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ABSTRACT
This paper presents a decision theoretic framework that an
autonomous agent can use to bid effectively across multi-
ple, simultaneous auctions. Specifically, our framework en-
ables an agent to make rational decisions about purchasing
multiple goods from a series of auctions that operate differ-
ent protocols (we deal with the English, Dutch, First-Price
Sealed Bid and Vickrey cases). The framework is then used
to characterize the optimal decision that an agent should
take. Finally, we develop a practical algorithm that pro-
vides a heuristic approximation to this ideal.

1. INTRODUCTION
Increasingly online auctions are being used to trade goods

and services between and among businesses and consumers.
As this trend continues, there will be an inevitable rise in
the number of places where a given good or service can be
bought or sold. Thus, in order to make effective purchas-
ing decisions, users need to monitor many different auctions
at many different sites, need to determine the best set of
auctions in which to bid, and need to determine how best
to bid in the chosen auctions. When taken together, this is
a complex reasoning task in a dynamic, unpredictable and
time-constrained environment. For this reason, we believe
that it is amenable to an agent-based approach and that in
the longer term such an approach is likely to outperform hu-
man bidders (see [6] for preliminary evidence of how agents
can out perform humans in complex auction settings).

Against this background, this paper develops a decision
theoretic framework that an agent can use to make rational
bidding decisions across multiple auctions. We assume that
users may want multiple instances of the good, having fixed
private values for each potential number of goods bought,
that the auctions have varying start and end times, and that
the auctions may embody different protocols. Specifically,
we consider the four major types of single-sided auction:
English, Dutch, First-Price Sealed Bid, and Vickrey. The
framework itself is used to characterize the optimal decision
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making behaviour for this auction context. However, since
we also aim to produce a practical solution to this prob-
lem, we need to develop a computationally efficient means
of approximating this behaviour (attempting to find the op-
timal solution is simply infeasible given the time-constrained
nature of auctions). To this end, we define a heuristic algo-
rithm for this decision making problem.

This work advances the state of the art in the following
ways. Firstly, the framework and its characterization of op-
timal bidding behaviour in this context are novel. Previous
work has tackled the problem without an underlying ana-
lytical model, has not dealt with the multiple auction case,
or has been limited in the range of auction protocols consid-
ered (see section 6 for more details). Secondly, we develop a
novel heuristic algorithm for approximating this behaviour
and analyse its worst case complexity.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces the framework and provides a specifica-
tion of the optimal decision making behaviour in this con-
text. Section 3 outlines the basis for approximating this
behaviour and Section 4 provides a concrete means of esti-
mating the expected future utility of bidding actions. Using
this approximation method, Section 5 defines our heuristic
decision making algorithm. Section 6 details related work
and Section 7 concludes.

2. ALGORITHM SPECIFICATION

2.1 Notation
Suppose that an agent has beliefs about the possible out-

comes of future events in a set of auctions. Auctions are
each for a single good; the value of n goods to the agent
in monetary terms is a fixed private constant, v(n) (where
we normalize v(0) = 0), so that the utility of obtaining n
goods at total price x is u(n, x) = v(n) − x. The agent is
risk neutral.

Auction protocols:

1. English: In an English auction a, each bid must be
at least h(a)1 larger than the previous to be valid. We
assume that if an agent bids, it will certainly obtain
the “leading bid”, although it may subsequently be
out-bid.

2. Dutch: The price in a Dutch auction a decreases con-
tinuously with time at h(a) monetary units per unit

1We will use bold-face to indicate vectors of values defined
for each of a set of auctions.



time. We assume that if an agent chooses to bid, it
will certainly obtain the good at its bid price.

3. Sealed: We cover both first and second price auctions,
in which the agent wins if it has posted the highest bid,
and pays either the value of that bid, or the value of
the second-highest bid, respectively.

We will use the following terminology

1. The number of goods purchased so far is a vital vari-
able, usually referred to as k.

2. Let A be a set of auctions which are either to open in
the future, or are currently open. Write d(A), e(A),
f(A) and s(A) for the subset of A consisting of Dutch,
English, First-price-sealed and Second-price-sealed auc-
tions, respectively. Write S(A) = s(A) ∪ f(A) for the
set of all sealed-bid auctions. We include sealed-bid
auctions whose deadline for submissions is passed, but
which have not yet announced a winner. A rational
agent would never submit a sealed-bid before the last
moment2, so for the purposes of making bidding deci-
sions we need only ever consider the set of sealed bid
auctions whose submission deadlines are imminent -
close enough that the agent does not expect to have
another opportunity to submit a bid. These we write
as SI(A).

