skip to main content
10.1145/545261.545268acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
Article

A multiresolution framework for dynamic deformations

Published:21 July 2002Publication History

ABSTRACT

We present a novel framework for the dynamic simulation of elastic deformable solids. Our approach combines classical finite element methodology with a multiresolution subdivision framework in order to produce fast, easy to use, and realistic animations. We represent deformations using a hierarchical basis constructed using volumetric subdivision. The subdivision framework provides topological flexibility and the hierarchical basis allows the simulation to add detail where it is needed. Since volumetric parameterization is difficult for complex models, we support the embedding of objects in domains that are easier to parameterize.

References

  1. Chandrajit Bajaj, Scott Schaefer, Joe Warren, and Guoliang Xu. A subdivision scheme for hexahedral meshes, draft, 2001.Google ScholarGoogle Scholar
  2. R. E. Bank. Hierarchical bases and the finite element method, volume 5 of Acta Numerica, pages 1-43. Cambridge University Press, Cambridge, 1996.Google ScholarGoogle Scholar
  3. David Baraff and Andrew Witkin. Dynamic simulation of non-penetrating flexible bodies. Computer Graphics (Proceedings of SIGGRAPH 92), 26(2):303-308, July 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David Baraff and Andrew Witkin. Large steps in cloth simulation. Proceedings of SIGGRAPH 98, pages 43-54, July 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. Börgers and O. Widlund. On finite element domain imbedding methods. SIAM J. Num. Anal., 27:145-162, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Morten Bro-Nielsen and Stephane Cotin. Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Computer Graphics Forum, 15(3):57-66, August 1996.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. Interactive skeleton-driven dynamic deformations. To appear in the Proceedings of SIGGRAPH 2002, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design, 10:350-355, September 1978.Google ScholarGoogle ScholarCross RefCross Ref
  9. George Celniker and Dave Gossard. Deformable curve and surface finite-elements for free-form shape design. Computer Graphics, 25(4):257-266, July 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fehmi Cirak, Michael Ortiz, and Peter Peter Schröder. Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering, 47(12):2039-72, April 2000.Google ScholarGoogle ScholarCross RefCross Ref
  11. Gilles Debunne, Mathieu Desbrun, Alan Barr, and Marie-Paule Cani. Interactive multiresolution animation of deformable models. Computer Animation and Simulation '99, September 1999.Google ScholarGoogle ScholarCross RefCross Ref
  12. Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. Dynamic real-time deformations using space & time adaptive sampling. Proceedings of SIGGRAPH 2001, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in character animation. Proceedings of SIGGRAPH 98, pages 85-94, August 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Mathieu Desbrun, Peter Schröder, and Al Barr. Interactive animation of structured deformable objects. Graphics Interface '99, pages 1-8, June 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Dynamic free-form deformations for animation synthesis. IEEE Transactions on Visualization and Computer Graphics, 3(3):201-214, July-September 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Steven J. Gortler and Michael F. Cohen. Hierarchical and variational geometric modeling with wavelets. 1995 Symposium on Interactive 3D Graphics, pages 35-42, April 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Steven J. Gortler, Peter Schröder, Michael F. Cohen, and Pat Hanrahan. Wavelet radiosity. Proceedings of SIGGRAPH 93, pages 221-230, August 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jean-Paul Gourret, Nadia Magnenat Thalmann, and Daniel Thalmann. Simulation of object and human skin deformations in a grasping task. Computer Graphics (Proceedings of SIGGRAPH 89), 23(3):21-30, July 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. E. Grinspun, P. Krysl, and P. Schröder. Charms: A simple framework for adaptive simulation. To appear in the Proceedings of SIGGRAPH 2002, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Michael Hauth and Olaf Etzmuss. A high performance solver for the animation of deformable objects using advanced numerical methods. Computer Graphics Forum (Proceedings of Eurographics 2001), 20(3), 2001.Google ScholarGoogle Scholar
  21. Doug L. James and Dinesh K. Pai. Artdefo - accurate real time deformable objects. Proceedings of SIGGRAPH 99, pages 65-72, August 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. M. Koch, M. H. Gross, F. R. Carls, D. F. von Büren, G. Fankhauser, and Y. Parish. Simulating facial surgery using finite element methods. Proceedings of SIGGRAPH 96, pages 421-428, August 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Michael Lounsbery, Tony D. DeRose, and Joe Warren. Multiresolution analysis for surfaces of arbitrary topological type. ACM Transactions on Graphics, 16(1):34-73, January 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ron MacCracken and Kenneth I. Joy. Free-form deformations with lattices of arbitrary topology. Computer Graphics (Proceedings of SIGGRAPH 96), pages 181-188, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. G. I. Marchuk, Y. A. Kuznetsov, and A. M. Matsokin. Fictitious domain and domain decomposition methods. Sov. J. Numer. Anal. Math Modeling, 1, 1986.Google ScholarGoogle Scholar
