
particular they exhibit both the statement-as-list element an d
adjacent-as-sibling misconceptions in similar, ambiguous ,
situations . When confronted with a control structure that
initially has a single statement action part students tend t o
select that statement, whether they mean to add a sibling i n
a newly created block or they want to add a sibling to th e
parent control structure itself.

At least two solutions are suggested by these data . One
would be to adopt the combined version . Subjects using th e
combined version performed well on the tasks requiring the
addition of a new begin-end block . They also did well on
the tasks requiring a new placeholder near an existing
optional placeholder . They initially did poorly on the task s
requiring a new statement after the parent of an adjacen t
statement. However the initial time differences were, after
all, gone by the second such task .

The other option would be to adopt the tree walk version ,
but always include begin-end blocks, even where they are
optional . When the student chooses a control structure from
the construct menu the block syntax would always appear by
default. The tree walk version avoids the optional
placeholder errors, and avoids needless early confusion on th e
adjacency tasks . Including the begin-end blocks by defaul t
would define away the remaining ambiguity . Though we did
not explicitly code the subjects' verbal responses they often
did comment aloud when the environment seemed to them t o
do the " wrong" thing . Especially early on in th e
experiment, they seemed to be confused by the automati c
appearance/disappearance of the block syntax .

Some might argue that the combined version is preferabl e
because it can instruct students about a particularl y
troublesome aspect of Pascal's concrete syntax . However we
prefer adding the blocks by default . Doing so may offen d
some Pascal purists, and some may continue to believe that
early learning about the details of concrete syntax i s
particularly important. 15 However a basic rationale for
structure editing in the first instance is that the student' s
initial exposure to computing should be both simple and
graceful, thus allowing early attention to be directed toward s
more fundamental issues of programming method and
software engineering . The present study does suggest that i t
is possible to fine tune structure editing environments to
better accomplish that aim .

Reference s

[1] R. Chandhok, D . Garlan, D . Goldenson, P. Miller and
M. Tucker, "Programming Environments based o n
Structure Editing : The GNOME approach, "
Proceedings of the 1985 National Computer
Conference, IFIPS Press, July 1985 .

15 To accommodate such concerns, and to allow late r
explicit attention to Pascal list syntax, it is possible to
allow the environmental defaults to be altered as
preferences by the teacher or more advanced student.

[2] R. Chandhok, D . Garlan, P . Miller, J . Pane and M .
Tucker, Karel GENIE, Santa Barbara, California:
Kinko's Service Corporation Academic Courseware
Exchange, 1987 .

[3] J .P . Chin, K .L. Norman and B . Shneiderman ,
"Subjective User Evaluation of CF Pascal
Programming Tools," under review, 1988 .

[4] Dennis R . Goldenson, "Teaching Introductor y
Programming Methods Using Structure Editing :
Some Empirical Results," under review 1988 .

[5] L.R. Neal, "Cognition-Sensitive Design and User
Modeling for Syntax-Directed Editors," Proceedings of
the 1987 Conference on Human Factors in Computing
Systems and Graphics Interface, Toronto, 1987.

[6] S.P. Reiss, "Graphical Program Development wit h
PECAN Program Development Systems, "
Proceedings of the Software Engineering Symposium
on Practical Software development Environments ,
ACM-SIGSOFT/SIGPLAN, April 1984 .

[7] C. Scheftic and D . Goldenson, "Teachin g
Programming Method and Problem Solving : The
Role of Programming Environments Based o n
Structure Editors, " Proceedings of the 1986 National
Educational Computing Conference, AMPS, San
Diego, 1986.

[8] T. Teitelbaum and T, Reps, "The Cornell Progra m
Synthesizer: A Syntax Directed Programmin g
Environment," Communications of the ACM 24(9) ,
1981 .

COMPUTER AIDS FO R
VISION AND EMPLOYMENT (CAVE )
DOUGLAS GRIFFITH, HODGE DOSS, DAVID WINFRE E

The percentage of blind and visually impaired (VI) adult s
of working ago who are gainfully employed i s
approximately 33% . The confluence of two factors, the
changing nature of the world of work and developments in
microcomputer technology, offer the potential of greatl y
reducing the magnitude of this problem . In the information
age a strong majority of jobs can be classified a s
information processing jobs . Given suitable adaptations ,
the blind and VI can perform such jobs usin g
microcomputers .

There are three generic types of outputs for the blind :
synthesized speech, braille (both hardcopy and paperless) ,
and for individuals with sufficient vision (and most legall y
blind individuals have some usable vision), large prin t

SIGCHI Bulletin October 1988

	

43

	

Volume 20, Number 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F54386.54401&domain=pdf&date_stamp=1988-10-01


displays . In addition to these generic types of outputs, the
different types of software for controlling access to thes e
outputs are of critical importance.

