The Service Processor performs diag- 
nostic and bootstrap functions. From the 
end user's perspective the most interesting 
function it performs is to monitor the health 
of the CPUs, deconfiguring them if they 
fail. This include migrat ing processes 
from the failed CPU. 

2.2. Network Multiprocessors 

The BBN Butterfly Parallel Processor 
has an interconnection network unique 
among the machines considered in this 
paper. Its "butterfly" switching network is 
an indirect binary n-cube packet-switch- 
ing network, that  connects from 2 to 256 
processing nodes [Br 4/87]. According to 
BBN, the advantages of the Butterfly switch 
over other interconnection architectures 
include performance, cost, and flexibility. 

The Butterfly switch connects different 
processing nodes, each consisting of a pro- 
cessor and memory. Figure 5 shows a But- 
terfly switch for a 64 processor system [BB 
3/86]. The figure would more accurately 
represent the switch if it were in the shape of 
a cylinder, so that both the upper left input to 
the switch and the upper right output from 
the switch would be connected to the same 
processing node. As a result, any message 
going from one processor to any other pro- 
cessor is delayed by passing through log n 
stages. 

The Butterfly is a shared-memory ma- 
chine, while the hypercubes are message- 
passing machines. One Butterfly proces- 
sor can reference memory in any other 
processor, through the switch. Instead of a 
switch, the other network processors pro- 
vide hardware  assistance for message 
passing. The Butterfly can do message 

passing too, but does it via software, using 
message buffers in shared memory. 

The Butterfly switch is also more easily 
scalable than  a single-bus in ter -  
connection. Bus architectures are limited 
to a few dozen processing elements; at this 
point, contention for the bus becomes so 
great that adding more processors will not 

F igure  5: A 64-Node Butterfly Switch 
[BB 3/86] 
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improve  per formance .  However,  the  
bandwidth of the Butterfly switch grows 
with the number of processors, so a Butter- 
fly can take advantage of a very large 
number  of processors. The interconnection 
bandwid th  can be increased  f u r t h e r  
through the use of r edundan t  switching 
nodes, which decrease contention on the 
Butterfly switch. 

Compared with a s tandard hypercube 
in te rconnec t ion ,  the  But te r f ly  switch 
achieves lower latency. In first-genera- 
tion hypercubes, 1 a message directed to a 
non-neighbor node mus t  be forwarded by 
other  processors along the way. This 
causes the other processors' applications to 
be interrupted,  and therefore reduces per- 
formance. As a result, programmers try to 
program an application so tha t  message 
passing need only be done between imme- 
diate neighbors [BB 87]. This often re- 
quires extra p rogrammer  effort. Also, 
since the processing nodes do not share 
memory, they require a copy of the program 
on each processing node. This necessitates 
larger memories at each node [BB 87]. 

A disadvantage of the Butterfly switch is 
tha t  in order to avoid switch and memory 
contention, data and instructions must  be 
distributed among the memory modules in 
a balanced way. This is facilitated by the 
Uniform System software library routines 
for memory  m a n a g e m e n t  [Re 12/86]. 
Switch contention (but not  memory con- 
tention) can also be reduced by placing re- 
dundan t  switches in the switching net- 
work. Redundant  switches also improve 
fault  tolerance. For clarity's sake, these 
redundant  paths are not shown in the 64- 
node Butterfly switch in Figure 5 .  

1The Intel i.PSC/2's "direct-connect" routing [In 9/87] 
uses a multistage interconnection network which is 
isomorphic to a Butterfly interconnection. It  
eliminates the need to interrupt processors along the 
route. However, the Butterfly still achieves much 
lower latency than the iPSC/2. In a sense, this 
comparison is of apples (shared-memory references) 
and oranges (message passing). There is reason to 
believe that the Butterfly would not be faster at message 
passing than the iPSC/2. The lowest process-to-process 
message latency in the Butterfly is 1.80 ms. [SC 87] ; 
while for the iPSC/2 it is 0.58 ms. Both of these times 
are dominated by software. 

The other network computers considered 
in this paper use the hypercube architecture, 
which was originally developed at Caltech. 
A hypercube is well suited to science and 
engineer ing applications because it  con- 
tains many different topologies, such as the 
ring, various meshes,  and FFT, tha t  are 
encountered in these disciplines. The hy- 
percube archi tecture  is also being pro- 
grammed for AI applications as they begin 
to require faster computing resources. 

The three hypercube computers covered 
in this survey are the Intel iPSC/2, the 
NCUBE/n,  and the FPS T Series. The 
largest Intel system sold to date contains 
only 128 nodes. The NCUBE architecture 
allows up to 1024 nodes, which is the size the 
NCUBE/ten (210 nodes). The FPS T series 
has been discontinued by the  manufac- 
turer. It  was constructed out of modules 
containing 8 processing nodes each. These 
modules can be aggregated into hypercubes 
of hp to dimension 14, but the largest prod- 
uct was the FPS T200, which had 128 nodes. 

All three hypercube computers have un- 
shared local memory,  and use message 
passing to communicate  between nodes. 
The processing nodes of all three have 
floating-point accelerators. However, the 
process ing-node boards  differ signifi- 
cantly in size. While Intel and FPS use 
one or two large boards per node, NCUBE 
managed to put  64 processing nodes one 
board 16" by 22" [NC 88]. NCUBE provides 
only 512K of memory per node, though,  
while FPS provided 1M byte and Intel pro- 
vides 4M bytes in each node. 

3. Node Structure 

A prominent  feature of a network archi- 
tecture is its node structure. A processing 
node usua l ly  consis ts  of one control  
p rocessor ,  one or more  n u m e r i c a l  
coprocessors, local p rogram and da ta  
memory,  and hardware  to communicate  
with other nodes. To minimize initial en- 
gineer ing costs and facil i tate program- 
ming ,  all the  p rocess ing  nodes  in 
commercial parallel architectures have the 
same basic design. Some processing nodes 
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can be enhanced by either adding daughter 
boards or connecting full-size enhance- 
ment boards. 

The key issues designers face when de- 
signing a processing node include-- 

• Should custom VLSI or off-the-shelf 
components be used? 

• How much numer ica l  processing 
power is needed, and what processor 
should be used? 

• How much memory should be provided 
per node? 

• What  kind of communication hard-  
ware should be provided? 

All the processing nodes except NCUBE's 
were constructed from off-the-shelf compo- 
nents. NCUBE designed all of the process- 
ing node except the memory onto one VLSI 
chip. Off-the-shelf components allow the 
node to be configurable and reduce the ini- 
tial engineering investment. Advantages 
of NCUBE's design include improved 
reliability, lower size and power consump- 
tion, and lower cost in mass production. 
NCUBE's decision to use one custom VLSI 
CPU is based on the belief that high perfor- 
mance in scientific applications can best be 
achieved with several hundreds of process- 
ing nodes [NC 88]. NCUBE has sold several 
NCUBE/tens, with 1024 nodes, the largest 
configuration covered in this survey. 

Designed to perform numerical opera- 
tions quickly, NCUBE's nodes have 32-bit 
processors and floating-point execution 
units that  can process 64-bit floating-point 
quantities [Ha 10/86]. Intel and FPS also 
offered pipelined vector units to increase 
each node's performance to the minicom- 
puter range. 

All the hypercube nodes have only local 
memory, while the Butterfly Parallel Pro- 
cessor offers shared as well as local mem- 
ory. A strictly local-memory architecture 
requires some data and code to be repli- 
cated, and therefore demands more mem- 
ory than a shared-memory machine. Con- 
sequently, nodes in all the hypercubes ex- 

cept NCUBE's contain several megabytes of 
memory. Although the NCUBE nodes have 
only 512K, the 4M-byte host can run larger 
computations [Ha 10/86]. This is useful in 
the common case where the pre- or post-pro- 
cessing for a large numeric application 
requires much more memory than the in- 
dividual processes of the parallel computa- 
tion. 

On first-generation hypercubes, "store- 
affd-forward"  message  t r a n s m i s s i o n  
caused intermediate processors to be inter- 
rupted and thus degraded performance. 
Some hypercubes now have hardware as- 
sistance for message forwarding. The 
iPSC/2 series nodes have routing hardware 
on the Direct-Connect routing board which 
rece ives  and  t r a n s m i t s  m e s s a g e s  
independent of the processor [In 9/87]. The 
Direct-Connect routing board creates a 
connection from the source node to the des- 
tination node and then sends the message 
at 2.8M bytes/s. The Butterfly has a mul- 
tistage routing network, removing the need 
for shared-memory references to traverse 
intermediate nodes [BB 3/86]. 

Butterfly Node Structure. Each Butterfly 
processing node (Figure 6 [BB 87]) is iden- 
tical except for I/O options. Each node is 
capable of a peak performance of 2.5 MIPS. 
Its CPU is a 16 MHz 32-bit Motorola 68020 
microprocessor, which can off-load float- 
ing point arithmetic to a Motorola 68881 
floating-point coprocessor (IEEE 754 stan- 
dard). Each node also has a 68851 paged 
memory- management  unit  (PMMU) and 
up to 4M bytes of memory [BB 87]. 

