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ABSTRACT 
We present a distributed algorithm for task allocation in multi-
agent systems for settings in which agents and tasks are geo-
graphically dispersed in two-dimensional space. We describe a 
method that enables agents to determine individually how to move 
so that they are, as a group, efficiently assigned to tasks. The 
method comprises two algorithms and is especially useful in 
environments with very large numbers of agent and task nodes.  
One algorithm adapts computational geometry techniques to 
determine adjacency information for the agent nodes given the 
geographical positions of agents and tasks. This adjacency infor-
mation is used to determine the visible nodes that are most 
relevant to an agent's decision making process and to eliminate 
those that it should not consider. The second algorithm uses local 
heuristics based solely on an agent's adjacent nodes to determine 
its course of action.  This method yields improved task allocations 
compared to previous algorithms proposed for similar environ-
ments. We also present a modification to the second algorithm 
that improves performance in environments in which multiple 
agents are required to complete a single task. 

Categories and Subject Descriptors  
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems. 

General Terms  
Algorithms, Experimentation. 

1. INTRODUCTION 
Assigning agents to tasks in a non-centralized environment is a 
fundamental problem in multi-agent systems (MAS). The problem 
becomes even more challenging in settings in which a very large 
number of agents and tasks are spread in space, making commu-
nication among agents difficult or costly. 

We propose an algorithm for task allocation based on computa-
tional geometry techniques. The approach is applicable to 
domains in which agents’ and tasks’ geographical positions are 
known. In our experiments, the tasks are stationary, but agents are 
allowed to move. Agents are aware of other agents and tasks only 
within a proximity radius, which we refer to as the agent’s circle 
of visibility. The objective is to maximize the number of fulfilled 

 

 

 

 

a) Agents (gray), tasks (black) b) Delaunay triangulation 

Figure 1: Agents and tasks as vertices on the 2D plane with the 
Delaunay triangulation shown on the right. 

tasks. We do not consider other costs associated with the agents, 
such as distance traveled or awake time. 

This algorithm is useful in numerous domains, including the 
package delivery system of Shehory et al. [1998]; a taxi company, 
where the drivers are the agents and the passengers are the tasks; 
and the allocation of police forces with no central control. In this 
last case, it is critical to have a good distribution of agents (po-
licemen) because a new task (a crime) can appear anywhere.  

The algorithm is fully distributed. Each agent determines its 
course of action with the objective of maximizing its own number 
of fulfilled tasks. To reduce communication costs, each agent 
bases its decision solely on a small set of adjacent task and agent 
nodes. The expected number of adjacent nodes remains low even 
if the density of agents and tasks is very high. Furthermore, the 
adjacent nodes are evenly distributed in all directions. For in-
stance, it is undesirable to have all adjacent nodes of an agent be 
in the east direction, as that could lead to missing an opportunity 
to reach a nearby task to the west. Picking the n closest nodes 
could cause an imbalance. The algorithm computes a planar 
triangulation of the nodes at each time-step (Figure 1) and deter-
mine the adjacency of the nodes based on a subset of the edges of 
the triangulation. 

Section 2 presents an algorithm to efficiently compute a local set 
of neighbors adhering to the properties outlined above. This set 
provides each agent with a small set of desirable neighbors on 
which to base its decisions. 

Section 3 presents an algorithm for an agent to make decisions 
based solely on its adjacent nodes, rather than on all the nodes 
within its circle of visibility. This property of the algorithm 
minimizes the amount of communication and computation re-
quired by the agents. The adjacent nodes also provide enough 
information to allow the agents to spread themselves out evenly in 
space. Since all computations are done locally by individual 
agents, the algorithm scales very well. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
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Copyright 2002 ACM 1-58113-480-0/02/0007…$5.00. 
 



 

 

The basic algorithm described in Section 3 is applicable to tasks 
that can be completed by a single agent. In Section 4 we describe 
a modification to the algorithm that is suitable for environments 
with tasks that require the simultaneous presence of multiple 
agents. The algorithm uses adjacency information to propagate 
data about tasks to farther agents, as needed. 

