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Abstract

Controllable, reactive human motion is essential in many video
games and training environments. Characters in these applications
often perform tasks based on modified motion data, but response to
unpredicted events is also important in order to maintain realism.
We approach the problem of motion synthesis for interactive, hu-
manlike characters by combining dynamic simulation and human
motion capture data. Our control systems use trajectory tracking
to follow motion capture data and a balance controller to keep the
character upright while modifying sequences from a small motion
library to accomplish specified tasks, such as throwing punches or
swinging a racket. The system reacts to forces computed from a
physical collision model by changing stiffness and damping terms.
The freestanding, simulated humans respond automatically to im-
pacts and smoothly return to tracking. We compare the resulting
motion with video and recorded human data.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: motion capture and human body simulation, physi-
cally based animation, virtual environments, computer games

1 Introduction

Motion capture-driven characters are often used to populate syn-
thetic environments in electronic games, entertainment, and edu-
cational applications. Character interaction affects the believabil-
ity of these environments. For example, football players should
form a convincing pile-up and a boxer must throw punches that
land realistically. Modifying motion capture data automatically
for all such general interactions is not yet a solved problem. We
present motion capture-driven simulations that respond to a variety
of unexpected impacts in the upper body. The physically simu-
lated, freestanding humans accomplish tasks such as boxing and
table tennis based on examples from motion libraries. Through this
research, we make progress towards more general interaction for
motion capture-driven characters.

Physical models allow interaction through forces and impacts but
controllers for such physically based humans are difficult to con-
struct. Further, the resulting motions often lack important features
of natural human motion. In this work, we avoid these problems by

Figure 1:Motion capture-driven simulations.

creating simulations that match human data while they interact with
each other and their environment using a collision model. The sim-
ulations perform actions from a motion library of examples without
a pre-existing control system for the specific behaviors. The system
includes a reaction controller that allows the simulated humans to
respond to impacts based on their dynamics.

Recently, a number of researchers have explored combining mo-
tion capture and dynamic simulation in order to retain the ad-
vantages of each while avoiding the disadvantages. Hodgins and
Popovíc organized a SIGGRAPH course on this topic in 2000. The
approaches covered there and elsewhere fall along a continuum be-
tween the two techniques with some methods relying more on the
information embedded in the data and some relying more on the
physical realism of the simulation. In this paper, we also combine
motion capture and simulation, with a technique that lies closer to
the simulation of the end of the spectrum.

By controlling a simulation with motion capture data, we hope
to capture subtle, humanlike details from the data while adding re-
sponsiveness and interactivity with the dynamic simulation. There-
fore motion capture-driven simulations must meet two, sometimes
conflicting, goals: remaining close enough to the motion capture
data to keep the important characteristics of the original motion
while deviating sufficiently to accomplish the given task. These
important characteristics include the style such as a jab versus a
hook in boxing. And the deviations allow for hitting to a particular
location, reacting to collisions, and balancing.

We demonstrate the power of our approach with characters that
hit and react under a variety of conditions including simulations
that play table tennis and box. Full-body simulations are driven
by motion data that has been modified with time-scaling, blending,
and inverse kinematics to achieve specified tasks. A gain scheduler
modulates the stiffness parameters of the controller between track-
ing and reacting so that the characters respond to collision forces



from impacts in the upper body. While the hits and reactions take
place, balance is maintained through control torques computed ac-
cording to feedback for the simulation’s center of mass. We assess
our technique by comparing synthesized motion with human mo-
tion both graphically and in side-by-side comparison.

2 Background

In this work, we build on research both in the editing of motion
capture data and in constructing control systems for the simulation
of human figures. Recently, researchers have also begun to explore
the potential advantages of combining these two sets of techniques
as we do.

2.1 Motion capture editing

Most of the research in motion capture has explored techniques for
modifying data for a given scenario and for generalizing it for effec-
tive reuse. Straightforward interpolation with keyframes was sug-
gested initially [Bruderlin and Williams 1995; Witkin and Popović
1995]. Gleicher improved edits and adapted motion to new char-
acters by maintaining desired constraints such as contact with the
environment while optimizing over an entire sequence [Gleicher
1998]. Lee and Shin describe a general editing approach using
multi-level B-splines [Lee and Shin 1999]. Choi, Park, and Ko pro-
pose modifying data by minimizing velocity disturbances caused
by edits [Choi et al. 1999]. Our system performs simple edits on
motion capture data automatically based on a technique similar to
Witkin and Popovíc [1995] and uses this edited motion as input to
the controller.