The Butterfly processing node has a sep- 
arate communication processor to allow 
uninterrupted application processing. The 
communication processor is actually a 
microcoded coprocessor called the Process- 
ing Node Controller (PNC). The PNC, in 
combination with the 68851 PMMU, trans- 
lates virtual addresses into physical ad- 
dresses for both local and remote memory, 
so that  a program need not distinguish be- 
tween local and remote addresses [BB 3/86]. 
The PNC's microcode also provides opera- 
tions that  enhance the functionality of the 
MC68020 for parallel processing. For ex- 
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Figure  6: Block Diagram of Butterfly Node [BB 87] 

ample, it has a test-and-set operation that 
guarantees "atomic" access to a memory 
location. The PNC can insure mutual ex- 
clusion because it handles all memory ref- 
erences made by its processor and by re- 
mote processors to its memory via the 
switch. 

N C U B E  Node Structure.  The NCUBE 
processing node is generic for all models of 
NCUBE parallel processor and consists of 
seven chips, six DRAMs, and the custom 
processor. Designed over a 2-year period 
exclusively for parallel processing, the 
custom processor contains 160,000 HMOS 
transistors. It contains a 32-bit integer 
ALU and shifter, 16 general-purpose reg- 
isters, a 64-bit IEEE standard floating- 
point unit, and an instruction cache [Ju 
6/86]. A 64-bit floating point multiply oper- 
ation takes 2.0 Its. at 10 MHz. This com- 
pares with 9.5 ~s. for the same operation on 
an Intel 80287 math coprocessor running at 
10 MHz. A large part of this speedup "can 

be attributed to the fact that  the floating- 
point hardware has been fully integrated 
with the rest of the processor" [Ju 6/86]. This 
eliminates the time-consuming interface 
protocol between the processor and the 
floating-point unit. The custom processor 
has a total of 11 bidirectional serial DMA 
channels. Ten bidirectional channels are 
for connections to neighboring processing 
nodes and one is for system I/O [Pa 5/86]. 
(This is what limits the NCUBE hypercube 
to 210 nodes.) Each channel has a peak 
transfer rate of 8M bits/s, in each direction 
(2M bytes/sec overall). Message passing 
is done via DMA, allowing the processor to 
resume computing while a message is be- 
ing transferred. When a DMA transfer is 
completed, the DMA channel interrupts the 
processor, so that  no processor polling is 
required to determine which DMA channel 
just finished [Pa 5/86]. 

i P S C / 2  Node Structure. While NCUBE 
used a custom processor, Intel took the 
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opposite approach and constructed a pro- 
cessing node out of off-the-shelf compo- 
nents  to make their  processing nodes con- 
figurable and upgradable [In 10/87]. The 
computat ional  processor is Intel 's  most  
powerful 32-bit microprocessor, the 80386. 
The companion 80387 numeric coprocessor 
provides 64-bit IEEE-compatible  scalar 
f loat ing-point  precision at  0.3 MFLOP. 
Using the instruction t iming to rate float- 
ing-point speed, the iPSC/2-SX takes 0.81 
~s. to perform a 64-bit multiply. Four DMA 
channels  are found on each processing 
board for transfer of large blocks of data [In 
88]. Two channels allow for data transfer 
to other processing nodes through the rout- 
ing hardware,  one channel for each direc- 
tion. The other two channels are used by 
software for transfers within the process- 
ing node. 

Flexibility is achieved in memory con- 
f igurat ion,  rou t ing  hardware ,  and en- 
hancement  options. The memory for the 
processing node is located on a daughter  
board which is laid on top of the processing 
node board. This gives the processing node 
the  abil i ty to expand i ts  memory  as 
technology makes  memory cheaper and 
more compact. The processing node can 
hold up to 16M bytes of DRAM. Since the 
Direct-Connect  ha rdware  for rout ing  is 
also on a daughter  board, the customer can 
upgrade the routing capabilities of the node 
w i t h o u t  r ep l ac ing  the  en t i re  node.  
Presently, the only routing daughter  board 
available is the Direct-Connect board. 

Each node also provides an iLBX (local 
bus) interface so that  optional boards can be 
connected directly to the processing node to 
enhance the node. Presently, Intel has two 
enhancement  boards, the Vector Extension 
(VX) and Scalar Extension (SX) numerical  
accelerators. The VX numerical  acceler- 
ator is a full size board which resides be- 
side the processing node board and is con- 
nected directly to the  processing node 
through a ribbon cable. The relationship 
between the processing node and the VX 
numerical  accelerator is t ha t  of t ightly 
coupled (shared memory) processors where 
the memory located on the VX board can be 
accessed and used by the processing node 

as if it were its own memory [In 88]. Its 
pipelined floating-point processor consists 
of a floating point adder and multiplier .  
Tl~e addition is done by an Analog Devices 
Inc. 3220 floating-point  mul t ip l ier  chip, 
and the multiplication is done by an Ana- 
log Devices 3210 floating-point adder chip 
[El 4/86]. The board also performs 32-bit 
fixed point  and logical functions.  The 
h a r d w a r e  is op t im ized  for m a t r i x  
mult ipl icat ion,  and f loating-point  opera- 
tions are compatible with the IEEE-754 
f loat ing-point  s tandard .  Theoret ical ly,  
double-precision f loa t ing-point  calcula- 
tions are sped up by two orders of magni- 
tude over the non-VX version of iPSC/2 
computer. 

The SX numerical  accelerator approxi- 
mately triples the power of the 80387 copro- 
cessor. The SX uses a 1167 Weitek fast 
floating-point unit  and is most effective in 
heavily scalar computations and computa- 
tions with short vectors. The SX is not a 
full-size board, but  a daughter  board to the 
node board. 

FPS Node Structure. The FPS T Series 
processing node is called the Vector node 
and is claimed by the manufacturer  to be a 
high-performance vector computer  which 
has a peak performance of 12 MFLOPS [FP 
11/87a]. Figure 7 shows a block diagram of 
the node structure. The node controller is 
the T414 Transputer ,  an integrated micro- 
computer, which can operate at least 3 times 
the speed of the Motorola 68020 [Fr 8/86]. 
The vector processor unit  operates at 8 MHz, 
but  to achieve peak performance, data must  
be aligned on 128-doubleword boundaries  
[Re -]. The node can contains 1M byte of 
memory [FP 11/87a]. Data within the node 
can be transferred either by the control pro- 
cessor or by the vector processor [Re -]. The 
vector processor is much faster than  the 
control processor at  t r ans fe r r ing  da ta  
within the processor, but  requires  data  
a l ignment  [Re -]. 
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4. Memory structures 

4.1. Shared-bus architectures 

One problem faced by designers of 
tightly coupled multiprocessor systems is 
minimizing the interference between pro- 
cessors sharing main memory. In a 
shared-bus architecture, contention for the 
bus and memory can slow down the entire 
system. Even with a fast bus, reasonably 
priced dynamic RAM memories are not 
fast enough to satisfy all processors' re- 
quests. A solution to this problem is to place 
a cache built from fast static RAM between 
the processor and main memory. The 
cache intercepts many of the CPU's re- 
quests for main memory. Consequently, 
bus traffic is reduced and more processors 
can share memory with less contention. 

The Multimax, the Balance system and 
the ELXSI System 6400 have a distributed 
cache architecture, that  is, a cache on each 
processor. The Alliant system has two 
types of caches: the computational proces- 
sor cache (CPC), and the interact ive 
processor cache (IPC). A CPC can be 
shared by up to four computational ele- 
ments, and a IPC cache can be shared by up 
to three interactive processors. Each pro- 
cessor in the Balance system has 8K bytes 
of local DRAM to store a copy of the most 
commonly used operating system's kernel 
to reduce bus traffic further. The ELXSI's 
register sets serve as a context cache, with 
the same effect. 

Encore's Multimax. The Multimax 
memory subsystem is made up of several 
cards, each of which has its own controller. 
Each controller has four rows of RAM 
chips. The Multimax system can contain 
up to eight shared-memory cards. Each 
memory card has sixteen megabytes of 
memory organized into two independent 
banks with four-way interleaving across 
card pairs, and two-way inter leaving 
across banks on each card. The memory 
access rate can be as high as 100M bytes per 
second. In the Multimax system, two pro- 
cessors share a common 32-kilobyte cache. 

The memory  subsys tem and the 
Nanobus function as a single synchronous 
unit. The memory cards derive their in- 
ternal  clock signals from the Nanobus, 
and consequently they run synchronously 
with the bus [Sc 11/86]. The memory sub- 
system and the Nanobus have a pipelined 
interface which improves the speed of the 
bus operations. Each Nanobus memory 
controller can accept the next request from 
the bus while it is still processing the previ- 
ous one. The new request is buffered, al- 
lowing the bus-transfer timing to be as fast 
as the time needed to load a register [Bi 
7/87]. 

Sequent Balance System. The Balance 
system can contain up to four memory 
modules. Each module contains a memory 
controller board with 2M bytes of RAM and, 
optionally, a memory expansion board of 
2M or 6M bytes. To support the high band- 
width of the system bus, a memory module 
can respond to a read request in 3 cycles 
(300 ns), and to a four- or eight-byte request 
in 2 cycles. If there is a pair of memory 
modules of equal size, alternate eight-byte 
address blocks can be interleaved between 
the two modules. The interleaving of ad- 
dress blocks allows two or more modules to 
process write or read requests in the same 
memory area concurrently. 

The memory subsystem is pipelined and 
contains a request queue, a response queue, 
an error-checking and correction con- 
troller, and a system link and interrupt  
controller. The pipelined operation allows 
a single memory controller to support a 
memory transfer rate of eight bytes per 300 
nanoseconds [Se 11/86, Th 2/88]. 

The 8K bytes of local DRAM in each pro- 
cessor hold a copy of the operating system 
(DYNIX) kernel's interrupt  and trap vec- 
tors, the module table, the first-level page 
table, and other frequently used kernel  
routines. Each processor also has a 8K- 
byte, 2-way set-associative cache. The data 
in the cache is organized into 512 rows, 
each of which has two eight-byte blocks. 
Bits 3-11 of the data address determine the 
row in which the data is stored in the cache 
[Se 11/86, Th 2/88]. 
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Alliant FX/80. The global physical 
memory in Alliant systems uses 256K dy- 
namic RAMs and is field expandable in 
8M-byte increments to a maximum of 64M 
bytes. Each memory module is four-way 
interleaved and can supply the full bus 
bandwidth of 188M bytes per second for se- 
quential read accesses and 80% of this 
bandwidth for write accesses. The memory 
modules check the address-bus parity. 

Each CPC (see above) is a high-speed 
global memory buffer for the computational 
elements. A CPC module can serve as a 
two-way interleaved 256K-byte cache for up 
to four computational elements. If eight 
computational elements are used, two CPCs 
provide a four-way interleaved 512K-byte 
cache with a maximum bandwidth of 376M 
bytes per second. The CPC supports multi- 
ple cache accesses in parallel. If one pro- 
cessor has to stop due to a cache miss, the 
CPC continues to service the requests of the 
other processors connected to it [A1 10/86]. 
One of the advantages of the CPC architec- 
ture, as opposed to a distributed cache ar- 
chitecture is that  data can be passed very 
quickly among the processors connected to 
a CPC. This is particularly useful when 
processing data-dependent loops. 

Each IPC is a 32K-byte module which 
can connect a maximum of three IPs to the 
memory bus at a bandwidth of 94M bytes per 
second. The IPCs are capable of providing 
each IP a continuous bandwidth of 5M bytes 
per second, for a maximum bandwidth of 
60M bytes per second when the system con- 
tains 12 IPs. The IPCs block and unblock 
global memory, maintain maximum bus 
efficiency, increase interactive processor 
performance by speeding program code 
fetches and I/O transfers. 

ELXSI System 6400. In the ELXSI sys- 
tem, each memory module on the bus con- 
tains 256 megabytes. A maximum of eight 
memory modules can be connected to the 
25-ns. bus, providing up to 2 gigabytes of 
physical memory in a system. All mem- 
ory accesses on the ELXSI are virtual; that 
is, they are relative to a process-specific 
data s t ructure (the process's page-map 
table) which bears no particular resemb- 
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lence to physical memory. Physical ad- 
dresses are known only to the Memory 
Manager, which is responsible for the page- 
map tables, and to the hardware. There are 
no addressing modes tha t  allow an in- 
struction to access particular locations in 
physical memory. Thus, a page of data 
must be in a process's page map table if it is 
to reference it. Operating system processes 
are restricted to their address spaces in ex- 
actly the same fashion as user processes. 

Processes can share memory if shared 
page is in the page-map table of each pro- 
cess. When created, a process does not 
share memory with any other process; 
hence there can be no concurrency control 
problems due to shared memory. Specific 
system calls allow two processes to agree to 
share some portion of their address space. 
Multiple pieces can be shared, and there is 
no requirement that they be shared at the 
same virtual address in each process. The 
Memory Manager arranges this by placing 
the same physical memory addresses in 
each process's page-map table. 

Shared memory-management  facilities 
include system calls and instructions to 
control the residency of data in the cache. 
Pages of data can be marked as non- 
cacheable. References to data in such 
pages always result in a cache fault. The 
data will always be returned from main 
memory and be wri t ten back to main 
memory. Such references can be on arbi- 
trary byte boundaries [O1 5/86, Sh 2/87]. 

It is the programmer's responsiblity to 
deal with concurrency control. A variety 
of hardware  and software facilities are 
provided to assist in this. However, con- 
currency control is generally expensive, 
as it requires the use of the bus and physical 
main memory, defeating the performance 
advantages of the cache. ELXSI's philoso- 
phy, like RISC principles, maintains that  
hardware should do the simple things and 
software should avoid doing expensive 
things. Because accesses to cache are so 
much faster than accesses to main mem- 
ory, ELXSI usually encourages users to 
consider organizing their  programs to 
minimize the number of synchronization 
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points. However, the system will support 
even the simplest shared memory models. 

4.2. Network Multiprocessors 

B B N  Butterfly. Each Butterfly process- 
ing node has 4M bytes of memory. This 
memory accepts both local and remote 
reads, but all reads must pass through the 
Processing Node Controller. Therefore, if 
only message passing is used and no re- 
mote memory reads/writes are made, the 
memory is considered unshared and local. 
On the other hand, if remote memory 
reads/writes are used, then the memory is 
considered shared. The time required for a 
local memory  reference on any size 
Butterfly Parallel Processor is about 500 
ns., while the time for a remote memory 
reference is 5 ~ts. 

NCUBE. Each NCUBE node has a 16-bit 
data path to 512K bytes of local DRAM. 
which corrects all single-bit errors and 
detects any double-bit errors [NC 88]. The 
program and data for the node are located 
in the 512K bytes of memory. 

NCUBE processors are found on proces- 
sor boards and I/O boards. A processor 
board has 64 processors, each with 512K 
bytes of unshared memory. An I/O board 
has 16 processors, which also have 512K 
bytes each; but in addition, a host I/O board 
has 2M bytes for the use of an Intel 80286 
host  processor. The host processor can ac- 
cess all 4M bytes, and so the memory on a 
host board is, in a sense, shared memory. 

Intel iPSC/2 .  All memory in the iPSC/2 
series computer is local to the processing 
nodes. Presently, processing nodes can be 
equipped with 1M to 16M bytes of memory 
[In 88]. Each node also has a 64K SRAM 
zero-wait-state cache. 

FPS  T Series. All the memory in the 
FPS T Series was local memory. The 
memory structure of the node is shown in 
Figure 7. The Transputer contains 1K byte 
of 50 ns. SRAM [FP 11/87a]. Because the 
FPS vector processor could only move data 
on 128-byte doubleword boundaries [Re -], 
the location of data within the node was 
much more critical for the FPS T Series 

than other parallel computers [Fr 8/86]. A 
unique feature of the FPS T Series was that 
each module of 8 nodes (arranged in a hy- 
percube) had a separate system board. This 
system board interfaced the modules to the 
operating system and also had its own 
256M-byte hard disk [Re -,  FP 11/87a]. 
This allowed fast program and data input 
for any size hypercube. 

5. Cache coherence  

Caches improve per formance  in a 
shared-bus multiprocessor system by de- 
c reas ing  memory  access t imes  and 
diminishing bus traffic. A private cache 
can be provided for each processor 
(distributed cache architecture) or a single 
cache can service a group of processors 
(shared cache architecture). 

However, the use of caches may create a 
cache coherence problem if multiple copies 
of main memory locations can exist in 
different caches. If a CPU changes the 
value of a shared memory location, it is 
necessary for all caches that  contain that  
location to either invalidate or update it to 
contain the modified value. There are two 
basic types of memory-update  policies: 
write-through and write-back. In a write- 
through policy, every time a cache's copy of 
a location is modified by its processor, the 
new data is immediately t ransmit ted  to 
main memory. In a write-back policy, a 
cache only updates the local cache copy and 
delays sending the modified copy to main 
memory until it is removed from the cache. 

The ELXSI System 6400 and the Alliant 
FX/80 and FX/1 use a write-back policy. 
While new products by Sequent (the Sym- 
meflry) and Encore (the ultramax project's 
future machine) use a write-back scheme, 
Sequent's Balance system uses a non-allo- 
cating write-through policy, and the cur- 
rent  Multimax also uses write-through. 
Each cache in the Balance system contains 
a write buffer to keep the processor from 
waiting for the completion of a bus write 
cycle. When a processor needs to send 
modified data to memory, it temporarily 
stores the data and address in the buffer. 
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The buffer completes the write operation to 
main  memory  independent ly .  For 
successive writes, the second write waits 
until the first one is completed. 