In Section 5 we describe the implementation and the results of our 
experiments. We then place our system in the context of related 
work in Section 6. Finally, we conclude and propose some direc-
tions for future work. 

2. PLANAR TRIANGULATION 
This section describes an algorithm that uses a planar triangula-
tion to allow each agent to identify and focus its task deliberation 
on a small set of adjacent nodes. Agents only consider these 
adjacent nodes when making their decisions. As a result, the 
amount of deliberation and computation is significantly reduced 
without compromising solution quality.  

The planar triangulation problem seeks to join a set of points in 
the plane by nonintersecting lines, such that every region within 
the convex-hull of the set of points is a triangle. As a result, a 
planar triangulation yields a connected graph with generally short 
edges. A triangulation of the points in Figure 1a is given in Figure 
1b. Planar triangulations is a well studied area within computa-
tional geometry and widely used in computer science. 
Applications for planar triangulations range from surface interpo-
lation in graphics to routing algorithms in networking.  

Each agent computes its own triangulation locally within its circle 
of visibility. We require agents to generate triangulations that are 
consistent with one another.  

A set of points may be triangulated in many different ways. Our 
algorithm is based on the Delaunay triangulation [Delaunay, 
1934]. A triangulation is considered to be Delaunay if every 
triangle’s circumcircle1 does not enclose any other point in the 
triangulation (Figure 2). The Delaunay triangulation maximizes 
the minimum angle of all triangles, so it has 
the desirable property that points are only 
adjacent to a generally small set of close 
neighbors in all directions. The circled node 
to the right, has many more close neighbors 
to the east, yet its adjacent neighbors are 
evenly spread in all directions. 

Because agents are limited by their circles of visibility, each agent 
computes a local Delaunay triangulation. The edges of the local 
Delaunay triangulation form a superset of the edges of the global 
Delaunay triangulation that are inside the agent’s circle of visibil-
ity. Some triangles in the local triangulation have large 
circumcircles, and in many cases these circumcircles might span 
outside the agent’s circle of visibility. In such cases the agent will 
not be able to determine whether a given edge of the local triangu-
lation is also in the global triangulation. Furthermore, the 
circumcircle test is not consistent between pairs of agents. If agent 
A has agent B as an adjacent node, agent B will not necessarily 
have agent A as an adjacent node; The circumcircles associated 
  
                                                                 
1 A triangle’s circumcircle is the unique circle that passes through all of 

the triangle’s vertices.  

  
a) Delaunay triangulation b) Empty circumcircles 

Figure 2: The Delaunay triangulation has the property that 
every triangle’s circumcircle does not enclose any points. 

 
Figure 3: Edges of the Delaunay triangulation. Edges in dark 
gray passed the edge test, while edges in light gray failed.  

with the edge might lie within the circle of visibility of B, but they 
might not lie within the circle of visibility of A. 

To address this consistency problem, instead of using the circum-
circle test, we perform the following simple test on an edge: An 
edge is in the triangulation, if the circle passing through both of its 
endpoints and with diameter equal to its length does 
not contain any other points (as shown in the  exam-
ple to the right). This simple edge test is stricter than 
the triangle circumcircle test and yields a subset of 
the edges of the Delaunay triangulation. 

In practice, this method finds a high percentage of the Delaunay 
edges if  agents are well distributed in space. As shown in Figure 
3, typically only one or two Delaunay edges adjacent to each node 
failed the test. Every visible node can be tested for adjacency, 
since for all the visible nodes, their respective edges’ circles will 
be completely inside the agent’s circle of visibility. Furthermore, 
this method is consistent among different agents since these 
circles lie completely within the circle of visibility of both agents. 

The final algorithm for an agent A to compute its neighbors is: 

• Compute the Delaunay triangulation of nodes visible from A, 
using a standard O(n log n) algorithm [Preparata and Shamos, 
1985].  

