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ABSTRACT 
Query-by-humming systems search a database of music for good 
matches to a sung, hummed, or whistled melody. Errors in 
transcription and variations in pitch and tempo can cause 
substantial mismatch between queries and targets. Thus, 
algorithms for measuring melodic similarity in query-by-
humming systems should be robust. We compare several 
variations of search algorithms in an effort to improve search 
precision. In particular, we describe a new frame-based algorithm 
that significantly outperforms note-by-note algorithms in tests 
using sung queries and a database of MIDI-encoded music. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – query formulation, retrieval models, search 
process. 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
dynamic programming, melodic comparison, melodic search, 
Music Information Retrieval (MIR), sung query 

1. INTRODUCTION 
Music Information Retrieval (MIR) is a relatively new area of 
investigation. The goal of MIR research is to develop new theory 
and techniques for processing musical information and searching 
music databases by content. One interesting branch of MIR is 
sometimes called “Query by Humming”. Compared to other data 
entry methods, humming is considered the easiest way for 
ordinary non-musicians to express a music query. A client’s input 
device can be a simple microphone connected to a computer. 
Unfortunately, one feature of sung queries is a high error rate 
exacerbated by a difficult transcription problem, so robust 
matching techniques are essential. We are interested in comparing 
and evaluating melodic matching techniques that compare sung 

queries to MIDI data. (In the future, we plan to investigate 
searching audio data as well.)  

In this work, we are not particularly concerned with long 
execution times even though a practical system operating on a 
large database must be efficient. By ignoring efficiency issues, we 
can explore a wider range of algorithms. The best of these will 
serve as a benchmark to evaluate more practical, efficient 
approaches. Our work indicates that better search is possible by 
using new measures of melodic similarity. 

Our work is part of a larger project, MUSART [1], which integrates 
techniques for music analysis, representation, abstraction, and 
search. In this study, we use a database of themes that is 
automatically constructed from full MIDI files using the MUSART 
theme extractor [12], and queries are sung by non-experts without 
any specific instructions for style or articulation. Thus, we believe 
these results are indicative of “real-world” data. We are in the 
process of moving our work to a music library to help with data 
collection and evaluation. 

2. RELATED WORK AND BACKGROUND 
Music database systems that accept humming queries are 
becoming increasingly common and more sophisticated. [2, 5, 11] 
Typically, these databases transcribe sung queries into a sequence 
of pitches and rhythms. These are then matched to database 
entries using various string comparison and N-gram algorithms. 

Sung queries are known to be difficult to segment into discrete 
notes. One reason is that people tend to make all kinds of 
accidental and intentional variations in pitch and duration when 
they sing. [6, 11] Tempo can vary from roughly half the speed to 
double, even within one sung query. Furthermore, current 
methods for pitch extraction and vowel detection make systematic 
errors. The result is that there can be a large difference between 
the user’s intended query and the query transcribed from a user’s 
vocalization. This makes the melodic search problem difficult.  

3. VARIATIONS ON MELODIC SEARCH  
Dynamic programming [17] has been applied to melodic 
comparison [3, 7] and has become a standard technique in music 
information retrieval. Dynamic programming is popular for music 
information retrieval because melodic contours can be represented 
as character strings, thus melodic comparison and search can 
benefit from the more mature research area of string matching. As 
the dynamic programming technique is popular for approximate 
string matching, it is only natural that it be broadly used in the 
area of melodic search. However, although melodic search is 
inspired by string matching techniques, it has many properties and 
practical problems that do not exist in string matching. Here, we 
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would like to discuss some important characteristics of melodic 
search. We can then pursue variations of the dynamic 
programming techniques to achieve better performance in melodic 
search.  

Dynamic programming is also used in algorithms associated with 
Markov Models (e.g. the Viterbi algorithm) and Hidden Markov 
Models (HMM). In fact, many string comparison algorithms and 
our melodic similarity algorithms can be viewed as special cases 
of Markov or Hidden Markov Models. [4] The advantage of the 
Markov formalisms is that arbitrary “edit distances” in string 
algorithms can be replaced by estimated probabilities in Markov 
algorithms. We are currently pursuing this direction in hope of 
improving our search algorithms. 

3.1 Edit Distance 
When melodies are viewed as strings, one measure of similarity is 
the number or cost of editing operations that must be performed to 
make the strings identical. The minimum cost is called the “edit 
distance.” The most common editing operations for melodic 
comparisons are inserting a note (insertion), deleting a note 
(deletion) and replacing a note (replacement). Mongeau and 
Sankoff [13] define two more advanced editing operations: 
segment one note into multiple notes (fragmentation) and combine 
multiple notes to form a single note (consolidation). Those five 
basic operations set up the foundation of a dynamic programming 
algorithm applied to melodic comparison.  