The Multimax, the Alliant systems and 
the Balance system contain hardware at 
each cache to monitor all bus transactions 
for coherence purposes. This "bus watcher" 
examines every transaction on the system 
bus. When a write cycle is detected, it 
checks the address to see if the location be- 
ing modified is present in the local cache. 
If so, the bus watcher makes the local cache 
invalidate its copy of the data. In the Bal- 
ance system, if a processor attempts to read 
invalidated data, it gets a cache miss and 
fetches the valid copy from main memory 
[Th 2/88]. Sequent's Symmetry processor 
[LT 12/87] uses a cache-coherence protocol 
similar to the Illinois cache coherence 
scheme [PP 84]. In the Multimax and A1- 
liant systems, if a cache x requests some 
data from main memory and a modified 
copy of the data is in cache y, then cache y 
intercepts the read operation requested by 
cache x and sends a copy of its modified 
data to both cache x and main memory. If 
cache x has requested a writable copy of the 
data, cache y will invalidate its local copy. 

In the ELXSI System 6400, processes 
usually interact  via messages, not via 
shared data. Processes can share read- 
only data and cannot modify another pro- 
cess's space except by using special system 
services. Therefore, there are no bus 
watchers, since a cache does not need to 
know the contents of the other caches. The 
caches update main memory when a modi- 
fied location in the cache is replaced by a 
new location [O1 85]. Since the operating 
system is written entirely without shared 
memory, the operating system data can be 
cache resident. In busy systems, this sig- 
nificantly improves the overall perfor- 
mance of the operating system. 

Encore Computer Corporation's ultra- 
max project is presently working on a new 
system (not yet named) which contains up 
to 128 processors and 2048M bytes of physi- 
cal memory. Such large configurations 
are achieved by tightly coupling Multimax 

systems through a hierarchical  cache 
structure, as is shown in Figures 8 and 9. 
In Figure 8, references to remote memories 
go through Mc2, and then are picked off by 
Sr at the appropriate cluster and sent down 
to the referenced memory card. Besides the 
caches that  connect each CPU with the 
Nanobus, another cache level buffers each 
group of processors from the rest of the sys- 
tem. The second-level caches have to be an 
order of magnitude larger than the sum of 
the sizes of all the first-level caches that are 
connected to them. The idea is that  any 
memory locations for which there are 
copies in the first-level caches will also 
have copies in the associated second-level 
cache [Wi 6/87]. Therefore, the second- 
level cache (and its associated routing 
switch) acts as multicache coherence mon- 
itor for the first-level caches connected to it. 

An example of how multicache coher- 
ence control is done in a hierarchical  
shared bus multiprocessor using the Good- 
man cache coherence control is given by 
Drew Wilson in [Wi 6/87]. Other shared- 
bus cache coherence protocols can also be 
modif ied to be imp lemen ted  in a 
hierarchical multiprocessor system. 

Although the ul t ramax programming 
model presents main memory as a large 
address space residing on the global bus, 
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Figure  8: Hierarchical Cache Structure 
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the memory  is physically dis t r ibuted 
among groups of processors connected to a 
Nanobus. Data and code are kept largely 
local to a particular Nanobus and its pro- 
cessors in order to decrease the global data 
traffic at the higher levels of the system. 
Remote requests  for local memory are 
transferred via the local shared bus, using 
a special adapter board to maintain coher- 
ence. This architecture is called cluster 
architecture since each Nanobus in the 
system forms a multiprocessor cluster with 
access to a bank of cluster local memory 
[Wi 6/87]. 

The clustered design is implemented by 
adding two new modules to the commercial 
Multimax system, the Ultra Interface Card 
(UIC) and the Ultra Cache Card (UCC). A 
UIC is connected to each Nanobus and 
communicates with a corresponding UIC 
installed in the global bus. The global bus 
is another Nanobus backplane without pro- 
cessors or memory cards connected to it. 
The UCC is installed next to the UIC in each 
local Nanobus and is used to locally cache 
data from remote Nanobuses [Bi 7/87]. 

Wilson did some simulation experi- 
ments  and constructed an analyt ical  
model to analyze the performance of 
medium- and large-scale hierarchical ly 
clustered multiprocessors [Wi 6/87]. The 
results of the simulations showed that  a hi- 
erarchical multiprocessor computer struc- 
ture achieves good speedup if suitable par- 

Architecture [Wi 7/87] 

allel algorithms are used. The analytical 
model indicated that  using 64M byte cluster 
caches and 13 MIPS processors, which will 
be available in the near future, it will be 
possible to construct a shared memory 
multiprocessor of over 1000 MIPS. 

6. Proces sor  C o m m u n i c a t i o n  and  
Synchronization 

Synchron iza t ion  is n e c e s s a r y  for 
multiprocessor systems to execute parallel 
operations and to insure that  no more that  
one process has write access to a sharable 
resource at the same time. Most multipro- 
cessor systems use locks and semaphores 
for this purpose. In some systems such as 
Encore and the Balance, synchronization 
is done by the hardware, while in the ELXSI 
System 6400 it is done by software. Inter- 
processor communication is necessary in 
several situations: 

• to tell a processor to remove itself from 
service, 

• to initiate low-priority in terrupt  ser- 
vices, or 

• to deliver a software signal. 

In the Alliant and Balance systems, pro- 
cesses communicate via interrupts; in the 
ELXSI System 6400 they use messages. 
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6.1. Shared-bus architectures 

Encore's Multimax. The Multimax uses 
semaphores to synchronize processors' ac- 
cesses to shared resources. The Nanobus 
memories implement atomic test-and-set 
operations at the memory-chip level. The 
memory chip executes the atomic test-and- 
set function without locking the bus or the 
memory controller, and also without re- 
stricting the software in the number, loca- 
tion, or use of semaphores, each of which 
occupy a byte [Sc 11/86]. 

The Sequent Balance System. The Bal- 
ance System synchronizes processors by 
using the System Link and Interrupt Con- 
troller (SLIC). The SLIC performs this 
function with a set of 64 single-bit gates. 
These gates are logically equivalent to a 
test-and-set primitive. The CPUs use the 
SLIC Request Gate and Release Gate oper- 
ations to insure that only one CPU at a time 
has access to a shared data structure. A 
gate is acquired via a single atomic opera- 
tion. When a gate is acquired by a CPU, a 
SLIC first verifies that the gate is free, then 
sends a Request Gate command on the SLIC 
bus. The successful transmission of Re- 
quest Gate insures exclusive ownership of 
the gate [Be 10/87, Th 2/88]. 

At any time, each gate is either in a free 
or in an occupied state. When a process 
needs to use a gate, it loops requesting the 
gate until it acquires it. Since each SLIC 
keeps track of the status of each gate, the 
busy-waiting is done checking the status 
register of the local SLIC, not across the 
SLIC bus. 

The DYNIX operating system uses three 
kinds of mutual exclusion primitives built 
from gates: the direct use of the gates, spin 
locks, and counting semaphores. The di- 
rect use of gates is the fastest, but this is 
only employed in the most time-critical 
sections, since there are only 64 gates. A 
lock is a byte in memory which can be in 
one of two states: locked or unlocked. A 
single gate can synchronize accesses to 
many locks, and therefore, there can be an 
unlimited number of locks. When a pro- 
cessor needs to access a shared data struc- 

ture, it has to wait until the associated lock 
is unlocked. Then it changes the lock state 
to locked, to indicate other CPUs that  the 
data structure is in use. Locks are used to 
protect data structures for a short amount of 
time, because a CPU can not perform any 
other operations while another CPU is us- 
ing a lock that  it needs. The Counting 
Semaphores are the highest level mutual 
exclusion primitive and are used to block 
waiting for an event, or to guard a very 
long critical region. When a process tries 
to acquire a semaphore which is being used, 
the process is placed on a waiting queue, 
associated with the semaphore, and the 
CPU is freed to be used by another process. 
When a semaphore is released, the first 
processor in the waiting list is given access 
to the critical region. 

Communication between processors is 
implemented with programmed interrupts 
via the SLIC. A processor can send another 
processor a normal maskable interrupt, a 
non-maskable interrupt, or a software in- 
terrupt. 

Alliant FX/80. Synchronizat ion be- 
tween processors in the Alliant FX/80 is 
provided by the Concentrix operating sys- 
tem, which uses priority-level locking and 
a hierarchy of global test-and-set locks. 
Global test-and-set locking is used to 
manage multiprocessor interactions. Each 
global lock consists of an access location, a 
processor tag, a priority identifier, and a 
recursion counter. The access location is 
used for atomic test-and-set operations by 
processors trying to access a lock. The 
processor tag holds the identification num- 
ber of the processor which currently owns 
the lock. The priority identifier is used to 
implement a linear ordering of the types of 
sharable resources for deadlock avoid- 
ance. The recursion count keeps track of 
how many times a lock has been acquired 
recursively.  