• For every edge adjacent to A, check whether the edge passes 
the stricter edge test. The edge only has to be checked against 
the two nodes opposite the edge in the two adjacent Delaunay 
triangles. If the edge passes the test, then we keep it, otherwise 
we discard it. 

This Delaunay triangulation step can be considered a black box by 
the agent. Adjacency can be computed very efficiently, and may 



 

 

even be done in hardware. Once adjacency is established, agents 
can now use either the single-agent task allocation algorithm of 
Section 3 or the multi-agent one of Section 4.  

3. BASIC ALGORITHM 
The algorithm in Section 2 computes for each agent a set of 
adjacent nodes. This section gives an algorithm that uses adja-
cency information to determine the direction an agent should 
move. The objective is to move toward tasks and away from other 
agents. If one or more task nodes are adjacent to the agent, it will 
move in the direction of the nearest one in an attempt to reach it 
and fulfill it. If the agent has no adjacent task nodes, then it will 
repel its adjacent agent nodes to better cover empty spaces. To 
prevent the agent from being too close to a peer, the agent should 
repel nearby agents more than farther ones. Hence the repelling 
force should be inversely proportional to distance. We set it to be 
d-k, where d is the distance, and k is a specified constant. More 
formally, given the adjacent agents j, the agent moves in the 
direction given by 
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where v(j) is the vector from the geographical coordinates of the 
adjacent agent j to the current agent’s coordinates. 

We ran experiments to determine the best value for the k parame-
ter, and the results for using different values of k were all quite 
similar, as long as k>0. We decided to use k=2, as it gave slightly 
better results. 

With a sufficiently low number of agents, the agents will repel 
one another and end up at the boundaries. To prevent this, we 
introduce “phantom nodes”, imaginary nodes evenly spaced along 
the boundaries. In the absence of nearby tasks, agents will also 
repel the phantom nodes. With this addition, agents “bounce” off 
the boundary. The number of phantom nodes is set to n  at each 
boundary, where n is the number of agents. 

Tasks only attract adjacent agents. Agents that are not adjacent to 
a particular task have a very low probability of being able to reach 
that task before other agents do. This algorithm ensures that non-
adjacent tasks do not influence where an agent moves. For in-
stance, if there is only one task to be satisfied, the adjacent agents 
will all attempt to reach the task, while other agents will not even 
try. Instead, they will try to evenly spread themselves in space in 
the expectation that another task might appear in their vicinity.  

The algorithm effectively shrinks and grows the agent’s circle of 
visibility based on the density of nodes. If there are a lot of nodes, 
the agents will only pursue nearby tasks, while if there are very 
few nodes, the agents can try to reach tasks that are farther away.  

Figure 4 shows two screenshots of our system with significantly 
more agents than tasks. Using the simple algorithm outlined 
above only nodes that are adjacent to tasks are attempting to reach 
them; the others remain evenly spaced.  

 

 

Figure 4: Two screenshots of our system. The agents (gray 
points) are well spaced. The tasks (dark interior points) only 
attract adjacent agents. Agents repel other agents and phan-
tom nodes (dark boundary points) in the absence of adjacent 
tasks. 

4. WEIGHT SYSTEM 
In this section we describe an extension to the algorithm that  
addresses scenarios in which tasks require multiple agents in order 
to be completed. In this algorithm, each task is given a weight 
equal to the number of agents that are needed to complete it. 
Figure 5 shows a screenshot of our program using the weight 
system.  

With only a slight modification to the basic framework so that a 
task node with weight w does not disappear until w agents reach 
it, the basic algorithm performs well for low weight values since, 
on average, a task is directly adjacent to enough agents. When the 
weight is increased to values greater than 5, the performance 
degrades substantially as only immediate neighbors are aware of a 
task and move directly towards it. Agents a little farther away 
have no information about the task until direct neighbors reach it 
and are removed from the triangulation. 

As a solution to this problem, we propose a weight propagation 
mechanism based on local communication between adjacent 
agents. The triangulation provides an ideal basis for this approach 
as it introduces a connected graph while still limiting the number 
of adjacent neighbors and thus the amount of communication. 