Combining data sequences to create a new movement or parame-
terized behavior is another central problem in using motion capture
data. Bruderlin and Williams combine two dissimilar motions by
decomposing the motions into frequency bands and allowing user
control over blending gains for the bands [Bruderlin and Williams
1995]. Unuma, Anjyo, and Takeuchi use a Fourier series expansion
to interpolate and transition between motion sequences for walking,
jumping, and running [Unuma et al. 1995]. Similarly, Rose, Co-
hen, and Bodenheimer interpolate between like data sets, such as
happy and sad walking, but also allow non-periodic motions such
as reaching [Rose et al. 1998]. They use radial basis functions and
timewarping to align key events in their blended motion. Wiley and
Hahn suggest resampling a number of motion examples through
linear interpolation and time-scaling [Wiley and Hahn 1997]. We
use this approach in table tennis to create a large pool of example
swings in our motion library.

2.2 Physically based humans

Fully simulated dynamic characters offer the potential for physi-
cally realistic motion and interactions with other characters and ob-
jects via impact and response. Hodgins and her colleagues present
hand-tuned, state-machine driven controllers for motions like run-
ning, gymnastics, and diving [Hodgins et al. 1995]. Laszlo, van
de Panne, and Fiume used limit cycle control for physically realis-
tic, periodic walking and running [Laszlo et al. 1996]. They began
from an unstable open-loop controller for walking and perturbed
it to find a stable cyclic movement. van de Panne and Lamouret
use external forces to maintain the attitude of an unstable walking
human while guiding the optimization process towards a stable so-
lution [van de Panne and Lamouret 1995]. We found external forces
a helpful mechanism as well in the preliminary stages of designing
our balance control system.

Although most work has focused on the design of controllers for
individual behaviors, two efforts have combined controllers to cre-
ate more complex motions [Wooten and Hodgins 2000; Faloutsos

et al. 2001a]. Wooten and Hodgins implemented four parameter-
ized controllers that were concatenated to create gymnastic behav-
iors such as diving and flipping. Faloutsos, van de Panne, and Ter-
zopoulos took this approach a step further by automatically combin-
ing primitive controllers based on each controller’s pre-conditions
for success. They also added recovery and reactions to falling to
the repertoire of motor skills [Faloutsos et al. 2001b]. Our system
strings together primitive motions with high-level state machines
to create movements such as a boxer throwing a series of punches
although combining behaviors is not the main focus of our work.

2.3 Combining motion capture and simulation

A number of techniques combine simulation and motion capture
by using physical models to modify motion data. For example,
Popovíc and Witkin produced a variety of modifications to running
and jumping motion data using a low resolution physical model
to constrain the search space and trajectory optimization to solve
for modifications [Popovíc and Witkin 1999]. Pollard’s work on
“simple machines” uses a similar approach with a low degree-of-
freedom model for editing running motions, foregoing constrained
optimization for a faster solution [Pollard 1999].

Full-resolution forward and inverse dynamic models have been
used to achieve both physical realism in motion editing and hu-
man detail in simulation. Rose and his colleagues find a minimum
energy solution for transitions between motion sequences with an
inverse dynamics model [Rose et al. 1996]. In previous work, we
filter motion using a simulation to create physically plausible mo-
tion, including transitions, for upper-body behaviors [Zordan and
Hodgins 1999]. Playter combines motion capture with dynamic
simulation and a controller for running by using motion capture to
drive joint angles during underconstrained sections of the behavior
such as the flight phase [Playter 2000].

Two works are particularly similar to ours in that they also
modify motion to include physically based reactions. Kokkevis,
Metaxas, and Badler use a model reference controller and simula-
tion to modify keyframed data based on gravity or external forces
such as a large impulse that knocks over a soldier [Kokkevis et al.
1996]. Oshita and Makinouchi use a tracking controller and simula-
tion to show a character responding to a mass being dropped on his
back [Oshita and Makinouchi 2001]. Their approach actively con-
trols a subset of the character’s joints based on heuristics, actuating
the shoulders for arm motion, the back for upper-body motion and
the legs to control the pelvis acceleration for balance. Unlike these
techniques, our work includes motion capture data and requires that
the simulations actively follow the data in each joint as well as react
to contact.