For two sequences A = a1, a2, … , am and B = b1, b2, … , bn, di,j 
represents the dissimilarity between a1, a2, … , ai and b1, b2, … , 
bj. The recurrence equation for 1 � i � m and 
1 � j � n is 
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Figure 1. Calculation pattern 1. 

The calculation of di,j is illustrated in Figure 1. w(ai, φ) is the 
weight associated with the deletion of ai,  w(φ, bj) with the 
insertion of bj and w(ai, bj) with the replacement of ai by bj, w(ai, 
bj-k+1, …, bj) and w(ai-k+1, …, ai, bj) with the fragmentation and the 
consolidation respectively. Initial conditions are 

di,0 = di-1,0 + w(ai, φ), i � 1             (deletion) 
d0,j = d0,j-1 + w(φ, bj), j � 1             (insertion) 
and 
d0,0 = 0. 

The definitions above represent one possible approach. In fact, 
there are many variations, some of which will be discussed later.   

3.2 Windows and Constraints 
Melodic comparison, as just described, compares two strings in 
their entirety, from beginning to end, and finds the best match 
even if it requires extensive and unlikely edits. Windows and 
constraints can be used to rule out some unlikely matches. [9] For 
hummed queries, it may help to assume that people do not skip 
many notes, insert many notes, or make drastic tempo changes at 
any one point. Therefore, “true” matches will match along or near 
a diagonal of the matrix di,j. We can apply a window to the 
algorithm, and only the cells inside the window are calculated.  
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Figure 2. Window within the table. 

Figure 2 shows a window applied to the sequence comparison 
table. The window is basically a diagonal band representing the 
allowable range of misalignment between the two patterns. The 
cells in the gray area are assigned a predefined maximum value 
directly, in order to force the valid paths starting from d1,1 to dm,n 
never to extend outside the window. 

While we have described a complete comparison, melodic search 
is in fact substring matching because queries need not contain 
every note in a song. In melodic search, the dissimilarity between 
the query and the compared sequence is actually the smallest 
dissimilarity between the query sequence and any substring from 
the compared sequence. Those substrings can start at any position 
of the sequence and end at any later position, which means they 
do not have fixed start/end points and the lengths may vary.  

Let A be a database sequence and B be a query sequence. To find 
a match starting at a1, we use dynamic programming as described 
above to match all of B, but we do not specify an ending symbol 
in A. Instead, we take the minimum value (over i) of di,n. A 
window is used to limit the extent of the search. Assuming the 
window width grows in proportion to n, the time complexity of 
this substring comparison will be O(n2). To find the best match to 
any substring, we can compute the best match starting at each 
symbol in A, as shown in Figure 3. The time complexity of this 
algorithm is O(n2m): each step takes O(n2) and the window is 
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moved O(m) times. If a window is not used, this time can be 
reduced to O(nm) (see below). 
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Figure 3. Sliding windows in melodic search.  

3.3 Frames vs. Notes 
We call the note-by-note matching approach event-based search to 
emphasize that notes are discrete events rather than continuous 
functions of time. As mentioned earlier, there are problems in 
segmenting (transcribing) an audio query into discrete notes 
correctly. Furthermore, pitch and duration are two significant 
attributes of notes, but it is hard to define edit distance other than 
to consider some linear combination of pitch and duration 
differences. [16] Because of these problems, the edit distance may 
not be the best measure of perceptual melodic dissimilarity. 

Another representation and search strategy we have explored is 
called frame-based search. Instead of working with discrete notes, 
the frame-based representation encodes a query rather directly by 
segmenting the time-varying pitch contour into frames of equal 
duration. There is no segmentation into notes. [10] This approach 
is inspired by early speech recognition research [15] and also 
related to the approach of Nishimura, et al. [14]. Figure 4 
illustrates a pitch contour, a sequence of pitch estimates used in 
frame-based algorithms, and a transcribed series of notes used in 
event-based algorithms. 

The frame-based representation has some important advantages 
over the event-based representation. First, frames do not represent 
notes explicitly, thus problems relating to note transcription do not 
arise. These problems include note segmentation (where are the 
notes?), pitch variation within notes (how do we pick a single 
pitch for the note?), and note quantization (should pitch be 
quantized to a musical scale?). Secondly, since the frame 
sequence includes both the pitch and rhythm information, no 
weighted combination of pitch and duration distance is required. 
We also found that incorporating window-like constraints in the 
frame-based approach is relatively easy. One method we tested 
can implicitly achieve a window-like constraint within the edit 
distance equations. 