3. Let H ⊂ A be a set of holdings: An English auction is
in H if the agent holds the winning bid in that auction;
a sealed-bid auction is in H if the agent has submitted
a bid to the auction, and the result has not yet been
announced; it is not possible to hold a bid in a Dutch
auction, since a bid instantaneously wins.

4. The current price function x is defined for each auc-
tion in A; in the case of auctions which are in H∩S(A)
it records the bids which have been placed.

A rational agent should choose to bid in a given auction if
the expected return from the future, given the agent bids, is
greater than the expected return from the future given the
agent doesn’t bid. To be more precise about these expected
returns obviously requires precision regarding the various
protocols to which each auction adheres. But the most sig-
nificant challenge is that of estimating the expected return
of future events, especially since this expected utility is in-
extricably bound up with the bidding choices that the agent
itself makes. To this end, in Section 3 we discuss methods
for determining an estimate E(k,A, H,x) of the expected
return from playing in auctions A given that prices in these
auctions are currently given by the vector x3, given that k
goods have so far been purchased, and given that we hold
the bids H.

2The agent must always speculate about future events, in
order to calculate the best bid value. But speculation is
always inferior to basing a decision on known facts: only if
delaying might alter the potential outcome (as in English or
Dutch auctions) can it be best to bid early. In sealed-bid
cases the timing of the bid does not affect the outcome of
the auction, so it is better to wait until the last minute in
order to base decisions on facts rather than guess-work.
3Use the expression x(a) for the price that this vector im-
plies for a given auction a.

In the next section we begin the description of the bidding
algorithm by considering the agent’s decision problem when
faced with a single auction. We then generalize this to the
compound case where there are multiple auctions to deal
with.

2.2 Single Decisions

2.2.1 English
Consider first the simple decision of whether to bid or not

in a single English auction, a, from among the auctions e(A).
If the agent bids, it will become active, at a slightly higher
price, x(a) + h(a). If it does not bid, it will be inactive at
price x(a). The choice, then, is between expected utility

E(k,A, H,x) (1)

for not bidding, and (for bidding) utility

E(k,A, H ∪ {a},x′), (2)

where

x′(b) =

�
x(b) + h(b) if b = a,
x(b) if otherwise,

If the latter is larger, the agent should bid, otherwise it
should not.

2.2.2 Dutch
If presented with a decision to bid in a single Dutch auc-

tion, the choice is slightly different. If the agent bids, it will
win immediately:

E(k + 1,A \ {a}, H,x)− x(a). (3)

If not, then some small amount of time δt must inevitably
elapse before the decision is undertaken again4. Thus the
choice not to bid must cause the price to go down:

E(k,A, H,x′). (4)

where5

x′(b) =

�
x(b)− δth(b) if b ∈ d(A),
x(b) otherwise.

We assume that the period of time δt is small enough that
the non-Dutch auctions have negligibly small probability of
changing in price over the specified interval.

2.2.3 Sealed-bid
For sealed bid auctions the choice is not whether to bid

or not, but how much to bid. If the agent chooses to bid
nothing, i.e. not to bid, then it should expect utility

E(k,A \ {a}, H,x). (5)

If the agent chooses to bid at price X then the expected
utility is

E(k,A, H ∪ {a},x′), (6)

where

x′(b) =

�
X if b = a
x(b) otherwise.

4This is unlike the English case, where the leading bid may
be the same for large periods of time.
5The price is assumed to be a continuous function of time:
there is no “step” in price, just a smooth decrease in price as
time goes on. The variable h(a) is the rate of its decrease.



2.3 Compound Decisions
At a given moment in time, the agent will in fact be con-

fronted with a far more complicated decision problem: Bid-
ding choices in different auctions are far from independent,
so should be considered together. When playing in auctions
A, with holdings H, the agent may bid in any of the English
auctions in which it does not hold the active bid, and in any
Dutch auction. It can only choose to bid in a sealed bid
auction in S(A) \ H, and, as explained before, should only
bid in SI(A) \H.

Let α be an action, which assigns a choice of bid or no−bid
to each continuous auction, and either no − bid or a bid
value to each sealed bid. Write eα, dα and Sα for the set
of English, Dutch and Sealed-bid auctions (respectively) in
which the action specifies a bid. From action α the agent
can expect utility

E
�
k + |dα|,A \ (dα ∪ (SI(A) \ Sα)), H ∪ Sα ∪ eα,xα�

−
X

a∈d(A)

x(a),

(7)
where the price function xα is defined for b ∈ A \ (dα ∪
(SI(A) \ Sα)) by

xα(b) =

8>><>>:
x(b)− δth(b) if b ∈ d(A),
x(b) + h(b) if b ∈ eα,
α(b) if b ∈ Sα,
x(b) otherwise.