3 Motion capture-driven control

To control the motion capture-driven simulations, we combine a tra-
jectory tracking controller with a process for selecting among and
interpolating between sequences of human motion data. At each
simulation timestep, the system determines a desired state for the
simulation from the motion capture data and the tracking controller
computes torques based on those desired values. The simulation is
integrated forward in time, the state variables are updated, and the
process repeats.

The simulations are rigid body models of human figures with the
equations of motion computed using SDFast [Symbolic Dynamics
Inc. 1990]. The degrees of freedom are shown in figure 2 and the
simulation’s root node (at the pelvis) is free to move and rotate in
space. For collisions, a hierarchical detection and position/velocity
penalty method identify and resolve contact between objects in the
scene and the simulations’ body parts. Impact forces are applied to
the body of the contacted simulation in order to create reactions.
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Figure 2:Each of the joints indicated have three degrees of free-
dom. The table tennis character also includes wrist joints. The
mass and inertial parameters of the simulations are computed
based on their geometric models and human density measure-
ments.

The torque controller for each joint is a proportional-derivative
servo:

τt = kt (θd −θ)− bt (θ̇) (1)

whereθ andθd correspond to the actual and desired joint angles,
θ̇ is the joint velocity, andkt andbt are the position and velocity
gains. To make the tracking more precise, the system scales the
gains according to the moment of inertia of the chain of bodies
affected by that joint. For example, the shoulder gains are scaled
by the moment of inertia of the upper arm, lower arm, and hand
about the shoulder joint during each timestep. Similarly, the torque
at the ankle, which affects the whole body when the foot is on the
ground, is scaled by the inertia of the leg, pelvis, and upper body.
This process also acts to reduce the number of tuned parameters
so that stiffness over the entire body can be controlled with a single
value, speeding up the tuning process tremendously. Figure 3 shows
the performance of the tracking controller.

With this tracking control system in place, the simulation is able
to follow motion capture data closely, however, deviations from the
raw motion data are required in order for the characters to perform
desired tasks and to react to contact (sections 4 and 5). In addition,
without feedback control, the characters would eventually fall over.
Combining tracking with balance control is described in section 6.
Further implementation details and examples for each of these top-
ics are included in the thesis correponding to this research [Zordan
2002].

4 Control for Hitting

When the motion capture-driven simulation performs a hitting ac-
tion, such as throwing a punch in boxing or swinging a racket at a
ball in table tennis, our approach is to modify the motion capture
segment to control the important features of the action automati-
cally and then track the resulting motion as described in the pre-
vious section. To complete tasks successfully, we control the end
effector (the glove or racket) in two ways: changing the joint angles
from the original motion capture data to create the desired position
and orientation and time-scaling the motion capture sequence to
control the speed. For continuous play, we also use a state machine
to schedule hitting actions.

0.0 1.0 2.0 3.0 4.0 5.0
time (sec)

−1.5

−0.5

0.5

1.5

sh
ou

ld
er

 a
ng

le
 X

Y
Z

 (
ra

d)

Simulation
Motion Capture

Figure 3:A human was recorded performing a bob and weave.
That data was input as the desired value of the tracking con-
troller. The graph shows the resulting shoulder joint angles. By
accounting for the inertial mass being moved and keeping the
stiffnesses high, a trajectory-tracking controller follows the mo-
tion capture data closely introducing only a small time delay.

An inverse kinematics (IK) solver adjusts raw or synthetic mo-
tion segments to control the position and orientation of a hit. Our
IK solver searches for the arm joint angles with a hybrid approach
similar to that discussed by Lee and Shin [1999]. An adjusted off-
set computed from the IK solution is smoothly interpolated over a
time interval of fixed length. This IK solver allows the character
to perform a wider range of motions than exist in the raw recorded
library. When the original motion capture library is sparse, like the
dozen forehand and backhand swings we used in table tennis, syn-
thetic examples fill in gaps and help the IK solver by keeping the
required adjustments small. Table tennis swings were time-scaled
to align the beginning, end, and hit time and interpolated to generate
a denser library with 550 synthetic swings.