A wide range of products is on the market to aid the blin d
or VI computer user . Unfortunately, there is little in th e
way of performance data to assist the potential user i n
assembling a particular configuration . Moreover, in spit e
of this wide range of products, computer usage by the blin d
and VI is quite low .

The reasons underlying this low utilization rate provid e
interesting grounds for speculation . There appears to be a
general lack of awareness regarding both the availability o f
the technology and its . Beyond this lack of awareness ,
however, are the basic issues of human-compute r
interaction when the user is blind or VI . Computer usage i s
much more difficult for the blind or VI user . Not only mus t
the specially adaptive hardware and software be mastered ,
but the lack of ready visual access creates other difficulties
which provide sources of frustration . Although there ar e
many cases of the blind and VI using computer s
effectively, these individuals tend to be exceptional people
with technological leanings . Computer access will have to
he simplified greatly if a large percentage of blind and V I
users are going to be able to use the technology effectively .

The purpose of the Computer Aids for Vision an d
Employment (CAVE) Program is to conduct basic researc h
into the use of computers by the blind and VI to develop a
technology base for creating training programs and produc t
improvements that will increase the access of computer
technology to the blind and VI .

The CAVE Program has adopted the research approac h
advocated by Card, Moran, and Newell (1983) . The GOMS
(Goals, Operators, Methods, and Selection Rules) model i s
appropriate at least two levels of analysis . At a
superordinate level, it provides the basic paradigm for th e
research, the researcher's mental model of the project.
Here the goals are generic tasks such as word processing ,
making business plans, etc ., and include, in addition to th e
standard operators, operators that are specific to th e
adaptive hardware and software .

At this level, different methods can he defined by th e
different types of adaptive equipment ; e .g ., synthesized
speech, braille, large print software . In turn, the time it
takes for a given individual to complete the tas k
successfully would provide the basis for defining a
selection rule regarding which method to employ . At a
more subtle level, methods can define strategies fo r
accomplishing particular tasks .

Of course, GOMS was proposed originally as the user ' s
mental model of the task at hand . In our research it has
become apparent that a GOMS approach provides an
especially fruitful means of analyzing the interactions of a
blind or VI user with a computer . First of all, it should be
appreciated that due to the need to operate the speciall y
adaptive hardware/software in addition to the application s
software, the mental model of the blind/VI user is, o f
necessity, more complex than the mental model of a sighte d
user . Thus, if the user 's model is incorrect applications
program commands can be mistakenly executed in place of

screen access commands (i .e ., commands to the speech
synthesizer to read designated portions of the screen) . Such
misconceptions can have disastrous consequences .
Secondly, the lack of, or impoverished, visual access to th e
information on the monitor can easily cause the user to
have an inaccurate mental model with respect to either th e
content of or the location in the task . For the blind user, a
task that would be simple for a sighted user, such as
making a spelling correction with the aid of a spell checker ,
can result in the execution of a chain of erroneous operator s
which have severely damaging effects on a document du e
to the user's faulty model of his actions and the task .

A log program is employed to record and time all the user' s
keystrokes . Eventually, the data from these programs wil l
be used to develop detailed models of individual users '
performance on different tasks . There are, however, a
number of problems in doing research with blind/V I
computer users . A principal problem concerns the larg e
amount of training involved. Although some of our clients
have computer skills and are generous enough to donate
some of their time to our program, their experience i s
typically limited to their own systems ; whenever a new
configuration needs to be considered additional training i s
required . Typically, however, blind/VI individuals with
computer skills are employed and are hard pressed t o
volunteer time to the program . We are attempting to
collect data from these individuals by means of a telephone
survey. Most volunteers to the program need to be trained .

In most cases, new laboratory participants require trainin g
on keyboard skills . Although practically all the volunteer s
to our program have been trained to touch type, unless th e
individual has been working with computers, the ability to
type with even a modicum of speed is extremely rare . To
address this problem, we have developed a typing tutor for
the blind/VI user .

Given adequate keyboard skills, and given synthesized
speech as a means of screen access, the next problem is th e
gaining of proficiency in understanding synthesized speech .
It is our considered opinion that the magnitude of the
synthesized speech understanding problem has been greatl y
underestimated in the literature (e .g ., Schwaub, Nusbaum ,
& Pisoni, 1985) . The results of Story and Kuyk (1988) of
recognition rates ranging from 44% to 66% for first-time
users coincide much more with our experience . Even hig h
quality synthesized speech causes difficulties for some
individuals . To address this synthesized speec h
understanding problem, we have developed some simple
programs that present either words or sentences and requir e
the user to echo back (via the keyboard) the content of th e
synthesized output .