(8)

Equation (7) now implicitly provides a specification of our
agent’s bidding algorithm: whichever action α maximizes
(7) is the action that we want the agent to take. Providing
a concrete algorithm for the agent is then a matter of choos-
ing a suitable approximation mechanism6 for the underlying
expected utilities (which we do in the next section), and pro-
viding an algorithm for the discovery of the maximizing α
(see Section 5.1).

3. ESTIMATION OF FUTURE UTILITY
The specification in the previous section defines the be-

haviour of a bidding agent, given the existence of a function
which provides an estimate of the expected utility of partici-
pating in the set of future auctions. We now turn our atten-
tion to defining an appropriate estimation function. There
are several possible approaches to this, which vary in com-
plexity and accuracy:

3.1 Backward Induction
To get an accurate measure of the expected utility of

the future auctions given certain beliefs about opponents’
bidding behaviour, it is necessary to have complete infor-
mation about the structure of future auctions (i.e. start-
ing time, rule determining closing time, times when bids
can be submitted, times for bids to be processed and ac-
cepted/rejected, etc). Given this, it is theoretically possible
to calculate the exact expected utility of future auctions by
modeling them as a Markov Decision Process, and determin-
ing the inductive solution through Dynamic Programming
[4, 3, 2]. While theoretically possible, this would be highly

6As discussed in the next section, computing the exact value
of the expected utility from optimal behaviour is possible in
some circumstances, but generally impossible: the best we
can hope to do is provide estimates.

complex for problems of significant size, and so would be
very difficult to calculate rapidly enough in real-time. Fur-
thermore, some of the information necessary for a complete
model (particularly that relating to bid process times, etc)
would be difficult to obtain accurately.

By making the simplifying assumption that all auctions
proceed in synchronized rounds, the modeling problem is
significantly reduced and the approach becomes more feasi-
ble (See [4] again), at least for situations where the number
of auctions open at any one time is relatively low (≤ 6).
However, in this case we seek to address less constrained
problems, and so reject the backward induction model.

3.2 Estimation by approximation with simple
strategies

The expected utility that can be extracted from a set of
auctions can be estimated by considering a set of possible
future strategies, and choosing the best among them. Be-
cause the set of strategies is not exhaustive this estimate
will be less than or equal to the actual expected utility of
future auctions, and hence a pessimistic estimate.

One very simple set of strategies, the fixed-auction strate-
gies, consist of choosing a set of auctions in the future, and
committing to buy from them, by placing whatever bid or
bids are required to guarantee a successful purchase. As-
suming an agent holds no active bids, the best fixed-auction
strategy is straightforward to calculate: The best fixed-
auction strategy buying from n auctions will simply be the
strategy which purchases from the n auctions with the lowest
expected price, given the bidding strategy described above.
The best fixed-auction strategy can be found by selecting
which of these maximizes the expected utility. If the agent
holds some existing active bids in English or Sealed Bid
auctions, the problem becomes more complex. The fixed-
auction strategy which gives the best expected utility at this
point in time may involve choosing a set of auctions which
does not include some or all of these active bids. Because
of this, the agent must consider the expected utility of such
strategies. In such a strategy, the agent effectively ignores
the active bids in auctions outside the chosen auction set,
in the expectation that they will get outbid. However, there
is a risk associated with this: there is a certain probability
the agent will not be outbid, and so will make an accidental
purchase in one of these auctions. The cost and benefit of
this outcome must be factored in.

If an agent uses such an estimate together with the de-
cision procedure described in section 2, then it effectively
chooses to follow the best fixed-auction strategy available at
any given time. This may involve switching to a new auction
set as circumstances change, possibly leaving active bids in
the original auctions. Provided the net cost of the risk as-
sociated with these is outweighed by the expected benefit
of switching to a better auction, the agent will make the
switch. (See [12] for further discussion and examples of this
in the context of the purchase of service bundles.)

Generalizing this notion, we can consider the set of all
fixed threshold strategies. A fixed threshold strategy con-
sists of assigning a threshold t to every auction, which
entails an a-priori commitment that depends on the auction
protocol: For English auctions we commit to bid up to t,
then drop out if unsuccessful (hence the name “threshold”);
for Dutch auctions we commit to bid at price t, if it ever
gets that low; for sealed-bid auctions we commit to bid t.



Clearly, fixed-auction strategies are the special case where
some auctions are assigned thresholds guaranteeing a suc-
cessful purchase, while others are assigned zero thresholds.
Calculating the best fixed threshold strategy is more com-
plex than the fixed-auction case, but still significantly easier
than exhaustive backwards induction. In the following sec-
tions, we will formally define these two forms of strategy,
and provide algorithms for calculating the best fixed auc-
tion strategy.

It is interesting to note that these strategies use no in-
formation on the ordering of future auctions. This means
that the approach of using this as an estimate is generally
applicable, and can be used even if the ordering is unknown
a-priori. However, an estimate which assumes a strategy ca-
pable of exploiting any known order would be closer to the
actual expected utility7. We hope, in the future, to augment
our approach with additional strategies to improve the esti-
mate. These strategies would exploit specific arrangements
in the set of future auctions (for example, a block of auc-
tions in parallel, or several auctions running sequentially)
and provide improved estimates in these circumstances.

4. FIXED THRESHOLD STRATEGIES
In this section we examine in formal detail the fixed thresh-

old strategies referred to above, so as to obtain estimates of
future utility. We derive a formula

Et(k,A, H,x) (9)

for the expected return on using the fixed threshold strategy
with the vector of thresholds t8. This provides an estimate
of the maximal value that can be obtained from the future
as

E(k,A, H,x) ' max
valid t

Et(k,A, H,x). (10)

This is the estimate of future utility upon which our agent’s
bidding algorithm is based.

4.1 Single Auction Case
To begin with we consider the case where the agent is

confronted with a single auction, A = {a}.
4.1.1 Probability of Winning

The probability of obtaining the good is determined using
a belief function Pa(y) representing the likelihood of the
highest opposing bid in auction a having value less than
y9. In all cases the probability of winning is precisely the
probability of the highest opposing bid being less than t.
If the auction is sealed-bid, then there is only the a-priori
distribution to go on, so that the probability of a bid of t
winning is Pa(t).

7Note that our actual strategy, described in Section 2, does
exploit the order of auctions – it is merely the estimate used
by the strategy which does not, and hence will be lower than
the true expected return of our strategy.
8There are two restrictions on the space of valid thresholds,
which both amount to saying that one cannot commit to
the impossible: In an English auction, the threshold must
be greater than or equal to the current price; in a Dutch
auction it must be less than or equal to the current price.
9This function is built up from observation of the winning
bids in similar auctions that have taken place in the past. If
the agent has observed N auctions, of which n had winning
bids less than y, then n/N is a suitable estimate of Pa(y).

If the auction is continuous, this probability must take
into consideration the current price. This is easily done in
the Dutch case: if the price is already x then the likelihood
of winning with a bid at price t ≤ x is

Pa(t|x) =
Pa(t)

Pa(x)
. (11)

In the English case we must take care to consider whether
the agent holds the active bid or not: i.e. whether a ∈ H.
If so, then the highest opposing bid must be greater than or
equal to x − h, where h is the bid increment in auction a,
otherwise it must be greater than or equal to x. This gives
rise to the two possibilities10

Pa(t|x) =

8>>><>>>:
Pa(t)− Pa(x− h)

1− Pa(x− h)
if a ∈ H,

Pa(t)− Pa(x)

1− Pa(x)
if a /∈ H.

(12)

To unify all of these probability estimates define, for the
sealed bid case,

Pa(t|x) =

�
Pa(x) if a ∈ H,
Pa(t) if a /∈ H.

(13)

In addition to (11) and (12), this provides a complete specifi-
cation of Pa(t|x) as the symbol whose value is the likelihood
of the fixed threshold strategy t resulting in a purchase,
given that the “current price”11 is x.

4.1.2 Cost of Winning
The amount of money that the agent is expected to pay

if it should win is denoted Xa(t|x), and is conditioned on
current price x just as the probability is. For first-price
auctions, if the agent wins, it will pay its bid price t:

Xa(t|x) = t. (14)

For second-price auctions, if the agent wins, it will pay the
highest opposing bid. The expected costs are evaluated by
summing over all possible prices x′, the cost x′ multiplied by
the likelihood that x′ will be the price paid. We use continu-
ous probability distributions, so that the sum is an integral,
and the infinitesimal probability of the highest opposing bid
being x′ becomes the differential dPa(x′). For second-price
sealed-bid auctions, this gives the cost-estimate

Xa(t|x) =

Z t

0

x′dPa(x′). (15)

As in the previous section, English auctions present two fur-
ther difficulties: the highest opposing bid is bounded below,
as before, which requires conditioning of the probabilities in-
volved12; again there are slightly different cases depending

10Once again we have a threshold restriction: t ≥ x this time.
11Here the current price of a sealed bid auction is not defined
if the agent has not yet bid – which doesn’t matter because
in this case (13) does not depend on x anyway. If the agent
has bid in a, then the current price is meant to mean the
value of the bid which has already been placed.