 

 

The algorithm works as follows. Initially, all agent nodes are 
assigned a weight of 0 and all task nodes are assigned a weight 
equal to the number of agents needed to satisfy them. If an agent 
is only adjacent to zero-weight nodes, it moves away from its 
neighbors to achieve a more even distribution in space, as in 
Section 3. Otherwise, it picks the neighboring node with the 
highest weight, which we will now refer to as the parent node. In 
case of a tie, it picks the closest node. If the parent node is a task, 
it moves towards it. If it is an agent, it gets the destination task 
information from that agent and moves towards that same task. 
The weight of the agent is set to w(n)·2-k, where w(n) is the weight 
of the parent and k is a constant that regulates the rate of weight 
propagation. If the weight becomes less than 1, it is set to 0. Thus, 
when all task weights are 1, this algorithm behaves identically to 
the algorithm described in Section 3. 

The example in Figure 6 illustrates the algorithm with the rate of 
weight propagation set to 1. In this scenario, there are two tasks, 
one with a weight of 8 and the other with a weight of 1. The 
weights of tasks are propagated through agents and set to the 
values shown. As a result, only the agent on the lower left will 
move to the task with a weight of 1. The others will be attracted to 
the task with a weight of 8. This example demonstrates the advan-
tages of weight propagation as farther agents become aware of the 
task without waiting until agents that are in between reach it and 
are removed from the triangulation. Furthermore, with weight 
propagation, agents can become aware of a task even if the task is 
outside of the their circles of visibility.  

When using this algorithm, it is important to address the trade-off 
between responsiveness and efficiency. We want the system to be 
responsive so that when a new task appears, enough agents are 
attracted to it. However we also want it to be efficient and avoid 
redundancy, which is created when too many agents move into the 
same area, potentially increasing response time for tasks appear-
ing somewhere else. To regulate this behavior, the maximum 
number of levels of propagation as well as the k parameter can be 
adjusted for a particular task-to-agent ratio. 

Since this system involves only very minimal coordination be-
tween agents, if the ratio of tasks to agents is very high, agents 
could move to different tasks and wait there for help indefinitely. 
Two different approaches may be taken to address this problem. 
The weight of a task node can be increased as agents get there to 
effectively indicate that it becomes more important to satisfy that 
task now because some agents are waiting there and cannot do 
any other useful work. An alternative approach, which can be 
used independently or in conjunction with the first one, is to 
introduce a time-out value to represent the maximum amount of 
time an agent waits for help. After that time elapses, the agent will 
move away from the task. This second approach was implemented 
in our system. 

The issues described above are important, and they raise the 
question of whether more comprehensive cooperation mecha-
nisms should be introduced into the system. With no 
communication and computation constraints, it would be possible 
to avoid conflicting and redundant efforts and the system would 
be perfectly coordinated [Malone, 1987]. Under restrictions of 
practical distributed systems, however, this is impossible to 
achieve. When designing such systems, it is important to ensure 
that agents spend most of their time solving the domain level 
problems for which they were built, rather than in communication 
and coordination activities [Jennings, 1996].  

 

Figure 5: Screenshot with varying weight tasks. Larger points 
represent tasks with higher weights. 

 

Figure 6: Weight propagation of task nodes (double-circled) 
through agent nodes (single-circled). 

5. IMPLEMENTATION AND RESULTS 
We implemented a system using the methods outlined above. For 
computing Delaunay triangulations, we used the Qhull software 
library [Barber and Huhdanpaa]. To compare our results to the 
physics-based approach of Shehory et al. [1998], we use settings 
similar to theirs. The domain is a 30-by-20km city and the streets 
are arranged in a square lattice, such that each city block is 200m 
long (150 streets by 100 streets). Like in Shehory et al.’s freight 
delivery system, after each agent arrives at a task node, it must 
deliver the freight to some random city destination. Once the 
freight is delivered, the agent reappears at the delivery point and 
resumes searching for tasks. Even though we used the freight 
delivery example, the results are indicative of how the system 
would perform in other similar settings, such as the police force or 
taxi company. To compare our results to those of Shehory et al. 
[1998], we used settings similar to theirs. We performed our runs 
with 250 agents, 1,200 initial tasks, 600 new tasks per hour, and 
agents traveling at 50km/h. 

5.1 Equilibrium 
The first experiment, shows how the system behaves during the 
initial stages until it reaches equilibrium. We performed two runs. 
In the first run, we set the radius of the circle of visibility to 
0.5km, while in the second we set it to 2km. The results of the 



 

 

experiment are shown in Figure 7.  Searching agents represents 
the number of agents that are currently looking for a task. The 
agent searching time is how long an agent takes to find a task on 
average. Waiting tasks represents the number of tasks that are 
waiting for an agent to arrive. The task waiting time is how long a 
task waits for an agent on average. The task fulfillment time is the 
sum of the waiting time and the delivery time (the time that takes 
to go to a random city destination on average). The delivery time 
is only dependent on velocity, and the velocity remains un-
changed in this experiment. As a result the fulfillment time graph 
is just a shifted waiting time graph, and is not shown here. It is 
interesting that the number of searching agents oscillates quite 
significantly. They do however satisfy all tasks, and keep the task 
waiting time very low. 

Both runs reached equilibrium, in that the agents were able to 
handle all incoming tasks and keep the number of waiting tasks 
relatively steady. The number of agents that are searching for 
tasks and the average time for an agent to find a task are very 
similar, since in both cases the agents are getting the same amount 
of work done. However, the number of waiting tasks and the task 
waiting time is significantly higher in the 0.5km visibility setting. 
In this setting the agents cannot see very far away. As a result the 
agents could not immediately find tasks, so the system reached 
equilibrium with a higher number of waiting tasks.  

5.2 Circle of visibility 
We performed an experiment varying the radius of the circle of 
visibility from 0.4 to 5 km. The results after 70 hours of simulated 
time are shown in Figure 8. Again, all the systems reached equi-
librium, so the number of searching agents and the searching time 
are very similar for all cases. The number of waiting tasks and the 
task waiting time decrease as the radius increases. We were 
concerned that the system would require a very large radius, but 
these results indicate that with the default parameters and 250 
agents or more, using a radius greater than 2 yields no significant 
improvement. At that radius there are enough agents so that they 
can almost always see their closest neighbors in all directions. We 
also tested the algorithm on cases in which different agents have 
circles of visibility with different radii, and the system performed 
equally well. 

5.3 Number of agents and velocity 
We performed tests with default settings and a varying number of 
agents and velocity. We set the circle of visibility to 2km. The 
length of each run was 70 hours of simulated time. Figure 9 
contains the same four standard measurements of the prior ex-
periments, while Figure 10 shows the task fulfillment time. For 
the prior two experiments, the fulfillment time graph is a shifted 
waiting time graph, but since we use different velocities in this 
experiment, the delivery time varies. 

As Figure 10 shows, as the number of agents increases, the 
number of searching agents and the agent searching time both 
increase, while the number of waiting tasks and the waiting time 
both decrease. Once the number of agents falls below a threshold, 
the agents cannot satisfy the tasks at the current incoming rate, 
and the system does not reach equilibrium. Clearly, the higher the 
velocity, the lower the threshold. In all cases where equilibrium is 
reached, the same number of tasks are satisfied per hour. By 
increasing the velocity, agents reach tasks faster, but there are 
more agents looking for tasks. 

0

10

20

30

40

50

60

70

0 500 1000 1500 2000
Elapsed time

S
ea

rc
h

in
g

 a
g

en
ts

0.5km Visibility

2km Visibility

0

1

2

3

4

5

0 500 1000 1500 2000
Elapsed time

A
g

en
t 

se
ar

ch
in

g
 t

im
e 

(m
in

.)