We make small adjustments in the speed of the end effector like
those required for the precise control of a ball in table tennis by
smoothly scaling the timestep of the motion capture data and driv-
ing the simulation with thesped-upor slowed-downdata. This ap-
proach requires a pre-processing step that executes the simulation
once for each motion sample in the library and records the speed of
the end effector at the time of impact. The timestep used to index
into the motion capture data is adjusted based on the ratio of the
desired speed and the pre-recorded speed. The velocity of the end
effector relative to the root,vr, is

vr(t) =

n∑
i=0

ri ×ωi(t) (2)

whereri is the vector describing the limb,ωi(t) is the angular ve-
locity andn is the number of joints. In this case, a scale in eachωi
yields the same scale in the velocityvr. If the simulation’s root
node is moving slowly, we can use this relationship to approxi-
mate the global speed of the end effector. A sinusoidal weighting
smoothly adjusts the timestep so that it moves from the original, to
the scaled timestep at the time of contact, and back again. Figure 4
shows a plot of the predicted and resulting speed for a table tennis
swing as well as the performance of the hit controller as it aims for
specific targets and figure 5 shows a plot for boxing punches being
thrown to different locations.

The hit controller is managed automatically by a state machine
to create behaviors that continuously box and play table tennis. The
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Figure 4:The left image shows a top-down view of a regulation-
size table tennis table with the net to the left (not shown) and re-
sults for three desired hit locations. The plot on the right shows
a series of racket speeds at the time of contact for a timewarped
swing and compares them with the predicted speed.
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Figure 5: Contact points for two styles of punches. The center
represents the unmodified point of contact for the simulation.
The remaining target locations appear on a 0.1 m grid relative
to this point.
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Figure 6: State machines for punching and swinging a racket
drive motion libraries consisting of 4 distinct punches and 2
blocks in the boxing library and 12 raw swings (converted to
560 synthesized swings) in table tennis. Timing color bars show
the length of time the simulation stays in each state.

state machine, shown in figure 6, queues the desired motion capture
segments from the library and creates transitions when the end of
a segment approaches or a user initiates a new activity. Transitions
interpolate the end and beginning of the adjoining segments with
a simple ease in/ease out ramp. When a hit is not taking place,
a wait or ready action is scheduled. In continuous play, the state
machine cycles by performing an action like a specific swing or
punch, transitioning, waiting, and transitioning again to the next
action as seen in the timing bars in the figure.

5 Reacting to Contact

During contact, the gains of the affected joints are reduced to al-
low the dynamics of the impact to influence the motion in a natural
manner. While high stiffness parameters in the tracking controller
follow the motion capture data effectively, these parameters make
the simulations appear overly strong and inflexible when contact
is made (and can lead to numerical instability). By dropping the
gains during contact, the simulation becomes more pliable and, if
tuned correctly, more natural. This approach modifies the control
gains and, therefore only models the passive effects of a contact.
It does not capture active human responses such as protecting the
head during a fall. Those responses would require additional mo-
tion capture examples or hand-programmed control systems such
as the ones shown by Faloutsos and his colleagues [2001a].

A gain-scheduling controller swaps the original tracking gains
with a new set of stiffness parameters,kr andbr, during contact.
The gains that are adjusted depend on the region of the body being
contacted. If the contact occurs along the trunk or head, the neck,
back, and waist gains are adjusted. If contact occurs on an arm, only
the gains of that arm are modified. To find these values, we tune the
simulations offline by creating collisions and selecting stiffness and
damping based on the reaction. Because only a few parameters are
tuned at a time, this process can be done quickly.

After tuning, when contact is detected, the scheduler updates the
stiffness parameters according to the following scheme:

k′t =




kt t ≤ tc
kr t > tc, t ≤ tc + te
kr(1−γ(t))+ktγ(t) t > tc + te, t ≤ tc + te + tf
kt t > tc + te + tf

wherek′t replaces the original tracking gain,kt in equation 1. The
variablestc, te, tf correspond to the time of initial collision, a
timed delay, and a ramp-up time to return to the original tracking
gain. The weighting parameterγ(t) uses a sinusoidal ramp to re-
turn to the original tracking gain. This scheme allows the reaction
to happen as soon as the contact occurs and smoothes the return to
tracking once the reaction is complete. A corresponding method is
used to update the damping parameter,bt.

Figure 7 shows a plot from a number of reactions created un-
der the same external conditions but using different gains and times
for tf . Though the change in gains affects the tracking controller’s
ability to follow the data, we do not explicitly change the sequence
of motion data being tracked. In this manner, the tracking and react-
ing control systems do not compete, but work together to produce
the resulting motions.