12The differential dPa(x′) becomes, in the case a ∈ H,
dPa(x′|x) = dPa(x′)/(1−Pa(x−h)), and likewise for a /∈ H.



on whether the bid at x is held by the agent or not.

Xa(t|x) =

8>><>>:
Z t

x−h

x′dPa(x′|x) if a ∈ H,Z t

x

x′dPa(x′|x) if a /∈ H.

(16)

When combined with (14) and (15), we have a formula for
Xa(t|x) for all auction types.

4.1.3 Expected Utility
It is now easy to derive a formula for the expected return

on using a fixed threshold t: If the agent does not win the
good, it gets nothing. It it wins the good, which happens
with probability Pa(t|x), then the payoff is the value of the
good, v(1) less the expected value of the costs, given the
good is purchased, Xa(t|x):

Et(a, x) = Pa(t|x)
�
v(1)−Xa(t|x)

�
. (17)

4.2 Multiple auction case
We now generalize to the multiple auction case. Consider

the expected utility

Et(k,A, H,x)

of using the fixed threshold strategy t, which assigns thresh-
old t(a) to each auction a in A.

Let W be any subset of the set of all auctions A in which
the agent is playing. The probability PA(W, t|x) of winning
all the auctions in W and losing all the auctions in A \W
when using the fixed thresholds t is the product over all
auctions of the probability of the corresponding outcome in
that auction:

PA(W, t|x) =
Y

a∈W

Pa(t(a)|x(a))
Y

a∈A\W

(1− Pa(t(a)|x(a))).

(18)
If the agent wins exactly the auctions W , its immediate
reward is v(|W |+k); its expenses have expected value equal
to the sum of the expected expenses in each auction:

XW (t|x) =
X
a∈W

Xa(t(a)|x(a)). (19)

It follows that the agent should expect utility

Et(k,A, H,x) =
X

W⊂A

PA(W, t|x)
�
v(|W |+ k)−XW (t|x)

�
.

(20)
from using the fixed threshold strategy t. A rational risk-
neutral agent wishing to choose a fixed threshold strategy
should use the threshold vector t maximizing (20). Notice
that if the threshold to be used is re-evaluated at a later
time, the optimal choice may well be different.

4.3 The Fixed-Auction Strategies
Having formally defined the fixed threshold strategies, we

can return to the fixed-auction strategies discussed infor-
mally in Section 3.2 and give them a formal definition as a
special case. We will be using this definition in Section 5.2.

For a given auction, a ∈ A, we define the certain pur-
chase threshold tcert(a) as the minimum threshold which
will guarantee a purchase in auction a:

tcert(a) = min{x|Pa(x) = 1}. (21)

For any subset W ⊂ A, the corresponding fixed-auction
strategy tcert(W ) is the fixed threshold strategy which as-
signs thresholds of tcert(a) to each auction in W , thresholds
of x(a) to each auction in e(A) \ W (English auctions to
be dropped) and in W ∩ d(A) (Dutch auctions to be bid in
immediately) and thresholds of 0 to all other auctions in A.

Note that, for a given probability distribution of expected
highest opposing bids, the expected cost of guaranteeing a
purchase in an English or Vickrey auctions will be signifi-
cantly less than the expected cost of a Dutch or First-price
sealed-bid auction13. For that reason, fixed-auction strate-
gies will favour the former auctions over the latter.

In the case of fixed-auction strategies, (20) becomes:

Ecert(W )(k,A, H,x) = v(|W |+ k)−XW (tcert|x)

+
X

S⊂H\W

PH\W (S,x|x)
�
v(|W + S|+ k)− v(|W |+ k)

�
−

X
a∈H\W

Xa(x(a)|x(a))Pa(x(a)|x(a)).

(22)

5. THE ALGORITHM
In Section 2, we derived an expression (7) which must be

maximized with respect to the action-set variable α to de-
termine the bids the agent should make. This expression
requires a function to estimate the expected future utility
to our agent of any given state in the auction set. In Sec-
tion 4.3, we defined an estimate based on finding the best
future strategy which makes a commitment to buy from a
fixed set of auctions. We now use these two definitions in an
algorithm, to determine the bidding strategy of our agent.
Firstly, we define an algorithm which, given any utility esti-
mate, will determine the best set of bids to make in any given
situation. Secondly, we present a specific utility estimation
algorithm which uses the fixed-auction strategy. Finally, we
analyse the complexity of our algorithm.