0.5km Visibility

2km Visibility

0
100
200
300
400
500
600
700
800
900

1000

0 500 1000 1500 2000

Elapsed time

W
ai

ti
n

g
 t

as
ks

0.5km Visibility

2km Visibility

0

10

20

30

40

50

60

70

0 500 1000 1500 2000

Elapsed time

T
as

k 
w

ai
ti

n
g

 t
im

e 
(m

in
.)

0.5km Visibility

2km Visibility

Figure 7: Results of two runs of our system with varying circles 
of visibility. 
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Figure 8: Results of our system as a function of the radius of 
the circle of visibility. 
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Figure 9: Results of our system varying the number of agents 
and the velocity. Results from Shehory et al. with a speed limit 
of 50km/h are also shown for comparison. 
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Figure 10: Average task fulfillment time of our system varying 
the number of agents and the velocity. Results from Shehory et 
al. with a speed limit of 50km/h are also shown for comparison. 
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Figure 11: Results varying the weight propagation constant for 
different agent:task ratios. 

These results demonstrate that our algorithm outperforms the 
system of Shehory et al. Shehory et al.’s experiments were run 
with a maximum velocity of 50km/h. As shown in Figure 10, our 
system fulfills tasks in less than half an hour using 250 agents, 
while their system requires approximately 600 agents to fulfill the 
tasks in the same amount of time. Shehory et al. use a city grid in 
which 10% of the city streets are closed, while we use a full grid. 
Examining their delivery time (fulfillment time minus waiting 
time), we noticed that they do not appear to be paying a signifi-
cant penalty for not having a completely full grid, so we omitted a 
partial grid for our experiments. The agents in our system always 
travel at the maximum velocity when going towards a task node. 
In Shehory et al.’s system, even when the agent is approaching a 
task node it repels other agents. Furthermore, if the agent is 
farther from a task it will approach it at a lower speed. It will only 
reach the speed limit when the attraction force becomes large 
enough. As a result, there is a significant reduction in average 
velocity, causing an increase in the waiting time. Note that, with 
400 agents, our system with a velocity of 30km/h has a compara-
ble waiting time as theirs with a maximum velocity of 50km/h. 

5.4 Weight system 
We experimented to find the optimal weight propagation constant 
k for different task-agent ratios. For the experiment, we used 150 
tasks with weights ranging from 6 to 10 while varying the number 
of agents from 600 to 900 and k from 0.6 to 4. Note that since the 

maximum task weight is 10, using k=4  is equivalent to using no 
weight propagation at all since the weight of agents immediately 
adjacent to the task is 10/24, which is less than 1 and thus set to 0. 
Figure 11 demonstrates that there is no substantial difference in 
performance for k values ranging from 0.6 to 2. For values of k 
that are greater than 2, the system slows down significantly for a 
lower number of agents, but systems with a higher number of 
agents still perform well since, on average, more agents are closer 
to the tasks because of the higher density of agents. The optimal 
value of k decreases as number of agent increases since systems 
with a higher number of agents can afford more redundancy 
(lower values of k mean that the weight is going to be decreased at 
a slower rate and thus more agents will be attracted to a task). 

6. RELATED WORK 
Research in distributed systems has developed many algorithms 
that can be done locally in a distributed network. Locality is 
defined as a limit on time or distance, which is independent of the 
size of the network. Since the network has graph structure, many 
of these algorithms arise from graph theory. In such settings, 
many distributed graph theory algorithms attempt to find global 
solutions via local communication [Naor and Stockmeyer, 1993]. 
In contrast, our algorithm is  purely local and does not require or 
attempt to find the global maximum. 

Computational geometry techniques similar to the one presented 
in this paper have been used to solve problems in a wide range of 
areas where geographical position is important. Voronoi diagrams 
– the dual of Delaunay triangulations – have been used to place 
supermarkets so that they are evenly spaced around town. In the 
Networking field, several routing algorithms also make use of 
Voronoi diagrams and Delaunay triangulations. Meguerdichian, et 
al. [2001] uses Voronoi diagrams for optimal coverage calculation 
in wireless networks. Gao et al. [2001] propose a new routing 
graph for mobile ad hoc networks based on Delaunay triangula-
tions. 