Concentrix keeps track of the lock states 
of processes by using a lock-stack per pro- 
cess. Locks are pushed into the stack as 
they are acquired by processes and popped 
from the stack as they are released by pro- 
cesses. Each process's lock stack is stored 
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in its kernel user-area and is preserved 
through process sleeps. The locks owned by 
a process are released when it goes to sleep 
and are re-acquired when it wakes up. 

communication path between the CCUs. 
C o n c e n t r i x  c o o r d i n a t e s  t he  CE 
(computational element) complex during 
the execution of concurrent processes. 

Processes in the Alliant architecture 
communicate via a cross-processor-inter- 
rupt  (CPI) facility. The CPI allows any 
processor in the system to interrupt  any 
other process in the system. A CPI can be 
directed to a single processor or to a group of 
processors through a selective broadcast. 
Concentrix uses the CPI facility to activate 
remote procedure calls (RPC) on other pro- 
cessors, to initiate remote asynchronous 
system traps on other processors, and to 
synchronize the processors in the system. 
Remote procedure calls are mainly used to 
activate routines that  modify remote pro- 
cessor or device states. RPCs can be asyn- 
chronous or synchronous and are imple- 
mented using a global mailbox facility to 
pass arguments .  Asynchronous RPCs 
suspend the calling processor until all tar- 
get processors have sent a software inter- 
rupt  to perform the RPC. Synchronous 
RPCs suspend the calling processor until 
all the target processors have executed the 
RPC [Te -]. 

The most powerful feature of the Alliant 
architecture is the ability to use multiple 
computational elements concurrently in 
the execution of a user application in a way 
that  is t ransparent  to the user. This is 
called Alliant Concurrency and is con- 
trolled at execution time by the Concur- 
rency Control Unit, an 8000-gate CMOS ar- 
ray that  connects the processors through a 
concurrency-control  bus. The concur- 
rency-control bus provides an independent 

Alliant concurrency uses the program 
loop control as the source of parallel in- 
struction streams. At compilation time, the 
FX/Fortran compiler inserts special con- 
currency control instructions whenever it 
detects loops which can be executed in par- 
all~l by multiple CEs. 

Initially, code is executed serially by 
one computational element while the others 
wait. Concurrent execution starts when the 
active CE reaches a concurrency control 
instruction inserted by the FX/Fortran 
compiler. At that  point, the complex as- 
signs to each CE a value for the loop index 
according to a global counter. Concur- 
rency-control data is t ransmit ted via the 
concurrency-control bus. When a CE 
completes an iteration of the loop, the com- 
plex assigns it another index value, and it 
restarts the loop. When all the iterations 
are finished, the CEs go idle except for the 
last CE executing a loop iteration, which 
continues executing sequentially [Pe 5/86, 
A1 10/86]. 

The following example shows how the 
Alliant executes a do loop containing data 
dependencies [Pe 5/86]: 

12 

X(0) = 0 

DO 12 I = 0, N 

Y(I) = SIN(A(I))*COS(B(I)) 

Y(I) = (Y(I)-C(I))/B(I) 

X(I+I) = X(I)+Y(I) 

+ C(I) 

CE0 ¢EI ¢E2 
sequential code idle idle 
Y(0) = SIN(A(0)) etc. Y(1) = SIN(A(1) etc.) Y(2) = SIN(A(2) etc.) 

Y(0) = (Y(0) etc.) Y(1) = (Y(1) etc.) Y(2) = (Y(2) etc.) 

X(1)  = X(0)  + X(0)  s t a l l  s t a l l  
Y(3) = SIN(A(3) etc. X(2) = x(1) + Y(1) stall 

x(3) = Y(3) etc. x(4) = SIN(A(4) etc.) X(3) = X(2) + Y(2) 

X(4) = X(3) + Y(3) Y(4) = (Y(4) etc. X(5) = SIN(A(5) etc.) 

... X(5) = X(4) + Y(4) Y(5) = (Y(5) etc.) 

... x(6) = x(5) + Y(5) 
o • o 

Figure  10: A DO Loop Containing Dependencies as Executed on the Alliant 

t 
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The above code runs  in paral lel  over 
mul t ip le  computa t iona l  e lements  on the 
Alliant as shown in Figure 10. 

The instruction s t reams of the different 
CEs are offset by ini t ial ly s ta l l ing the 
s t reams on CE1 and CE2 until  x ( I )  is cal- 
culated by the CE executing the previous it- 
eration. Besides synchronizing loops with 
da ta  dependencies ,  Al l iant  concurrency 
can execute loops tha t  contain conditional 
branches,  loop exits, and potent ia l  feed- 
back .  

In order  to manage  a process  wi th  
mult iple  ins t ruct ion s t reams,  Concentr ix 
replicates a number  of kernel  da ta  struc- 
tures, such as kernel  stacks and processor- 
control blocks. The number  of replicated 
kernel s tructures depends on the number  of 
CEs needed to execute the code s treams.  
Sequential  processes only need one kernel  
stack,  while concurren t  processes  on a 
four-CE complex need four kernel  stacks. 

ELXSI System 6400. The System 6400 
uses a message-based system to assure that  
only one process at  a t ime has  access to a 
pa r t i cu la r  ins tance  of shared  resource.  
When a resource is allocated to a processor, 
all s ta te  information relat ive to tha t  re- 
source is kept  in the process's private ad- 
dress space, and is accessible to another  
process only via reques ts  in message form. 
The system does not have supervisor mode, 
since it does not  need supervisor  calls to 
allow a processor to write or directly read 
state information of a resource belonging to 
another  process. 

The opera t ing  sys t em provides  spin 
locks, b ina ry  and count ing semaphores ,  
and Sleep and Wakeup  services to syn- 
chronize mult iple processes. These func- 
tions insure an atomic exchange between a 
register  and a memory  location in the re- 
ques t ing  process 's  address  space. The 
Sleep and Wakeup services queue and de- 
queue processes, allowing a CPU to service 
ano the r  process  while a semaphore  is 
locked.  

As noted above, ELXSI's Sys tem 6400 
processors communicate via messages.  In 

Commercial Parallel Processors 

data  communications terminology, ELXSI 
processes are in terconnected via explicit 
virtual circuits [O1 5/86]. This means  that  
a point-to-point connection has  to be estab- 
lished before two processes can communi- 
cate. Once the connection is established,  
many messages  can be t r ansmi t t ed  in ei- 
ther  direction. Each connection coming out 
of a process is called a link, and points to a 
queue  of  m e s s a g e s  cal led a "funnel ."  
Many links may  point into a funnel. The 
messages on a determined funnel are sent  
to 'the consumer in FIFO o r d e r .  The con- 
sumer  is able a to receive messages from a 
specific funnel, a set  of funnels, or all fun- 
nels. There are a variety of instructions to 
send and receive messages  and links and 
to manipulate  the communication structure 
[O1 85]. 

I/O is also done th rough  messages .  
When a message is sent  to the I/O subsys- 
tem, the receiving process is an I/O con- 
troller.  The microcode is in charge of 
r o u t i n g  m e s s a g e s ,  i nc lud ing  k e e p i n g  
t rack of the migration of a process to an- 
other CPU or the transmission of a message 
to an I/O control ler .  The l inks are 
capabilit ies which mus t  be created by the 
process tha t  performs the operat ion and 
must  be sent  to the process which wants to 
execute the operation [O1 85, O1 5/86, Sh 
2/87]. 

The operat ing system consists of multi- 
ple object-manager  processes which com- 
munica te  only through messages .  Func- 
tions such as memory  management ,  pro- 
cess and CPU scheduling, and facilities to 
allow a process to create other processes, are 
per formed by the "Sys tem Foundat ion ."  
The System Foundation consists of a series 
of processes which provide the ment ioned 
services to all processes and also to all op- 
erating systems which run on the computer  
[O185, O15/86, Sh 2/87]. 

6.2. C o m m u n i c a t i o n  in N e t w o r k  Archi -  
t~ tures  

A shared-bus architecture has  no need to 
make  rou t ing  decisions;  all processor-  
memory  references  s imply t r ave r se  the  
shared bus. Network  mult iprocessors use 
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various strategies to route messages from 
source to destination. 

B B N  Butterf ly.  The Butterfly switch op- 
erates much like a packet-switching net- 
work. Figure 11 [BB 3/86] shows how a 
packet is sent through the switch. The 
message is being sent from processing 
node 5 to processing node 14. As the mes- 
sage passes through each switching node, 
two bits of the address packet are used to de- 
cide which of the node's four outputs the 
message should be directed to. A switching 
node can send messages through all four 
outputs at the same time. Should two mes- 
sages require the same output, however, one 
of the messages will be delayed by the 
switching node until the other message has 
been sent. An example of a remote memory 
read operation follows: 

"When the MC68000 makes a read 
reference, its local Processor Node 
Controller gains control and uses its 
memory management  hardware  to 
transform the supplied virtual ad- 
dress into a physical address, which 

corresponds to memory on another 
Processor Node. To read the refer- 
enced location, the PNC sends a 
packet addressed to the remote Pro- 
cessor Node through the switch re- 
questing the contents of that  physical 
memory address. The remote PNC 
receives the packet, reads the refer- 
enced memory location, and sends a 
reply packet containing the value 
through the switch back to the source 
Processor Node. When it receives the 
reply, the source PNC satisfies the 
MC68000's read request with the value 
obtained from the reply." [BB 3/86] 

After this document was released, BBN 
replaced the MC68000 by the MC68020. The 
round-trip t ime for a remote memory 
reference is about six microseconds for any 
size Butterfly switching network [BB 87]. 
Each path through the switch has a peak 
performance of 32M biffs. The Butterfly 
switch can also transfer blocks at the full 
32M bitJs, rate of the switch. 

Co 
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C 2  
C 6  
Clo 
~14 

(~3 
C7 
C11 
C15 

Figure  11: Operation of Butterfly Switch [BB 3/86] 
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NCUBE. In a hypercube, each node must 
be able to communicate bidirectionally 
with several other nodes (the number of 
such nodes equals the dimension of the hy- 
percube) and pass along messages whose 
destinations are at other nodes. As men- 
tioned in Section 3, each NCUBE processing 
node has 11 bidirectional synchronous bit- 
serial DMA channels--connected to ten 
neighboring nodes and one I/O board. The 
internode channels include parity check- 
ing and run at 8 MHz for a rate of 1M byte/s 
in each direction, full duplex [Pa 5/86]. The 
11 DMA channels are on the custom VLSI 
processor chip. Each channel has two 
write-only 32-bit registers: one for the ad- 
dress of the message buffer and one for the 
number of bytes left to be sent or received. 
Each channel can interrupt the processor 
upon completion, or the processor can poll 
each channel's ready flag. If the destina- 
tion node is more than one node away, the 
node's system kernel (VERTEX) routes the 
message by forwarding it. 

Intel iPSC. A major shortcoming in the 
original iPSC series was the time required 
to transmit message whose destination was 
several nodes removed from its source. 
The iPSC/2 addresses this problem with a 
communication daughter  board called a 
Direct-Connect routing module. This 
routing hardware creates a communica- 
tion path to the destination node at a cost of 
"a few microseconds per node in the path" 
[In 88]. Once the communication path is 
created, the message is transferred at a rate 
of 2.8M bytes/s, without the interaction of 
either the source, destination, or interme- 
diate node processors. The typical time for 
a message transmit  and acknowledge re- 
ceive is about 290 ~s. Intel claims that  its 
iPSC/2 series can send short messages 
three times faster and long messages ten 
times faster than the iPSC/1 [In 10/87]. Be- 
cause message delays are all about the 
same, process and data placement has little 
influence on program speed, which "makes 
programming easier." 

FPS T Series. The FPS T Series node 
had 15 channels, of which 14 were allotted 
for communica t ing  with neighbor ing 
nodes, and one was connected to the system 
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board. The 15 channels were multiplexed 
from the four synchronous YO channels of 
the Transputer by a switching network (see 
Figure 7); each Transputer channel could 
connect to any node channel. To change 
one connection in the switch (i.e., to point 
one of the four Transputer I/O channels to a 
different node's I/O channel) required 1 
ms. [Re -]. As a result, communication 
between nodes was time consuming, and 
an internode data transfer of 256 words re- 
quired 21 times the time needed for a vector 
add operation. 

Communication between T Series nodes 
was coordinated by the control processor 
(Section 3) rather than by a separate com- 
munication processor. Therefore, mes- 
sages to non-adjacent nodes were divided 
into packets and forwarded from one 
Transputer to another. Each Transputer  
along the path had to be interrupted to for- 
ward each packet; however, given the 
Transputer's very fast context-switch time 
of 2.5-6.25 ~s., the store-and-forward 
overhead was not extremely large. 

7. P o w e r  and p e r f o r m ~ m c e  

Encore's Multimax. The original Mul- 
timax offered 1.5 to 15 MIPS. The current 
Multimax 320 can contain from 2 to 20 Na- 
tional 32332 processors, providing 4 to 40 
MIPS of computing power. An APC-based 
Multimax with Wytek floating-point ac- 
celerator can achieve 1.57 DP Whetstones 
per processor. 

Sequent's Balance System. The Balance 
8000 system can contain two to twelve Na- 
tional Semiconductor 32032 processors with 
an aggregate performance of 1.5 to 8.4 
MIPS. The Balance 21000 system contains 
four to thirty NS32032 processors with an 
aggregate performance of 3 to 21 MIPS. 

The Balance system was measured by 
comparing each CPU with other micropro- 
cessors using the Dhrystone benchmark. 
The results show that  the performance of 
each CPU in a Balance system is about 1.4 
times the performance of the VAX 111750 for 
a single-stream CPU-bound integer appli- 
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cation, or approximately 0.8 MIPS [Th 
2/88]. 

Another measure  of Balance system 
performance is the speedup of a single ap- 
plication program using multiple proces- 
sors. In one of the applications, Linpack, 
the parallelization of a standard floating- 
point program, resulted in improvement by 
a factor of 27.4 with a 30-processor system 
[Th 2/88]. 

Studies have also been done for the Bal- 
ance 8000 cache and bus protocols. The 
single-thread cache performance demon- 
strated that the cache can achieve a hit rate 
of 95% in integer applications. This rating 
results from the high locality in the appli- 
cations and the 8-byte line size, which al- 
lows implicit prefetching of instructions 
and 32-bit data. The double-precision 
floating-point applications attained a cache 
hit rate of only 85%, because accessing 64- 
bit-word data breaks the implicit prefetch- 
ing strategy [Th 2/88]. 

A study of Multibus utilization for mul- 
ti thread applications showed that  the bus 
utilization is under 25% for an eight-pro- 
cessor system. The multiuser benchmark 
showed that  the bus was less of a limiting 
factor, and that  potentially the number of 
processors used in the Balance 21000 can be 
increased with a write-back cache-coher- 
ence protocol if the UO capability is ex- 
tended [Be 10/87]. 

All iant  FX/ser ies .  The Alliant archi- 
tecture supports up to twenty processors, in 
two categories: computational elements 
and interactive processors. The computa- 
tional elements are 14.9M-Whetstone sin- 
gle-precision (32-bit) and 13.9M-Whetstone 
double-precision (64-bit) Motorola 68020 
general-purpose microprocessors. In vec- 
tor mode, each CE executes floating-point 
instructions at a peak rate of 23.6 MFLOPS 
in single precision and 11.8 MFLOPS in 
double precision. The interactive proces- 
sor module is a VME card which contains a 
Motorola microprocessor, a virtual-mem- 
ory address-translation unit, an I/O map, 
local par i ty-protected RAM, power-up 
EPROMs, and two serial ports. 

By the Whetstone benchmark, the A1- 
liant CE is about five times the VAX 8600 or 
twelve times a VAX 11/780 in double preci- 
sion. 

The following application shows the ad- 
vantages that  detached CEs have in com- 
puter environments where the application 
mix is dynamic and consists of a large 
number of codes. While multiple copies of 
a NASA fluid dynamics code, FL022, were 
being run in the background, on a FX/80 
system with eight CEs, the time to perform 
an additional copy was measured. With up 
to seven copies running in the background, 
the eighth job takes only slightly longer 
than on an unloaded system [TM -]. 

E L X S I  Sys tem 6400. The System 6400 
contains I to 12 CPUs which are imple- 
mented with ECL gate-array technology. 
On a single 6420 CPU (the medium-speed 
processor), the Livermore kernels execute 
at 1.1 megaflops (harmonic mean of 24 
kernels, vector length 167, 64-bit floating 
point), and on a 12-processor system they 
execute at 13 megaflops. The Cray XMP-1 
achieved 8.1 megaflops on the same 
benchmark. The company recently an- 
nounced their high-performance 6460 CPU, 
which will perform from three to six times 
faster than the 6420 CPU, depending on the 
application. Each 6460 CPU will run at 25 
times the speed of the VAX 11/780 on run-of- 
the-mill scalar code. In floating-point in- 
tensive applications the 6460 CPU will be 
even faster than that. 

John Sanguinetti ran a series of experi- 
ments to fmd out whether the ELXSI System 
6400 could achieve, or maybe exceed, linear 
performance improvement.  The work- 
loads he used in the experiments were 
multiple-job workloads, like the ones used 
in general-purpose scientific applications. 
The results of the experiments showed that  
as CPUs are added, the power of the ma- 
chine grows linearly [Sa 9/86]. 

Studies showed that  the message system 
is fast compared to many software-con- 
trolled interprocess communication mech- 
anisms. To send a message from one pro- 
cess to another, including process switch 
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and receipt by the second processor, takes 
approximately 115 ns. plus 450 ~s. per byte 
on the 6420 CPU [O1 5/86]. (The 6460 CPU 
should reduce these t imes by about half.) 
The message-sys tem overhead in three  
real  t ime-shar ing  workloads was mea- 
sured to be 2.5, 0.3 and 4.7 percent of the to- 
tal CPU cycles. The time included some of 
the tasks performed by the kernel in a typi- 
cal t ime-sharing operating system . Ex- 
per iments  done with different configura- 

tions indicate that  the proportion of CPU 
cycles consumed by the message system is 
not affected by the number  of CPUs. The 
effective bandwidth of the message system 
is around 2M bytes per second, which is not 
adequate for bulk data transfer. Therefore, 
the I/O controllers use DMA for block 
transfers but still use messages to indicate 
the completion of a task [O1 5/86]. 

Jack J. Dongarra compared the performance of about 100 computer systems while 
solving dense systems of l inear equations using the Linpack software in a For t ran 
environment [Do 3/88]. The following data was obtained using Linpack to solve a system 
of linear equations of order 100. In the tables below, "BLAS" means "basic linear-algebra 
subprograms," "coded BLAS" refers to the use of assembly language coding of the BLAS, 
and "rolled BLAS" refers to a Fortran version with single s ta tement  and simple loops [Do 
3/88]. 

"Ratio" is the number  of times faster or slower a particular computer configuration is 
when compared to the CRAY-1S using a Fortran coding for the BLAS in full precision [Do 
3/88]. 

• Solving a system of linear equations with LINPACK in full precision using all Fortran: 

C.omDuter OS/Compiler Ratio MFLOPS Time 
(secs.) 

CRAY-1S CFT (Rolled BLAS) 1 12 0.056 
Alliant FX/80 (8 CEs) FX Fortran v3.1.33 (Rolled BLAS) 1.4 8.5 0.0805 
Alliant FX/1 (1CE) FX Fortran v3.1.33 (Rolled BLAS) 7.5 1.6 0.572 
ELXSI 6420 Unix 5.3, f77-Oskm 6.9 1.8 0.385 
ELXSI 6420 Fortran 5.14, opt=10 9.2 1.3 0.516 
Encore Multimax (w/FPA) f77 52 0.24 2.9* 
Sequent Balance 8000 DYNIX Fortran 2.4.4 208 0.059 11.7 

• Solving a system of linear equations with LINPACK in Full Precision using Coded 
BLAS: 

Comouter 

Cray-lS 
Alliant FX/80 (8 CEs) 1 
Sequent Balance 8000 

OS/Compiler Ratio MFLOPS Time 
(secs.) 

CFT (Coded BLAS) 0.54 23 0.030 
FX Fortran v3.1.33 (Coded BLAS) 1.1 10.9 0.0631 
DYNIX Fortran 2.4.4 (Coded BLAS) 185 0.066 10.4 

1The Dongarra benchmarks measured the Alliant FX/8; Alliant has updated the measurements for the FX/80. 
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• Solving a system of Linear Equations with LINPACK in Half Precision using all 
For t ran :  

Comnuter O$/Comviler  Ratio 

Alliant FX/80 (8 CEs) 
Alliant FX/1 (1CE) 
ELXSI 6420 
Encore Multimax (w/FPA) 
Sequent Balance 8000 

FX Fortran v3.1.33 (Rolled BLAS) 1.2 
FX Fortran v3.1.33 (Rolled BLAS) 8.0 
Fortran 5.14, opt=10 (Coded BLAS) 6.1 
f77 36 
DYNIX Fortran 2.4.4 162 

MFLOPS Time 
(secs.) 

10.6 0.0649 
1.5 0.465 
2.0 0.342 
0.34 2.0* 
0.075 9.10 

• Solving a System of Linear Equations with LINPACK in Half Precision using coded 
BLAS: 

.~omputer 

Alliant FX/80 (8 CEs) 
Alliant FX/1 (1 CE) 
ELXSI 
Sequent Balance 8000 

.0S/Compiler Ratio MFLOPS Time 
(secs.) 

FX Fortran v3.1.33 (Rolled BLAS) .86 14.0 0.070 
FX Fortran v3.1.33 (Rolled BLAS) 7.0 1.7 0.340 
FTN MOD 2 (Coded BLAS) 7.5 1.6 0.418 
DYNIX Fortran 2.4.4 (Coded BLAS) 148 0.083 8.31 

Further  results can be found in [Do 3/88]; note especially Table 7 in that  paper. 

Butterf ly Parallel Processor. The 
Butterfly uses 16-MHz Motorola 68020/68881 
processors with floating-point hardware.  
Each node has a peak performance of 2.5 
MIPS; thus the largest configuration of 256 
nodes has a peak performance in excess of 
600 MIPS. The results of several applica- 
tion programs show that  a 256-node Butter- 
fly Para l le l  Processor  can achieve a 
speedup of 190 to 230 over the performance of 
a single node [Re 12/86]. 

NCUBE. NCUBE's processing node and 
I/O processor both consist of the same cus- 
tom 160,000 transistor one-chip CPU. The 
CPU operates at 8 MHz and executes non- 
math  instructions at 2 MIPS, single-preci- 
sion operations at 0.5 MFLOPS, and dou- 
ble-precision operations at 0.3 MFLOPS [Ju 
6/86]. For the 1024-node NCUBE/ten, this 
means a peak performance of 500 MFLOPS 
or 2000 MIPS. In benchmark tests running 
Fortran Dhrystone code, the NCUBE VLSI 
processor (8 MHz) was compared with the 
Intel 80286/80287 (8 MHz) and the VAX- 
11/780 with the floating-point accelerator 
[Ha 10/86]. The results  in Dhrystones/s. 
were 1249 for NCUBE, 510 for 80286/80287, 
and 741 for 11/780. The NCUBE processor 
did well in Benchmark tests using Fortran 
Whetstones, too. The Whetstone code sim- 

ula ted scientific applications with many  
double-precision floating-point operations. 
The results  in kWhetstones/s  are 476 for 
NCUBE, 101 for the 286, and 426 for 111780. 
Unfo r tuna te ly ,  b e n c h m a r k s  for ent i re  
systems are not available. 

Intel iPSC/2 .  The control processor of 
the iPSC/2 series processing node is the 32- 
bit 80386 processor [In 10/87]. This proces- 
sor, along with a new node operating sys- 
tem called NX/2, provides 3 to 5 times the 
performance of the  original iPSC. The 
80387 also provides a five-fold performance 
increase over its predecessor, the  80287, 
used on the first  generat ion iPSC. The 
peak performance for a 64-node Basic Sys- 
tem (without numerical  accelerators) is 16 
MFLOPS for 32-bit  precis ion and 13 
MFLOPS for 64-bit precision [In 88]. The 
peak performance for a 64 node VX system 
(vector accelerator) is 1280 MFLOPS for 32- 
bit precision and 424 MFLOPS for 64-bit 
precision [In 88]. For both systems, the peak 
instruction execution rate is 256 MIPS. The 
iPSC/2 performs 8064 Dhrystones (1.1) per 
second; 1,331K Whetstones/sec. with the 
80387 option, and 2,192K Whetstones/sec. 
with the SX (1167) option. The 2D wave 
equation is solved on a 64-node iPSC/2-VX 
at 454 megaflops with 32-bit precision. 

Per processor. 1 0 2 
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The Linpack benchmark uses the Gaus- 
sian Elimination algorithm for matr ix 
factorization and requires high communi- 
cation between nodes and long messages 
[In 88]. Running this benchmark, the 32- 
node iPSC/2 VX achieved a performance of 
55 MFLOPS, the 64-node iPSC/2 VX 
achieved a performance of 86 MFLOPS, 
while the Cray XMP achieved a perfor- 
mance of 100 MFLOPS. A 2-dimensional 
Fast Fourier Transform, was run on the 32 
node and 64 node iPSC/2 VX computers. 
The FFT requires row and column data 
exchanges ;  t h u s  each node m u s t  
communicate with other nodes at about the 
same time. Running this benchmark on a 
1024 x 1024 matrix, the 32-node iPSC/2 VX 
achieved a performance of 154 MFLOPS, 
the 64-node iPSC/2 VX achieved a perfor- 
mance of 158 MFLOPS, while the Cray 
XMP achieved a performance of 100.3 
MFLOPS[In 88]. 

FPS  T Series. Two processors were used 
in FPS T Series nodes, the Transputer  
(control processor) and a vector processor. 
The Transputer operates at 16 MHz and "as 
a 32-bit processor ... is at least 3 times the 
speed of the Motorola 68020" [Fr 8/86]. The 
vector processor was a Weitek VLSI float- 
ing-point chip which operates at 8 MHz [Fr 
8/86, FP 11/87a]. The two chips combined to 
give the processing node a peak perfor- 
mance of 12 MFLOPS and 8 MIPS [FP 
11/87a]. 