Of course, the clients next need to be provided additiona l
training on the specialized hardware and software, as wel l
as with the particular applications programs they are goin g
to be using . Given this considerable overhead in training, i t
is not surprising that having adequate sample sizes present s
a problem. The problem involves more than numbers ,
however. Typically, each client presents such individual
difficulties that one is hesitant about making
generalizations across subjects . It would appear that some

SIGCHI Bulletin October 1988

	

44

	

Volume 20, Number 2



hybrid of clinical and experimental approaches is called fo r
here .

A problem of particular concern to the blind user
community, particularly to the blind user who cannot mak e
use of large print software, is the problem of icon-base d
interfaces . The difficulties presented by icon-based
interfaces should be obvious . Although the problem
appears to be tractable, the question is whether there i s
sufficient interest to address this problem . We are currentl y
just beginning to look into the problems presented to the
blind by icon-based interfaces .

REFERENCE S

Card, S ., Moran, P., & Newell, A. (1983) . The Psycholog y
Of Human-Computer Interaction. Hillsdale, NJ ;
Lawrence Erlbaum Associates .

Schwaub, E .C ., Nusbaum, H .C ., & Pisoni, D .B . (1985) .
Some Effects Of Training On The Perception Of
Synthesized Speech. Human Factors 27 395-408 .

Story, S .M., & Kuyk, T . K . (1988) . First Time Recognitio n
Of Synthesized Speech : A Comparison Of Three Systems .
The Journal of Visual Impairment and Blindness, 82 ,
28-29 .

Note: The CAVE Program is supported by th e
Department of Labor of the State of Michigan a s
well as by internal funds of the Environmenta l
Research Institute of Michigan .

ARTICULATING THE EXPERIENCE O F
TRANSPARENCY: AN EXAMPLE O F
FIELD RESEARCH TECHNIQUES
KAREN A . HOLTZOLATT, SANDY JONES, MICHAEL GOO D

Summary

Over the past two years, our field research with users ha s
indicated that elements of an application design can disrupt
users' work . Understanding how applications disrupt
users' work has helped us to articulate the meaning o f
interface transparency. Interface transparency and related
concepts have previously been explored from theoretica l
perspectives, but have not been grounded in user data .

The relationship between the user's work and interfac e
transparency is a key element of our understanding .
Disruptive systems distract users from their task. Systems
can disrupt users by fragmenting the task into elements
which do not match the user's view of the task . Insufficien t
functionality and awkward interface mechanisms for a
particular task also disrupt users . We need to understan d
users ' work in much richer detail than we do now in orde r
to build systems that assist them with that work .

Interpretive Field Researc h

Interpretive field research on human-computer interaction

(Whiteside et al ., 1986) is a process that allows th e
researcher to collect and interpret users' responses to
software as they are engaged in the use of that software .
The researcher is present during the use of the software i n
the context of the user ' s actual work setting and work task .
The researcher can both observe and question the user
about his or her experience with the software and its impact
on their work as it unfolds . Data collected in these
contextual interviews includes :

Users' ongoing experience with the product,

The nature of the users ' work ,

The impact of the product on the users' work ,

The meaning of usability for the user ,

Directions for future products ,

Specific problems and strengths of specific products ,

Interaction of specific products with other products, an d

- Interaction of the product with the users' environment .

We do not assume that something is experienced a s
disruptive to work because it seems that way to us . We
check out our interpretations with the user to establish a
shared understanding of user experience which grounds ou r
interpretations . Similarly, if we see a user doing something
effortlessly, seemingly without awareness, we check this
out . With the user as co-researcher, we can track aspects of
usability to elements of the system implementation .

Development of Usability Concepts

A concept is "A general understanding derived fro m
particular instances or occurrences" (Webster' s) .

We want to develop a set of concepts that describe usabilit y
as it is understood and lived by users . We want to derive
concepts which are useful for guiding the design of new
systems and interfaces .

We are building a set of descriptive concepts tha t
crystallize user experience . These concepts will provide
designers with a new way of "seeing" user 's work and
usability, with specific implications forsystem design. We
are not trying to build a cause-and-effect model o f
usability . For instance, we are not trying to predict that x
units of transparency will automatically produce y units o f
usability .

Building concepts from interpretive field research is a n
inclusive process . As we interview each person, ne w
instances modify and expand the concepts in ou r
understanding of usability .

Interviews reveal instances of the phenomenon . The
instances are used to build concepts . The concepts form a
framework for communicating user experience t o
designers . Designers use the concepts to design the next
system .

Transparency : An Example of a Usability Concep t

Transparency is not a new concept . Rutkowski (1982 )
proposes that transparency is the ideal relationship betwee n
user and tool, with the tool seeming to disappear .
Winograd and Flores (1986) relate this aspect of computer

SICCHI Bulletin October 1988

	

45

	

Volume 20, Number 2