5.1 The Decision Making Algorithm
Various ways of maximizing the expression (7) with re-

spect to the action-set variable α are possible. For example,
equation (7) could be used as a fitness function for a genetic
algorithm. However, we believe that simple optimization
approaches such as hill-climbing are unlikely to yield good
results, as the expression in (7) is easily seen to be highly
discontinuous with respect to the action set α – a change in
one parameter (such as bid/no-bid in a given auction) will
have a large impact on the desirability of a given value of
another.

In general, we believe that the number of auctions run-
ning simultaneously and auctioning a similar good will be
relatively small. (We estimate it informally to be of the or-
der 1-10 in the Business to Business world, and 10-100 in
the consumer world.) Hence, the number of possible action
sets will also be relatively small. For that reason, it is likely
that in most cases the overhead of a genetic algorithm will
be counterproductive, and a simple brute-force search of the
space will be more efficient. In this section, we present a sim-
ple algorithm to do this. It carries out a brute-force search,

13This is because the only way to guarantee a purchase in
a first-price auction is to bid very high, and a high bid has
to be paid in a first-price auction, whereas in a second-price
auction we only have to pay the second highest price.



but exploits certain heuristic properties of auctions to prune
areas of the space which are a-priori unlikely to yield good
solutions. The properties it uses are:

1. If a1, a2 ∈ d(A) are Dutch auctions, x(a1) ≥ x(a2) and
Pa1(x(a1)|x(a1)) ≤ Pa2(x(a2)|x(a2)) (where at least
one of these is not equal), then the agent should bid
in a2 in preference to a1.

2. If a1, a2 ∈ e(A) are English auctions, x(a1) ≥ x(a2)
and Pa1(x(a1)|x(a1)) ≤ Pa2(x(a2)|x(a2)) (where at
least one of these is not equal), then the agent should
bid in a2 in preference to a1.

3. If a1, a2 ∈ SI(A) are sealed auctions whose submission
deadlines are imminent, and b1,b2 are potential bid
values, the agent should bid b2 in a2 in preference to
b1 in a1 if Pa2(b2) ≥ Pa1(b1) and Xa1(b1) ≥ Xa2(b2)
(where at least one of these is not equal).

4. The maximum useful bid in a sealed bid auction a is
tcert(a). Similarly, we can define the minimum bid,
t0(a) to be the largest bid which will definitely not
win:

t0(a) = max{x|Pa(x) = 0}. (23)

The first of these properties is clearly always true: By bid-
ding in the Dutch auction which is cheaper and more likely
to close, we get a better price and a better set of options in
the future. The second property applies the same reason-
ing to English auctions. By bidding in the English auction
which is cheaper and more likely to close at that price, we
hold a better position in the future. And in the case of sealed
bid auctions, we would prefer to place a bid which has both
greater probability of winning and lower expected cost if it
does. However, unlike the first property, the second and
third do not hold in all cases, because of timing issues. For
example, in the case of sealed-bid auctions, it may be better
to put a bid in a poorer auction, because the better auc-
tion’s results will not be revealed for a significantly longer
time, causing us to operate with more uncertainty in the
intervening period. Hence, properties 2 and 3 are heuris-
tics. Property 2 can only be used if we assume that bids
arrive in English auctions according to roughly the same
rate distribution. Property 3 requires us to assume that the
time between the deadline for bid submission and winner
announcement of sealed auctions is roughly constant. The
fourth property is straightforward, but can only be used if
our beliefs are accurate.

We will now specify our algorithm. Firstly, we specify
the procedures required to implement the properties, then
we present our top-level algorithm in pseudo-code format.
Let dutchPrefer(a,b) be a function which returns true if
dutch auction a is preferred to b according to heuristic 1, and
false otherwise. Define englishPrefer(a,b) similarly, using
heuristic 2. Define validSubsets(B,f) to be a function
which takes a set of auctions and a comparator function14

of arity 2 as input, and returns the set containing all subsets
H of B such that;

a ∈ H and f(b, a) =⇒ b ∈ H (24)

Define allSealedBidSets(B,h) to be a function which re-
turns the set of sets of bids in the sealed bid auctions, B. It

14e.g. dutchPrefer or englishPrefer

does this by generating all possible sets, with each auction
either being assigned no bid, or a bid in the range t0(a) and
tcert(a) in steps of h. It then prunes this set, deleting any
sets which do not satisfy heuristic 3.

We now define actionUtility(α,k,A,H,x) so as to im-
plement (7). It uses using a function utilityEstimate that
will be defined in the next section.

actionUtility(α, k,A, H,x) :=
utilityEstimate(k + |dα|,A \ (dα ∪ (SI(A) \ Sα)),

H ∪ Sα ∪ eα,xα)

−
X

a∈d(A)

x(a),

(25)
Given these functions, we define the top-level algorithm

in Figure 1

bestActions(k,A,H,x) {
h = 1
αbest = ∅
ubest = 0

for each dα in validSubsets(d(A),dutchPrefer) {
for each eα in validSubsets(e(A),englishPrefer) {

for each Sα in allSealedBidSets(SI(A),h) {
α = dα ∪ eα ∪ Sα

u = actionUtility(α, k,A, H,x)
if u > ubest {

ubest = u
αbest = α

}
} } }
return αbest

}

Figure 1: The Decision Making Algorithm

This algorithm will iteratively generate all subsets of the
current Dutch auctions, pruning those which are dominated
according to property 1. It will then append to these each
subset of the current English auctions, pruned according to
property 2. These two subsets represent the auctions it is
currently considering placing bids in. Finally it appends
each possible combination of bids in current sealed bid auc-
tions, generated and pruned using properties 3 and 4. It
tests the union of all three sets of bids to determine the es-
timated utility of this course of action. If it is greater than
any previous set of actions considered, then it stores this as
the current best. It continues through all the possible com-
binations of Dutch, English and Sealed Bid auctions, and
returns the action set with the highest expected utility.

5.2 Utility Estimate based on Fixed-Auction
Strategies

Having defined the top-level decision making algorithm,
we must now define an algorithm to determine the utility
estimate it will use. We have developed algorithms which
make the estimate based on the best fixed-threshold strat-
egy, and the best fixed-auction strategy. The algorithm to
calculate the best fixed-threshold strategy uses a brute-force
search of the possibilities, pruned using heuristics similar to
properties 3 and 4 above. This will require a search of O(bA)
possibilities, (where A = number of future auctions and b
= number of possible different bids in each auction,) every
time a utility estimate is needed. We believe that the extra



accuracy of this estimate over the fixed auction estimate is
not worth the additional computation, and so favour use of
the fixed auction estimate. Because of this, we present this
algorithm in more detail. Whether this hypothesis is correct
will need to be tested through future experimentation.

The following simple algorithm will assign the expected
utility of the best fixed-auction strategy to the variable Emax:
Let L(A, H) be the list containing the auctions A\H, sorted
in order of expected cost when using the certain purchase
threshold, tcert(a). Let Li(A, H) be a function returning
the set consisting of the first i elements of L.

utilityEstimate(k,A,H,x) {
Emax := 0;
For each G ⊂ H {

For i = 1 to |A \H| {
Emax := max(Ecert(G ∪ Li(A, H))(k,A, H,x),

Emax);
}

}
return Emax;

};
Note that, by ordering the auctions A\H, this algorithm

avoids checking the expected utility of fixed-auction strate-
gies which are a-priori dominated by others: Any subset
of A \ H of size i will have an expected cost at least as
great as that of L(i), and substituting it for L(i) will not
change the expected payoff. Unfortunately, the same trick
cannot be applied to the set H without placing restrictions
on the nature of the valuation function v. As we discussed in
Section 3.2, auctions in H which are not selected by a fixed-
auction strategy have a chance of accidentally making an
extra purchase, if they are not outbid. The probability, cost
and benefit of this outcome must be factored in. Different
members of H have different such probabilities associated
with them, and without restricting v, we cannot say a-priori
whether these accidental purchases will increase or decrease
the expected utility.

By placing restrictions on v, the algorithm could be made
more efficient. For example, if we assume we want to buy
exactly q items, no more and no less, then the size of W
is known, and the third (and most complex) term in (22)
becomes zero. Furthermore, we can calculate a-priori the
expected sunk cost of the holding, H, and the benefit gained
by adding elements of H to W . Because of this, the estimate
becomes significantly easier to calculate.

5.3 Worst-Case Complexity Analysis
In this section, we perform worst-case analysis on the com-

plexity of the algorithm.15 The complexity of the algorithm
bestActions is clearly determined by that of actionUtility,
and hence utilityEstimate(k′,A′,H ′,x′), where k′ = k +
|dα|, A′ = A \ (dα ∪ (SI(A) \ Sα)), H ′ = H ∪ Sα ∪ eα and
x′ = xα.

In the calculation of utilityEstimate(k′,A′,H ′,x′), we
can see that the inner loop contains exactly |A′ \H ′| steps,
and that in this loop, the most expensive calculation is
Ecert(G ∪ Li(A′, H ′))(k′,A′, H ′, x′). From (22) we can see
that the dominant term in the calculation of Ecert is the sum
of PH′\W (S, x|x)(v(|W +S|+k′)−v(|W |+k′)) for all subsets
S ⊂ H ′ \W . This implies that the complexity of calculating

Ecert(W )(k′,A′, H ′, x′) is O(2|H
′\W |), and hence that the

15We would like to thank Viet Dung Dang (University of
Southampton) for his help with the complexity analysis.

complexity of calculating utilityEstimate(k′,A′,H ′,x′)
is

O
� X

G⊂H′
|A′ \H ′| · 2|H′\G|

�
,

= |A′ \H ′|O
� X

G⊂H′
2|H

′\G|
�
,

= |A′ \H ′| · 3|H′|.
So, the complexity of bestActions(k,A,H,x) is

O
�X

α

(|A \H| − |SI(A)| − |dα| − |eα|) · 3|H|+|Sα|+|eα|
�

= O
�
|A \H| · 3|H| ·

X
α

3|Sα|+|eα|
�

= O
�
|A \H| · 2|d(A)| · 3|H| · 4|SI (A)|+|e(A)\H|

�
6. RELATED WORK

Although there has been much recent interest in the design
of bidding agents for online auctions, most of this work has
concentrated on an agent operating in a single auction (be it
Dutch [8], continuous double [5] or any other protocol with-
out a clearly computable dominant strategy). While this
work is clearly important, we believe the multiple auction
context is likely to become more important in the longer
term since it can create more efficient and stable market-
places [11]. Given this, it is surprising that the multiple
auction case is not dealt with to any great extent in the eco-
nomics literature and in the agent-based context work on
purchasing multiple items has typically focused on combi-
natorial auctions (e.g., [7]). While combinatorial auctions
are an economically efficient way of dealing with the pur-
chase of combinations of goods, they rely on a centralized
marketplace structure. However, for various political, social
and cultural reasons we believe that this centralization will
not become the dominant paradigm. Thus, coordinating
behaviour over multiple simultaneous auctions, as we do in
this paper, is likely to remain a central problem in the field.

There has been some recent work on agents for multiple
auctions. Boutilier et. al. [3, 2] discuss sequences of sealed-
bid auctions, using dynamic programming to determine op-
timal bid-choices. Preist et al [10] developed algorithms for
agents to participate in multiple English auctions for the
purchase of a number of similar goods. Anthony et al [1] de-
veloped a heuristic method that covered all the protocols dis-
cussed in this paper, but which purchases only a single item
and which does not have a clear analytical framework un-
derpinning its operation. Preist, Byde et. al. [12] present an
algorithm specification for purchasing a heterogenous bundle
of goods from a set of English auctions, using an approach
similar to our fixed auction strategy. Byde developed an
analytical framework for the multiple auction problem but
focused on the English case only and used a computational
heavy backward induction technique (see Section 3.1). Fi-
nally, Ito et al. developed BiddingBot as a decision support
aid for users operating over multiple auctions [9]. However
this system merely presents choices to the user rather than
actually making the purchasing decisions itself.

7. CONCLUSIONS AND FUTURE WORK
This paper developed a decision theoretic framework for

characterizing the optimal bidding behaviour of an agent



that seeks to purchase multiple items from multiple inde-
pendent auctions that embody heterogeneous protocols. We
then developed a heuristic algorithm to approximate this de-
cision making behaviour in practical contexts. Although, in
the worst case, this algorithm is exponential in the total
number of auctions and the number of auctions in which in
the agent holds active bids, we believe that in practise it
will perform effectively. This belief is based upon our as-
sumptions about the number of simultaneous auctions that
the agent is likely to encounter and the likely pruning ef-
fect of our heuristics. This latter aspect also corresponds
to the main line of future work. We need to evaluate the
algorithm’s operational effectiveness across a range of sce-
narios. An important part of this experimentation will be to
investigate the relative tradeoffs of the fixed auction versus
the fixed thresholds strategies for estimating future utility.
We also aim to finesse the algorithm for scenarios where we
can make stronger assumptions about the ordering of the
auctions (as per Section 3.2) and about the particular form
of the valuation function (as per Section 5.2).
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