The disadvantage of the frame-based approach is that it is very 
slow because of much longer query sequences. Also, frames do 
not carry rhythmic information. If transcription produces good 
segmentation (for example, if the user can indicate notes by clear 
articulation or by tapping), then event-based algorithms can take 
advantage of the additional structure, but frame-based algorithms 
cannot. In our work, segmentation is generally poor, and this 
favors the frame-based approach. 
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Figure 4. Original melody contour, frame-based 
representation and event-based representation. 

3.4 Prefix and Suffix 
For a substring Asub =  ai, ai+1, … , ak derived from original 
sequence A = a1, a2, … , am (1 � i � k � m), we define the prefix 
and suffix of that substring to be: 

Aprefix = a1, a2, … , ai-1 
Asuffix = ak+1, ak+2, … , am 

Recall that we want to search for a match between the query 
sequence and any substring of the compared sequence. Therefore, 
we want the best match, ignoring some prefix and suffix. In the 
conventional dynamic programming algorithm, there is a penalty 
for skipping. As we discussed before, we can avoid the penalty by 
applying a sliding window that starts at each ai.  Alternatively, we 
can assign no penalty for skipping the prefix and suffix by making 
slight changes to the algorithm. [11] The initial conditions of the 
original melodic comparison algorithm are changed to: 

di,0 = 0, i � 0 
d0,j = d0,j-1 + w(φ, bj), j � 1             

Then, di,j represents the minimum dissimilarity between the query 
sequence b1, b2, … , bj  and any subsequence of a1, a2, … , ai. 

Because there are no fixed start points and end points, we cannot 
restrict computation to a specific window, but the time complexity 
is O(mn). We call this the “one pass” technique to differentiate 
with the “sliding window” technique. 

3.5 Pitch Transposition 
We are not very sensitive to absolute pitch, so the pitches of a 
melody can be shifted, or transposed, by any interval. A melodic 
sequence can be made invariant with respect to transposition by 
recording intervals between notes rather than absolute pitches. 
[18] This representation has the disadvantage of allowing 
transpositions in the middle of a melody, a major perceptual 
change, with only a small penalty in terms of edit distance. An 
alternative is to simply transpose queries into each of 12 possible 
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keys. To limit the number to 12, we ignore octave transpositions. 
This still allows shifts of an octave within a melody without 
penalty, but this is not unreasonable from a perceptual point of 
view. 

For event-based algorithms, we search the database 12 times, once 
for each possible transposition. Pitches are rounded to the nearest 
semitone after adjusting sung queries for systematically sharp or 
flat pitches. The pitches of the frames are not quantized but are 
represented as floating point values. To limit the cost of search, 
we ignore octaves here as well and search the database 24 times, 
transposing the query by quartertones (there are 24 quartertones in 
one octave).  

3.6 Tempo Scaling 
In the same way that pitches can be offset without changing the 
perceptual quality of a melody, time can also be scaled. Thus, it is 
the relative durations of notes, or perhaps the shape of the melodic 
contour rather than absolute duration that gives a melody its 
rhythmic and temporal identity. As with transposition, this 
problem could be approached with a representation of duration 
ratios rather than absolutes. However, as with the interval 
representation for pitch, this would allow a drastic change in 
tempo with only a single insertion or deletion, hence a minor 
penalty in terms of edit distance. We chose to search the database 
with numerous time-scaled versions of queries (or alternatively, 
time-scaled versions of the database entries) to cover a reasonable 
range of tempos. At least one of these time-scaled versions should 
be a close match to a correct target in the database. Further minor 
adjustments are allowed through the dynamic programming 
algorithm and its associated edit distances. 

3.7 Pitch Estimation and Transcription 
Pitch estimation is performed using an enhanced autocorrelation 
algorithm [19] using overlapping windows to estimate 100 
fundamental frequencies per second, reporting zero when the 
amplitude is low or when there is no clear peak fundamental. We 
found that this works as well as other methods and commercial 
products that we also tested. [10] For frame-based algorithms, the 
data is converted to 10 estimates per second by taking the mean of 
non-zero estimates for that region. For event-based algorithms, 
transcription is accomplished by first using a histogram method to 
identify an absolute pitch reference. This minimizes quantization 
error when fundamental frequency estimates are mapped to 
discrete pitches. Then, consecutive frames with small pitch 
differences are merged to form notes. Notes with very low 
durations are not reported. Source code is available from the 
authors. 

4. EXPERIMENT 
To set up our experiment we picked four typical variations of 
dynamic programming algorithms combining different 
characteristics discussed above. 

4.1 Algorithm 1. 
The first one is a simple algorithm that integrates only three most 
basic operations of dissimilarity comparison: insertion, deletion 
and replacement. It is based on note sequences, but only 
considering pitch information, ignoring duration information. So 
the weight w(ai, bj) is defined as the pitch difference between ai 
and bj. 

The algorithm is applied with a sliding window, and the 
calculation for each dissimilarity value di,j uses the Itakura 
constraints [8] as shown below: 
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Figure 5. Calculation pattern 2. 

The cell relationship for the calculation of di,j according to the 
equation shown in Figure 5 represents a typical calculation pattern 
used in our experiments. 

4.2 Algorithm 2. 
The second one is also an event-based algorithm but 
implementing all the five basic operations including 
fragmentation and consolidation and considering both pitch and 
duration information, as described by Mongeau and Sankoff [13]. 
We tried combining “sliding-window” and “one-pass” techniques 
individually with this algorithm but found little difference in 
output, except that the one with “one-pass” runs much faster. 
Probably, the sliding window does not improve precision because 
the edit distance calculation incorporates duration information and 
assigns a penalty for tempo variation. In our experiment, this 
algorithm is applied with the “one-pass” technique. To deal with 
tempo variation, we scale database durations from 0.5 to 2.0 in 
steps of 1.08. This was found to significantly enhance the 
precision of the search by compensating for tempo differences 
between queries and targets. 

4.3 Algorithm 3. 
The third algorithm is very similar to the first one, same 
calculation pattern, same sliding window, same pitch-only weight 
definition, but based on frame sequences. The query is segmented 
into 100ms frames, while the compared sequence is segmented 
according to multiple stretch factors to allow tempo differences. 

4.4 Algorithm 4. 
The last approach is an improved algorithm invented after 
studying the previous algorithms and many variations. It is a 
frame-based algorithm implementing three basic operations—
replacement, fragmentation and consolidation, but in an 
alternative way. The calculation pattern is: 
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Figure 6. Calculation pattern 3. 

As shown in Figure 6, the cell relationship for the calculation is 
symmetric along the diagonal of di,j. The whole algorithm can be 
deemed as shrinking the musical contour of either the query or the 
compared sequence to (locally) double the tempo at certain 
positions, and then comparing two musical contours exactly. It 
can also be viewed as assigning a penalty for insertion/deletion. 

By observing the calculation pattern 3, we can see that skipping 
two consecutive frames in either A or B is not permitted except 
for a prefix and suffix of A. This means that the alignment 
between A and B will fall within a rhombic pattern shown in 
Figure 7, shaped much like the window seen earlier. Unlike a 
window, this constraint is generated implicitly by the edit distance 
functions, so we get the efficiency of a “one pass” algorithm and 
constraints similar to a “window” algorithm. 

4.5 Database and Queries 
For the experiment, we collected and processed 598 MIDI files 
containing popular songs. These include rock songs, folk songs, 
and TV theme songs, making it easy to invite non-musicians to 
sing the theme of a song included in the database. The files 
contain a total of 1,239,138 notes. 
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Figure 7. Window-like constraint implicitly set up by 
calculation pattern 3. 

The data is processed using the MUSART thematic extractor [12], 
which locates the 10 most common phrases or melodies from each 
original file. After processing, there are 5980 entries in the 
database with an average length of 22 notes. Although this is still 
a relatively small number, we believe it is large enough to assess 
the relative quality of different melodic comparison and search 
algorithms, which is the purpose of this study. Since the original 
files now have 10 representative melodies, our search algorithms 
report the best match to any of the 10 themes as the match score 
for the original file. 

Experiments on a smaller, but similar database showed that search 
performance improved when we searched over themes rather than 
full files. This is consistent with the fact that the theme extractor 
does very well at finding the themes that humans identify. And 
also, subjects are much more likely to hum these themes than 
some other material contained in the file. By removing non-
thematic music from the data, we reduce the chance of matching 
harmonies, introductions, and material that contains chance 
similarities to themes of other songs. 

We collected 37 queries to assess the system. Subjects were not 
given any special instructions with respect to how to sing, hum, or 
whistle a song. This resulted in queries that are generally 
recognizable but difficult to automatically transcribe accurately. 
The queries include male and female voices with a range of 
musical ability, and the queries include humming, singing, and 
whistling. Table 1 shows the distribution of those queries. 

Table 1. Query distribution 

 Sing Whistle Hum 

Female 3 2 0 

Male 0 15 17 

For each query, we compute a measure of dissimilarity to each 
entry in the database, and we determine the rank order of the 
correct database entry for the query. The quality of the algorithm 
is assessed by counting how many searches return correct songs 
with a rank order of 1, in the top 10, or in the top 100. 

5. RESULTS 
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Figure 8. Algorithm comparison chart. 

The result shows that frame-based algorithms (Algorithm 3 and 4) 
perform much better than event-based algorithms (Algorithm 1 
and 2). Comparing the two event-based algorithms, the one 
implementing all five basic operations (Algorithm 2) gets better 



Ning Hu and Roger B. Dannenberg: “A Comparison of Melodic Database Retrieval Techniques Using Sung Queries”, JCDL 2002. 

- 6 - 

results. It is also by far the best among all the event-based 
algorithms we have tested.  We suspect that the consolidation and 
fragmentation operations make up, in part, for errors in 
segmentation. Therefore, random segmentation errors do not have 
such a negative impact on the similarity estimate. 

The frame-based algorithm implementing calculation pattern 3 
(Algorithm 4) is better than all the other algorithms and it actually 
runs much faster than the other frame-based algorithm because it 
only runs the dynamic programming algorithm once across the 
table. Figure 9 summarizes these properties qualitatively. Speed 
(queries per second) is measured relative to the slowest algorithm; 
quality is represented using rank order with 1 indicating the best. 
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Figure 9. Quality/speed chart for                                       
melodic search algorithms. 

6. SUMMARY AND CONCLUSION 
“Query by Humming” searches melodies in a database for 
matches to an audio query. There are many sources of error in 
queries, including the vocalization of the query itself, the 
estimation of fundamental frequencies in the sound, and the 
transcription of this frequency contour into a discrete 
representation.  

Algorithms for “Query by Humming” must deal with many issues, 
including robustness in the face of transcription errors, 
transposition invariance, overall tempo differences, and local 
tempo variation. Algorithms must also allow searching for 
substrings within an overall melody. 

To study these issues, we have implemented and evaluated a 
promising set of search algorithms, including a new class of 
algorithms we call frame-based, because they segment the query 
into equal-sized time frames. The potential advantages of frame-
based algorithms are that they deal with both time and pitch in an 
elegant manner and they do not rely upon a note segmentation or 
transcription step that is known to introduce errors. From our 
experiments, we can conclude that frame-based algorithms 
outperform the best event-based algorithms in terms of precision. 
(This conclusion assumes that our audio queries and transcription 
errors are typical.) 

Between the two event-based algorithms, Algorithm 2 performs 
better. In preliminary work, we tried this algorithm with and 
without the “consolidation” and “fragmentation” operations, and 
the performance with these operations is better. Therefore, we 

conclude “consolidation” and “fragmentation” are important. In 
contrast, Algorithm 1 uses different constraints and ignores 
durations. 

We found that automatic theme extraction, important for reducing 
search time, also enhances precision. This is an important finding 
for making search faster on large databases. Because themes tend 
to be short, they may allow interesting indexing schemes to be 
applied. 

Quality and speed are two interdependent factors in evaluating 
melodic search algorithms. Of course the ideal solution will 
increase both quality and speed. Knowing about the extremes 
along each axis is a prerequisite for algorithm evaluation. Known 
algorithms such as indexing can be very fast even in a large 
database, but our work shows that fast algorithms that have been 
the focus of previous investigations are not delivering the best 
possible precision.   

Our study of melodic similarity has led to an interesting 
improvement in which edit distance calculations implicitly 
constrain tempo variations, and this algorithm outperforms all 
others we have tried. Observing that frame-based approaches tend 
to work better than event-based approaches, we can consider 
further enhancements such as a probabilistic treatment of edit cost 
functions. Although slow, our frame-based algorithm can serve as 
a benchmark against which other algorithms can be compared. 

7. FUTURE WORK 
In the future, we plan to incorporate a probabilistic model of pitch 
estimation into the frame-based approach. By measuring actual 
pitch estimation errors from hand-labeled queries, we should be 
able to improve our edit cost functions. Similar training was used 
in another melodic similarity task [6]. 

Optimization of frame-based matching is important for practical 
applications. A frame-based algorithm could be the final pass after 
a faster query narrowed the database to a small set of candidates. 
Alternatively, some sort of frame-based algorithm might be run at 
lower time resolution to increase speed. Tempo estimation and 
key estimation might reduce the need to search over different 
tempos and keys. Finally, it might be possible to build a database 
index based on melodic fragments (shorter than themes) matched 
using frame-based techniques.  
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