6 Balancing while tracking

Many researchers in both robotics and graphics have constructed
control systems for balance that maintain the position and velocity
of the center of mass projected onto the ground plane. The effect of
this control is to reduce the acceleration of the center of mass which
is a characteristic of human balance [Pai and Patton 1997]. Our
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problem differs in that the lower body motion is driven by motion
capture data while we simultaneously control the center of mass
for balance. We explored two approaches for controlling balance
with the lower body: avirtual actuatorcomputes joint torques for
balance and combines them with the tracking torques in the lower
extremities; a second controller offsets the desired angle in the hips
and ankles before computing torques.

We maintain the center of mass by selecting a reasonable desired
position and reducing the error between the simulated and desired
values. The center of support, computed from the polygon created
by the feet, is a simple value to compute and, when used as a desired
position, yields stable balance. To add high-level information about
balance from the human motion, we also experimented with esti-
mating the projected center of mass from the data using a weighted
sum of the recorded marker positions with estimated masses for the
body parts.

In the virtual actuator approach, several actuators are coordi-
nated to accomplish a single “virtual” actuation. Pratt used this
technique for a variety of models and behaviors [Pratt 1995]. In our
case, a balance torque in each of the leg joints (ankles, knees, hips)
is computed based on a virtual horizontal force that “pushes” the
center of mass toward the center of support:

OFv = kv (xd −x)− bv (ẋ) (3)

whereOFv indicates the force in the global coordinate system and
kv andbv are the gain and damping terms.x andẋ are the center
of mass and center of mass velocity projected on the ground plane
while xd is the desired center of mass. This force is not applied to
the simulation directly but converted to joint torques.

Unlike the virtual actuator algorithm described by Pratt that com-
putes a Jacobian relating the torques to the desired forces, we com-
pute the torques directly from:

τv = JTO

(O
Fv × rv

)
(4)

whereJTO transforms the torque from the global coordinate sys-
tem to the individual joint’s coordinate system andrv is the global
vector from the center of mass to the joint center. This torque is
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Figure 8:This plot shows the center of mass velocity for a danc-
ing behavior. We approximate the center of mass for the motion
capture data and our offset method for balance follows this esti-
mate. Conversely, the virtual actuator follows the center of sup-
port while the lower body tracks the motion capture data. The
larger extent of the estimated center of mass velocity likely re-
flects errors in the estimate and kinematic differences between
the actor and simulated character.

then added to the tracking torque computed from equation 1, as
τ = τt + τv , and applied to the simulation.

A second approach offsets the desired joint angles following the
algorithm suggested by Wooten and Hodgins [2000]. The controller
computes an offset in the hips and ankles(h,a) as:

λ(h,a) = k(h,a) (xd −x)− b(h,a) (ẋ) (5)

wherek(h,a) andb(h,a) are the offset gain and damping terms, re-
spectively. Once computed, theλ values are added toθd in equa-
tion 1. Figure 8 shows a comparison for the two torque-based bal-
ance approaches applied to a dancing behavior along with a plot of
the approximate center of mass for the human data.

7 Results

We implemented a variety of examples to show different aspects
of our system. Several filmstrips of the behaviors are shown in
figure 10. Two sports, table tennis and boxing, were investigated
in depth while other examples, such as fencing strikes, add breadth
to the spectrum of hitting behaviors. In table tennis, our goal is
to show precision control over the hitting action. With boxing, we
show the simulation’s ability to react to various punches. We also
include a dancing example that reacts to user-controlled impacts to
the head, waist, and arm in order to show a range of reactions.

7.1 Table tennis

Previous work on virtual tennis using motion capture has been
presented by Molet and colleagues [1999], while their efforts fo-
cused on system architecture for an interactive application and ours
on controlling a simulation with motion capture. Ping pong it-
self is a challenging behavior to control that has attracted the in-
terest of roboticists as well [Andersson 1988]. While a motion



Figure 9:Table tennis swing comparison. The specific data recorded with this video footage is driving the upper body of the simulated
table tennis player, frames sampled at 0.17 sec. The character portrays visual features of the subject’s movement even with the
differences in their kinematics.

capture-driven character could accomplish much the same perfor-
mance kinematically as our dynamic simulation, we use this exam-
ple to show that our physically based human can move by following
motion capture while adapting automatically to perform controlled
tasks. These two competing goals present an interesting control
problem for a dynamic system.