FPS lists benchmarks  for processing 
done on the T100 [FP 11J87b]. The T100 
contains 64 processing nodes and had a 
peak performance  of 1168 MFLOPS. 
Benchmarks were programmed in three 
languages: Occam, C, and Fortran. For 3D 
N-body simulation, the results for the three 
languages respectively were: 268, 269, and 
171 MFLOPS. For 2D convolution using a 
SD mesh topology, the results were: 579, 607, 
and 381 MFLOPS. Several other bench- 
marks are listed in [FP 11/87b]. 

8. P r i c e  

Price information was not available on 
all computers. Relative prices for many 

computers are shown in Table 1. Some 
specific price calculations are discussed 
below: 

All iant  F X  Series. The FX/1 has a base 
price of $59,900, including one CE, one IP, 
32M bytes of main memory, one disk drive 
and a cart tape drive. The FX/4 has a base 
price of $99,900 and includes one CE, one 
IP, 32M bytes of main memory, a 256K-byte 
CE cache, one IP cache, one disk drive, and 
cart tape. The FX/80 has a base price of 
$299,000, and includes sixteen terminal  
lines, two CEs, two IPs, 32M bytes of main 
memory, one disk drive and a 50 ips. tri- 
density tape drive. All systems include 
operating system, Fortran, and parallel 
scientific and mathematical libraries. 

Butterf ly  Parallel  Processor. The base 
cost of the Butterfly Parallel Processor is 
approximately $11,000 per node, and the 
computer can be expanded one node at at 
time (except for the switching network). 
This price includes switch hardware and 
cabinetry, but is exclusive of YO devices. A 
128-node Butterfly GP1000 including 500 
MBytes of disk storage and UNIX TM soft- 
ware with a peak performance of approxi- 
mately 300 MIPS would cost $1.8 million. 
The cost per MIP of such a system is $6000. 

E L X S I  Sys tem 6400. Prices s tar t  at 
$295,000 for a complete packaged entry 
system, including peripherals and soft- 
ware. A packaged configuration with ten 
25-MIP CPUs, 512M bytes of memory, 5G- 
byte disk, a couple of operating systems and 
other software, plus the usual peripherals, 
has a list price of $3,999,000. ELXSI offers a 
"very attractive" grant  program for Uni- 
versities interested in doing research in 
cooperation with ELXSI. 

N C U B E .  The price for a complete 
NCUBE/ten system is $1.5 million. As- 
suming a peak per formance  of 500 
MFLOPS and 2000 MIPS, the performance 
prices are $3000/MFLOP and $750/MIP. 
An application article mentioned the price 
of a NCUBE/six (64 nodes) as around 
$200,000 [Ma 2/87]. Assuming a peak per- 
formance of 31 MFLOPS and 125 MIPS, the 
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performance prices for the NCUBE/six are 
$6500/MFLOPS and $1600/MIPS [HT 2/87]. 

Intel iPSC/2. The least  expensive 
iPSC/2 system is the 16-node Basic System 
with 1M byte of memory per node at a total 
cost of $165,000 [In 88]. A 32-node version of 
the iPSC/2 VX system with 8M bytes of 
memory on each node costs $796,000, and 
the 64-node version costs $1,572,000. Each 
development station costs $20,000, and an 
iPSC/2 simulator runs $495. All system 
and development  stations include exten- 
sive software packages. Us i ng  the peak 
performance MFLOPS, the  32-node VX 
system costs $4700/MFLOP (64-bit preci- 
sion) and the  64-node sys tem costs 
$5700/MFLOP (64-bit precision). Using the 
2-D FFT benchmark performance results, 
the  32-node iPSC/2 VX sys tem costs 
$5200/MFLOP and the 64-node version 
costs $9900/MFLOP [In 88]. 

Sequent Symmetry. An entry-level 
configuration includes two Intel 80386 pro- 
cessors, 8M bytes of ECC RAM, 150M byte 
SCSI disk, a cartridge tape drive, 16 asyn- 
chronous ports, the DYNIX operating system 
and C compiler, E therne t  interface and 
TCP/IP software, and sells for $89,500. A 
typical large system includes 30 Intel 80386 
processors, 80M bytes RAM, 4.3 gigabytes of 
SMD disk storage, a 6250 bpi tape drive, 64 
asynchronous ports, the DYNIX operating 
system and C compiler, Ethernet  interface 
and TCP/IP software, with a price of 
$870,000. Sequent Balance systems range 
in price from $49,500-$500,000. 

FPS T Series. The FPS T series ma- 
chines are no longer being sold. 

9. Summary 

This paper has focused on eight com- 
mercial parallel processors, four shared- 
bus machines and four network multipro- 
cessors. The shared-bus  archi tec tures  
studied in this paper were the Encore Mul- 
timax, the Sequent Balance System, the A1- 
liant FX series, and the ELXSI System 6400. 

One problem with a shared-bus archi- 
tecture is the degradation of the perfor- 
mance as multiple processors compete for 
access to the bus and memory space. Dif- 
ferent approaches have been taken by mul- 
tiprocessor systems to reduce the traffic on 
the system bus. The Multimax system di- 
vides the global bus into three independent  
buses: one for addresses, one for data and 
one for vectors. The Balance system has a 
one-bit data path called the System Link 
and In ter rupt  Controller Bus which inter- 
connects all major components in the sys- 
tem and allows them to exchange interrupts 
and other low-level control signals, and 
error informat ion independent ly  of the 
system bus. Its processors have a private 
memory which holds the most  commonly 
used kernel routines to fur ther  reduce bus 
traffic. The All iant  system divides the 
system bus into two data buses, and an ad- 
dress bus. It  also contains a concurrency- 
control bus which allows the computational 
elements to exchange data when perform- 
ing concurrent  operations. The ELXSI 
System 6400 caches non-shared data at each 
processor;  since opera t ing-sys tem pro- 
cesses do not share memory, and user pro- 
cesses tend to use shared memory spar- 
ingly due to its expense, bus traffic is rea- 
sonably low. 

Memory access t ime can be reduced by 
the use of cache memories. They can con- 
siderably reduce the bus traffic, because 
they allow most memory references to be 
satisfied without a bus transaction. How- 
ever, the use of caches may create a cache 
coherence problem if  mult iple  copies of 
main  memory locations can be stored in 
different caches. The Mult imax system, 
the ELXSI System 6400 and the Alliant sys- 
tem use a write-back update policy, and the 
Balance system uses a write-through pol- 
icy. 

So far, no commerc ia l ly  avai lable  
shared-bus computer has had more than 30 
processors, owing to bus-bandwidth limi- 
tations. Encore is presently testing a new 
shared-bus system with up to 128 proces- 
sors. This is done by tightly coupling Mul- 
t imax sys tems th rough  a h ierarchica l  
cache structure. 
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Among network architectures, this paper 
has discussed the BBN Butterfly Parallel 
processor which uses a "butterfly" switch- 
ing network for interprocessor communi- 
cation. The Butterfly switch allows com- 
munication via message passing or shared 
memory.  "Shared-memory" communica- 
tion is t ransparent  to the program because 
all data access to the memory of other nodes 
is performed by a control processor. Some 
other advantages of the Butterfly switch are 
that  it  is expandible by one node at a time, 
and that  it provides redundant  paths to de- 
crease contention. One disadvantage of the 
Butterfly switch is tha t  data mus t  be dis- 
t r ibu ted  uniformly over the  processing 
nodes to decrease contention. In many ap- 
plications, the Butterfly switching network 
has  achieved more than  80% of its peak 
performance.  The cost of the Butterfly 
computer is higher per node than most other 
parallel processing computers, but  the per- 
formance and flexibility may offset the  
price. 

The other  ne twork  archi tectures  dis- 
cussed have been three hypercubes: the 
NCUBE, the Intel iPSC/2, and the FPS T Se- 
ries. Although hypercube interconnections 
are well suited to many scientific and en- 
g ineer ing problems, cur ren t  hypercubes  
restrict the computer to unshared memory 
and therefore message passing. The major 
problem a hypercube design must  solve is 
t r a n s f e r r i n g  messages  be tween  nodes 
which are not neighbors. Both the NCUBE 
nodes and the FPS nodes use the "store- 
and-forward" approach. The Intel iPSC/2, 
however,  has  a Direct-Connect  rout ing  
board which creates a channel between any 
two nodes in the hypercube, and then trans- 
fers the message packet at  2.8M bytes/s. 
This  ha rdware  resu l t ed  in a ten-fold 
speedup in the transfer of long messages. 

To be attractive to engineering and sci- 
entific applications, the hypercubes include 
special numerical  computat ion hardware.  
The Intel iPSC/2 offers a scalar numerical  
accelerator  board which increases  the  
power of the floating point coprocessor three 
to five times. Intel offers a pipelined vector 
processor (and the FPS nodes included 
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one) to boost the performance of one node to 
several MFLOPS. 
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