Traditional AI research on task allocation has concentrated either 
on negotiation or on market strategies such as contracts [Sand-
holm and Lesser, 1995] or auctions that require substantial 
amount of communication, thus limiting their usability in large 
scale MAS. In a distributed system of reasonable complexity, the 
computation and communication costs of determining the optimal 
allocation far outweighs the improvement in the solution [Corkill 
and Lesser, 1986]. 

Most of the research in MAS has focused on finding approaches 
that impose a set of simple rules which individual agents have to 
follow locally without the need for global coordination. In Ephrati 
et al. [1995], the effects of introducing a filter-override mecha-
nism to reduce the amount of required communication are studied 
by conducting a set of experiments in the Tileworld system. 
Shehory and Kraus [1998], and Learman and Shehory [2000] 
propose distributed algorithms of low complexity for the forma-
tion of coalitions, which is useful when a group of agents can be 
more efficient when working together or when no single agent by 
itself can satisfy a task. Shehory [2000] addresses the problem of 
locating agents without traditional approaches that require “mid-
dle” agents and thus impose infrastructure, protocol and 
communications overheads. The algorithm consists of an agent 
contacting only its neighbors who, in turn, can contact their own 
neighbors allowing information to propagate across the network. 



 

 

Shehory et al. [1998] describe a Physics-based approach for 
distributed task allocation in the geographical domains that we 
address in this paper.  Their solution is based on assumption that 
these domains are modeled well by a particle system governed by 
regular physics laws. While benefiting by being able to use many 
already developed formulations, this approach suffers from some 
limitations as well. In particular, only distance and not adjacency 
information is used, and it is not always beneficial for agents to 
repel each other. For example, they should not repel each other as 
they approach nearby tasks, or as they approach a task that re-
quires multiple agents. In our system, we address this issue by 
having agents repel each other only in the absence of adjacent 
tasks. One limitation of our system is that in the presence of a 
dense cluster of task nodes, the agents will not be aware of task 
nodes that are only adjacent to other task nodes until those other 
task nodes are satisfied. 

7. SUMMARY AND FUTURE WORK 
We have presented an algorithm for efficient task allocation in 
distributed environments. Our approach uses computational 
geometry techniques to efficiently determine adjacency informa-
tion for the agents. This adjacency information allows for agents 
to use a set of local rules to determine their course of action as 
they search for a nearby task to satisfy, therefore serving as an 
efficient filter for determining which neighboring nodes should be 
relevant in the decision making process.  

The algorithms presented in this paper were implemented. We 
experimented with different system settings to observe how the 
system performed and to find optimal configurations. The algo-
rithms yield improved task allocations compared to previous 
algorithms proposed for similar environments. 

There are several interesting areas for future work: 

• We only analyzed average results. One could analyze the 
distribution of these values to see whether some tasks wait 
much longer than others. 

• One could experiment with heterogeneous agents (i.e., agents 
with different velocities). 

• In this paper, we attempted to maximize the number of tasks 
fulfilled by agents. One could also consider other cost metrics, 
such as maximizing agent idle time. If the system is in equilib-
rium, each agent fulfills the same number of tasks per hour. In 
many cases all agents could considerably decrease their veloci-
ties while still maintaining equilibrium. In the extreme, every 
agent could remain idle for a period of time, in order to con-
serve resources. While this would increase the fulfillment time, 
it would not affect the average number of tasks fulfilled by the 
agents. So from the agents’ point of view, this could be benefi-
cial. Perhaps a learning algorithm could be used for the agents 
to determine when and for how long they should remain idle. 

• Given this triangulation framework, agents can now easily 
propagate information by communicating to their few select 
neighbors. It would be interesting to try to develop a look-
ahead algorithm for determining which task to pursue based on 
adjacency information. 

• One could consider adopting some cooperation strategies aimed 
at increasing the common utility, and analyze how well coop-
erative agents will perform in the presence of selfish agents. 
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