To play table tennis, the position, orientation, and velocity of the
racket must be controlled to hit an incoming ball to a particular loca-
tion with a desired speed. Only the upper body joints track human
data in the table tennis player, leaving the lower body to control
balance using the offset method. A constant desired angle is fed
into the lower body controller, providing continuity from swing to
swing. The ball is implemented without spin and using a point-and-
plane collision for contact with the racket. The ball’s impact is as-
sumed not to affect the motion of the racket. A figure of the players
hitting a ball back and forth for a medium-speed volley along with
results showing control over the ball and racket appear in the color
images of the appendix. A comparison in figure 9 contrasts video
footage of a table tennis swing with the simulated motion produced
by tracking the upper-body motion recorded for that swing.

7.2 Boxing

The most important contribution of our work, creating motion
capture-driven characters that can interact in a general way, is seen
in the boxing examples. We show the integration of hits and reac-
tions in this behavior. Punches are modified, like in table tennis,
using inverse kinematics so that the boxing simulations are able to
hit specified locations. As the simulations box each other, punches
are exchanged back and forth, combining the tracking and reaction
controllers without noticeable discontinuities in the generated mo-
tion. The simulations track data in each joint, combining balance
with the torque-based virtual actuator.

In addition to the reactions found in boxing, we experimented
in a more controlled setting where a “hand” moving under a user’s
specification interacts with a dancing simulation. The user disturbs
the dancer’s motion with “playful” jabs in the animation shown in
figure 10. While gains are modified only in the local region of con-
tact, under this more controlled setting the physical reaction of the
collisions can be seen to extend through the entire body. The simu-
lation even takes involuntary steps if the forces are large enough.

To evaluate the resulting animations, we show comparisons with
live footage. Side-by-side comparisons of the person being cap-
tured and the simulation driven by the recorded motion illustrate
characteristics that are retained in the simulated motion. Because
our motion library does not include sample reactions, we rely on

comparison with real boxing footage to assess the naturalness of
the response of our simulated boxer reacting as in figure 10.

8 Discussion

In this paper, we present simulations that hit based on human data
and react based on their dynamics. The underlying technology is
new in that it explores whole body tracking with balance, data-
driven control for hitting, and simulated reactions to hits for which
there was no available data. These simulations are too slow to be
used in games today (running about 10 times slower than real-time,
without graphics, on a 400 Mhz R12000 SGI) but this research
develops techniques for controlling simulations that may eventu-
ally replace kinematic models in appropriate applications. We also
make suggestions about how to lower the computational load while
keeping many of the benefits of the dynamics.

Whole body tracking means that the balance control must rec-
oncile the sometimes conflicting goals of tracking the lower body
motion and balancing. Our intuition had been that following a high-
level parameter estimated from the motion capture data, such as the
location of the center of mass, would be more effective than track-
ing joint angles in order to reproduce characteristics of the balanc-
ing behavior found in the tracked motion. While this was true in
the slower free-style dancing behavior, the lag produced in faster
motions, like boxing, was large enough to be detrimental. Until we
better understand how to control the location of the center of mass,
tracking the joint angles seems more promising.

Our balance controller occasionally takes a small, undeliberate
step but is currently not able to lift and plant a foot purposefully
to restore balance, much less to perform the quick footwork often
seen in boxing. If a contact is too hard, the simulation will fall over,
ungracefully. We do believe that our upper body control for hitting
would work with more aggressive moves in lower body. However,
reconciling the difference between stepping in the lower body and a
tracked motion segment presents a potentially difficult control prob-
lem. One straightforward improvement to the controller would be
to add intentional use of the arms for balance.

Our controllers for hitting are based on a small number of mo-
tion capture sequences: a dozen for table tennis and four for boxing.
An open question is whether the level of control would have been
improved by a larger motion capture library. Boxing would cer-
tainly be improved visually by including more variety in the styles
of punch sequences. Also, table tennis may be adequately spanned
by a small database and interpolation but, a larger set of swings
would be useful in creating an interpolated library based on slow,



Figure 10: Images include two boxers exchanging blows in the ring, a fencer performing a strike, a dancing character being hit in
the head, and a comparison between a simulated and human boxer reacting to a thrown punch. The spacing of the images in time
is uniform with the boxers in the ring shown at intervals of 0.33 s, the fencer at 0.33 s, the dancer at 0.25 s, and the composite of the
simulated and human boxers at 0.08 s. (These images are repeated in color in the appendix.)

medium, and fast hits. The number of synthetic swings in the cur-
rent implementation was chosen by hand to be dense enough to
keep the required adjustments to the racket position small. As more
example swings with different speeds are considered, modifications
for speed control could be minimized as well.

Passive reactions are implemented with a gain scheduler that re-
duces the stiffnesses at the instant of contact to allow the dynamics
of the collision to influence the motion. Human motor control does
not include such a drastic drop for reactions because the gains (stiff-
nesses) used during human arm movements, even strong arm move-
ments such as boxing, are probably much lower. The high gains in
our system are an artifact of the performance that we demand from
the trajectory tracking controller. Including gravity compensation
or other elements of inverse dynamics as feedforward terms would
allow much lower feedback gains. Trajectory learning as proposed
by Kawato would also provide a reduction in the gains [Kawato
et al. 1987; Kawato 1990]. These approaches would likely more
closely mimic the human control system and might obviate the need
for lower gains during reactions.

Although we include physical effects of contact to provide real-
istic interactions in the resulting animations, we make certain ap-
proximations such as ignoring impact forces when the disturbances
are small. In table tennis, the effect of the ball on the racket is
unnoticable and can be ignored without visually changing the fi-
nal animation. In boxing, the system only applies impact forces
to the punched simulation because the response of the impact in
the punching boxer is very small compared to that of the hit sim-
ulation. While our approximation shows the disturbance of the re-

action in the simulation being hit, the impression from viewers is
that the more subtle reactions of the hitter are important and seem
missing, especially when the simulated impact is fairly large. In
future versions, as this approximation become the limiting factor in
the simulations’ realism, a more complete solution will be required
so that the hitting simulation also reacts to disturbances instead of
following through stiffly as it does now.

8.1 Practical implementation

Physical approximations have value as debugging tools, devices for
creating control systems, and speed-ups for faster motion genera-
tion. We use a number of tools in the process of developing the
simulation controllers. Initial debugging and tuning is done on
“pedestal” simulations that are anchored to ground at the waist.
These systems run more quickly and eliminate difficulties related
to maintaining balance. After tuning, porting the control systems to
a full-body balancing simulation was relatively straightforward.

External forces applied to the simulation for control are physi-
cally unrealistic but maintain balance in a much more stable man-
ner at the expense of some physical realism. The force described
in equation 3 can be applied to the simulation at the center of mass
rather than being converted to joint torques as in the presented ex-
amples. This control approach is equivalent to letting the character
stand on its own legs, while an unseen spring and damper adjust the
simulation’s center of mass to keep it balanced. This character is
able to perform more aggressive hits and withstand a wider range
of blows than one supported by joint torques alone. For entertain-



ment applications where robustness is sometimes more important
than naturalness, this type of supernatural control is likely to be
quite helpful.

Simpler, hybrid dynamic/kinematic models can be used to re-
duce the overall computation. For example a simulation with many
fewer joints could approximate the gross body motion reasonably
while kinematic “add–ons” could improve the visual appearance.
In addition, removing parts of the body with low mass allows the
simulation to run with a larger timestep, significantly cutting com-
putation cost, because the numerical stiffness of the overall system
is lowered. Another, less compute-intensive approach for including
simulated reactions is to drive characters with motion capture kine-
matically and turn on the simulation only during the time of impact
and response. In this manner, the expense of the simulation can be
avoided until it is required.

In closing, the combination of motion capture data and simu-
lation proved to be quite powerful for the applications presented
here. We believe the information about human motion contained
in motion capture data coupled with the physical realism provided
by simulation will be of great benefit in other applications where
controllable and reactive human motion is required.
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Figure 11:Image 1 (clockwise from left): Two simulated table tennis players hit a ball back and forth in a controlled volley. Image 2:
Two swings with the player shown at the time of contact. The incoming ball, starting from the net moving to the left, is returned in
different directions (sampled every frame). The inlays show the racket angle for the furthest extents. Image 3: Racket locations at
the time of contact for tracked raw swings combined in a continuous motion with each disk representing the paddle’s position and
orientation at the contact point. The spheres show hit locations for synthetic swings generated between three raw swings.

Figure 12: Images include two boxers exchanging blows in the ring, a fencer performing a strike, a dancing character being hit in
the head, and a comparison between a simulated and human boxer reacting to a thrown punch. The spacing of the images in time
is uniform with the boxers in the ring shown at intervals of 0.33 s, the fencer at 0.33 s, the dancer at 0.25 s, and the composite of the
simulated and human boxers at 0.08 s.