  26. K. McDonnell and H. Qin. Dynamic sculpting and animation of free-form sub-division solids. In Proceedings of the Conference on Computer Animation, pages 126-133. IEEE Press, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kevin T. McDonnell and Hong Qin. FEM-based subdivision solids for dynamic and haptic interaction. In Proceedings of the Sixth Symposium on Solid Modeling and Application, pages 312-313. ACM Press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Dimitri Metaxas and Demetri Terzopoulos. Dynamic deformation of solid primitives with constraints. Computer Graphics (Proceedings of SIGGRAPH 92), 26(2):309-312, July 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. James F. O'Brien and Jessica K. Hodgins. Graphical modeling and animation of brittle fracture. Proceedings of SIGGRAPH 99, pages 137-146, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. T. Oden and J. N. Reddy. An Introduction to the Mathematical Theory of Finite Elements. John Wiley and Sons, Ltd., New York, London, Sydney, 1982.Google ScholarGoogle Scholar
  31. Alex Pentland and John Williams. Good vibrations: Modal dynamics for graphics and animation. Computer Graphics (Proceedings of SIGGRAPH 89), 23(3):215-222, July 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. G. Picinbono, H. Delingette, and N. Ayache. Real-time large displacement elasticity for surgery simulation: Non-linear tensor-mass model. In Proceedings of the Third International Conference on Medical Robotics, Imaging and Computer Assisted Surgery: MICCAI 2000, pages 643-652, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. John C. Platt and Alan H. Barr. Constraint methods for flexible models. Computer Graphics (Proceedings of SIGGRAPH 88), 22(4):279-288, August 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. P. M. Prenter. Splines and Variational Methods. John Wiley and Sons, 1975.Google ScholarGoogle Scholar
  35. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C, 2nd. edition. Cambridge University Press, 1992.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Hong Qin, Chhandomay Mandal, and Baba C. Vemuri. Dynamic catmull-clark subdivision surfaces. IEEE Transactions on Visualization and Computer Graphics, 4(3):215-229, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. S. H. Martin Roth, Markus H. Gross, Silvio Turello, and Friedrich R. Carls. A bernstein-bézier based approach to soft tissue simulation. Computer Graphics Forum, 17(3):285-294, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  38. Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geometric models. Computer Graphics, 20(4):151-160, August 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. Shabana. Dynamics of Multibody Systems. Cambridge University Press, 1998.Google ScholarGoogle Scholar
  40. Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for Computer Graphics: Theory and Applications. Morgann Kaufmann, San Francisco, CA, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Demetri Terzopoulos and Kurt Fleischer. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. Computer Graphics (Proceedings of SIGGRAPH 88), 22(4):269-278, August 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically deformable models. Computer Graphics (Proceedings of SIGGRAPH 87), 21(4);205-214, July 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Demetri Terzopoulos and Hong Qin. Dynamic nurbs with geometric constraints for interactive sculpting. ACM Transactions on Graphics, 13(2):103-136, April 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Demetri Terzopoulos and Andrew Witkin. Physically based models with rigid and deformable components. IEEE Computer Graphics and Applications, 8(6):41-51, November 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Henrik Weimer and Joe Warren. Subdivision schemes for fluid flow. Proceedings of SIGGRAPH 99, pages 111-120, August 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Andrew Witkin and William Welch. Fast animation and control of nonrigid structures. Computer Graphics (Proceedings of SIGGRAPH 90), 24(4):243-252, August 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A multiresolution framework for dynamic deformations

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SCA '02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation
          July 2002
          203 pages
          ISBN:1581135734
          DOI:10.1145/545261

          Copyright © 2002 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2002

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          SCA '02 Paper Acceptance Rate22of53submissions,42%Overall Acceptance Rate183of487submissions,38%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader